金相组织识别铁碳相图共30页
钢铁材料常见金相组织相图
![钢铁材料常见金相组织相图](https://img.taocdn.com/s3/m/ab4da629f12d2af90242e6de.png)
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
铁碳相图C曲线与金相组织介绍 课件
![铁碳相图C曲线与金相组织介绍 课件](https://img.taocdn.com/s3/m/8b807caabceb19e8b8f6ba87.png)
~900MPa,硬度:180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能
介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好
索氏体S
索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体
(GB/T7232标准)。其实质是一种珠光体,是钢的高温转变产物,是片层的铁
(临界点A1~550℃)、过冷度小,P型组织转变区,A→P。
(2).M型转变:低温区(在MS以下)、过冷度大,发生M转变的区域,A→M。 (3).B型转变:中温区(550℃~MS),发生B转变的区域,A→B。 3、奥氏体化后的冷却方式通常有两种:等温处理和连续冷却。共析钢过冷奥氏
体等温转变C曲线包括三个转变区:高温转变区,也称珠光体转变区;中温转变
余奥氏体的分解基本结束.
3. 300-400℃渗碳体的形成,钢在回火的这一阶段,从过饱和固溶体中析出 的碳化物转变为颗粒状的渗碳体(Fe3C).当温度达到400℃时,α 固溶体中过饱 和的碳已基本完全析出,α -Fe晶格恢复正常,由过饱和固溶体转变为铁素体.钢 的内应力基本清除.
4. 400℃以上渗碳体的聚集长大,在第三阶段结束时,钢内形成了细粒状
向稳定的组织(铁素体和渗碳体两相混合物)转变的倾向.但在室温下,原子活动
能力很差,这种转变速度极慢.随着回火温度的升高,原子活动能力加强,组织转变 便以较快的速度进行.由于组织的变化,钢的性能也发生相应的变化.
按回火温度的不同,回火时淬火钢的组织转变可分为四个阶段. 1. 80-200℃马氏体分解,当钢加热到约80℃时,其内部原子活动能力有所 增加,马氏体中的过饱和碳开始逐步以碳化物的形式析出,马氏体中碳的过饱和 程度不断降低,同时,晶格畸变程度也减弱,内应力有所降低. 这种出过饱和程度较低的马氏体和极细的碳化物所组成的组织,称为回火 马氏体. 2. 200-300℃残余奥氏体分解,当钢加热温度超过200℃时,马氏体继续分 解,同时,残余奥氏体也开始分解,转变为下贝氏体或回火马氏体,到300℃时,残
铁碳相图
![铁碳相图](https://img.taocdn.com/s3/m/b4b315dcd0d233d4b14e6979.png)
4 铁碳相图 4.1 铁碳合金的组元和基本相
纯铁 • 纯铁的同素异晶转变反应式:
δ- Fe
bcc
1394 °C
912 °C
γ- Fe
α- Fe
fcc
bcc
通常,把 δ - Fe ←→ γ - Fe 的转变称为 A4转变,转变的平衡临界点称为A4点。
γ- Fe ←→ α - Fe 的转变称为A3转变, 转变的平衡临界点称为A3点。
6.69
渗碳体一旦形成,在较低温度下,它的分解速率是很慢的,因此,在大多数情况 下,我们只考虑铁碳亚稳定系相图,即Fe-Fe3C相图。但应注意,渗碳体分解的 快慢与钢中是否含有其它元素有密切的关系。
4 铁碳相图
A L+ δ
δH B
N
温
J γ+ δ
度
γ
G 奥氏体
α+γ S αP
铁素体
Q Fe
L
L+γ
碳量%
0 0.53 4.30 6.69 2.14 2.11 0 0.09 0.16 0.17 6.69 0 0 0.022 0.0218 0.76 0.77 0.0057
上节回顾
2. 掌握几种典型的组织(组成、形貌特点、性能特点)
1.铁素体 碳溶于α-Fe中的间隙固溶体,bcc晶格,常用α或F表示。
<0.09%的合金,按匀晶转变为δ相之
后,继续冷却时发生固溶体的同素异晶转
变为单相γ。 含碳量在0.53~2.11%之间的合金,按
匀晶转变凝固后,组织也是单相γ。
4 铁碳相图 4.2 Fe-Fe3C相图分析
共晶转变(水平线ECF)
共晶转变是在1147℃的恒温下,由4.3%C的液相转变为2.14%C的γ和
铁碳合金相图及其合金资料
![铁碳合金相图及其合金资料](https://img.taocdn.com/s3/m/7b03d62251e79b8969022635.png)
Q
相图的实际应用
1.为选材提供成分依据 2.为制定热加工工艺提供依据
◆铸造 ◆锻轧 ◆焊接 ◆热处理工艺
Thursday, November 12, 2020
Q
常见杂质对碳钢性能的影响
1.锰 ——有益;0.25--0.80% a. 脱氧剂: 降低FeO→↓脆性, b. 脱硫剂: Mn+S→MnS(降低S的有害作用) ↑热加工性能 c.固溶强化,使性能更优。
Q
亚共析钢结晶过程示意图
Thursday, November 12, 2020
Q
亚共析钢的室温组织
铁素体
珠光体
Thursday, November 12, 2020
Q
过共析钢结晶过程示意图
Thursday, November 12, 2020
Q
过共析钢室温平衡组织
网状渗碳体
Thursday, November 12, 2020
● 普通碳素结构钢 按屈服强度分成5种 Q195,Q215,Q235,Q255,Q275
●优质碳素结构钢 ●碳素工具钢
T12
Thursday, November 12, 2020
Q
铸铁
Thursday, November 12, 2020
Q
Thursday, November 12, 2020
灰铸铁 HT 可锻铸铁 KT 球墨铸铁 QT 蠕墨铸铁 RuT
按用途分 碳素结构钢 碳素工具钢
Thursday, November 12, 2020
Q
4)按冶炼时脱氧程度的不同分类 沸腾钢:不脱氧的钢; 镇静钢:完全脱氧钢; 半镇静钢:半脱氧钢。 5)按金相组织分 亚共析钢、共析钢、过共析钢。
铁碳合金平衡组织观察与分析教材演示课件(31张)
![铁碳合金平衡组织观察与分析教材演示课件(31张)](https://img.taocdn.com/s3/m/c8f5355371fe910ef02df86a.png)
+ 莱氏体 莱氏体
过晶白口铸铁
4.30-6.69
莱氏体 + 二次渗碳体
工业纯铁的显微组织
20钢的显微组织
45钢的显微组织
45钢的显微组织
65钢的显微组织
T8钢的显微组织
T8钢的显微组织
T12钢的显微组织
T12钢的显微组织
亚共晶白口铁的显微组织
❖
7.要想战胜电话销售时的恐惧心理, 道理与 击碎巨 石的道 理其实 是一样 的。一 锤击不 碎巨石 ,就多 击几锤 ,一句 话,坚 持就是 胜利。
❖
8.多打电话,并且坚持不懈地打电话 ,就会 成功地 克服与 销售有 关的一 切恐惧 心理。 实际上 ,拨打 电话的 数量与 销售额 之间有 着顺理 成章的 正比关 系
铁素体灰铸铁的显微组织
珠光体灰铸铁的显微组织
铁素体球墨铸铁的显微组织
铁素体+珠光体球墨铸铁的显微组织
珠光体球墨铸铁的显微组织
下贝氏体球墨铸铁的显微组织
珠光体可锻铸铁的实验报告
1.实验目的。 2.实验所用仪器设备、试样。 3.按下列要求画出灰铸铁、球墨铸铁、可锻铸铁(至少3种)的 显微组织,并注明各组织的名称。
实验三:铁碳合金平衡组织观察与分析
一、实验目的 1.进一步熟悉Fe—Fe3C相图,了解不同成分的 铁碳合金在平衡状态下的显微组织特征。 2.分析碳钢的含碳量与其平衡组织间的关系。 3.加深对平衡状态下铁碳合金的成分、组织、性 能间关系的理解。
二、实验原理
利用金相显微镜观察和研究金属内部的组织和 缺陷的方法称为显微分析。
3)更换物镜或调焦时,不许有任何剧烈动作, 以防损坏物镜。
铁碳合金相图(超清楚版)
![铁碳合金相图(超清楚版)](https://img.taocdn.com/s3/m/c12912ed951ea76e58fafab069dc5022aaea46b4.png)
600700800900
F 温度/
℃Fe-Fe 3C 合金相图
Fe K
D
1、铁素体:碳在α-Fe 中形成的间隙固溶体称为铁素体,用符号F 或α表示。
碳在α-Fe 中的溶解度很低,因此,铁素体的机械性能与纯铁相近,其强度、硬度较低,但具有良好的塑性、韧性。
2、奥氏体: 碳在γ-Fe 中形成的间隙固溶体称为奥氏体,用符号A 或γ表示。
3、渗碳体: 渗碳体是一种具有复杂晶体结构的间隙化合物,它的分子式为Fe 3C ,渗碳体既是组元,又是基本相。
4、珠光体:用符号P 表示,它是铁素体与渗碳体薄层片相间的机械机械混合物。
5、莱氏体:用符号Ld 表示,奥氏体和渗碳体所组成的共晶体。
特性点符号 温度/℃ ωc (%)含义
A 1538 0熔点:纯铁的熔点
C 1148 4.3共晶点:发生共晶转变L4.3→Ld(A2.11%+Fe3C 共晶)
D 1227 6.69熔点:渗碳体的熔点
E 1148 2.11碳在γ-Fe 中的最大溶解度点
G 912 0同素异构转变点
S 727 0.77共析点:发生共析转变A0.77%→p(F0.0218%+Fe3C 共析)P 727 0.0218碳在α-Fe 中的最大溶解度点
Q 室温 0.0008室温下碳在α-Fe 中的最大溶解度。
钢铁材料常见金相组织相图
![钢铁材料常见金相组织相图](https://img.taocdn.com/s3/m/ab4da629f12d2af90242e6de.png)
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
金属材料与热处理-铁碳合金相图
![金属材料与热处理-铁碳合金相图](https://img.taocdn.com/s3/m/6431f46cc77da26924c5b0cf.png)
一、建立二元合金相图
2.二元合金相图的建立方法 为了建立相图,首先要测定合金系中一系列成分不同的相变温度,即临界点。 然后,根据临界点的数据,画出各种线条,形成该合金系的相图。测定二元合金相 图的具体步骤如下: (1)临界点的测定方法 临界点是表示物质结构状态发生本质变化临界相变 点。利用合金在相结构变化时,引起物理性能、力学性能及金相组织变化的特点来 测定。临界点的测定方法主要有: ①动态法:热分析法、硬度法、膨胀法、电阻法、磁性法; ②静态法:金相法、X-ray衍射分析法。 其中热分析法是最常采用的方法。通常以热分析法为主,其他方法配合使用。 尤其对固态下转变热效应很小的合金,常采用后几种方法测定固态下相变临界点。
一、建立二元合金相图
图中的合金Ⅰ,其成分为Sb 11%+Pb 89%。在 C点以上,合金处于液体状态, 当缓慢冷却到 C点时,发生共晶转变,在恒温下从液相中同时结晶出Sb和Pb的混合 物(共晶体)。继续冷却,共晶体不再发生变化。这一合是成分在 C点以左(Sb<11%)的合金称为亚共晶合金,如图中的合金Ⅱ,合 金成分点在 C点以右(Sb>11%)的合金称为过共晶合金,如图中的合金Ⅲ。亚共晶 和过共晶合金的结晶过程不同的是:从液相线到共晶转变温度之间,亚共晶合金要 先结晶出Pb晶体,过共晶合金要先结晶出Sb晶体,因而它们的室温组织分别为Pb+ (Sb+Pb)和Sb+(Sb+Pb)。
目录
CONTENT
CONTENT
01 二元合金相图 02 铁碳合金的基本组织 03 绘制 Fe-Fe3C 相图 04 钢的结晶过程 05 铁的结晶过程 06 Fe-Fe3C 相图的应用
任务一
二元合金相图
合金比纯金属结晶过程复杂,随着合金中元 素种类的变化,其组织和性能随之变 化,这种 变化规律可以借助于相图认识。合金相图是生 产中分析研制合金材料的理论 基础,也是制定 合金熔炼、铸造、焊接、锻造及热处理工艺的 重要依据。
铁碳合金的相图的最全详细讲解
![铁碳合金的相图的最全详细讲解](https://img.taocdn.com/s3/m/d7ad20195bcfa1c7aa00b52acfc789eb162d9e1b.png)
A金属
B金属
熔点
高
低
合金1
100%
0%
合金2
90%
10%
合金3
80%
20%
……..
……..
…….
合金9
20%
80%
合金10
10%
90%
合金11
0%
100%
相图的建立
热 分 析 法
B 温度
A
时间
温度
A
温度
单击此处输入你的正文
温度
ab : 液相线
01
A
温度
02
L + S
L
03
S
ab : 固相线
Fe - Fe3C 相图的应用
制定热加工工艺方面的应用
一.选择材料方面的应用
分析零件的工作条件, 根据铁碳合金 成分、组织、性能之间的变化规律进 行选择材料。
根据铁碳合金成分、组织、性能之间 的变化规律 , 确定选定材料的工作范 围。
二.制定热加工工艺方面的应用
本章小结
三种典型的金属晶体结构 晶体缺陷:点、线、面 过冷度、结晶过程 晶粒大小对金属性能的影响、细化晶粒的方法 同素异构 合金的相结构、固溶强化 铁碳合金的基本组织、铁碳合金相图
奥氏体
⑵ 奥氏体: 碳在 -Fe中的固溶体称奥氏体。用A或 表示。 是面心立方晶格的间隙固溶体。溶碳能力比铁素体大,1148℃时最大为2.11%。727 ℃时为0.77%
奥氏体组织金相图
Fe3C是一个亚稳相,在一定条件下可发生分解:Fe3C→3Fe+C(石墨), 该反应对铸铁有重要意义。 由于碳在-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。
铁碳相图
![铁碳相图](https://img.taocdn.com/s3/m/4e44b1b681c758f5f61f67eb.png)
工业纯铁
碳素钢
白口铸铁
5.2 铁碳合金相图分析
过共析钢 共析钢 亚共析钢
亚共晶白口铁 过共晶白口铁 共晶白口铁
二、典型合金的平衡凝固过程
5.2 铁碳合金相图分析
亚共析钢用途实例
45#钢 碳含量0.45%
60#钢 碳含量0.60%
二、典型合金的平衡凝固过程
5.2 铁碳合金相图分析
共析钢的应用举例
T8钢 碳含量 0.80%
(一)特性:
1. 纯铁具有同素异晶转变:在固 态不同温度发生晶格类型的转变。
即 α-Fe
912℃
γ-Fe
(BCC)
(FCC)
1394℃
δ-Fe
(BCC)
5.1纯铁及其铁碳合金相
二、铁碳合金相
➢ 组 元: 纯铁、渗碳体 ➢ 基 本 相: 铁素体(α )
奥氏体(γ ) 渗碳体(Cm) ➢ 基本组织: 珠光体(P) 莱氏体(Le/Le’)
过共晶白口铁
二、典型合金的平衡凝固过程
(一)工业纯铁
1
.当T在
L→δ
T1
~T2时
,由
2.分在不T2变~T3时,δ的成
3.在T3~T4时,由δ→A 4. T4~T5,A成分不变
5. T5~T6, 由A→F 室温组织为:F+Fe3CⅢ
5.2 铁碳合金相图分析
典型铁碳合金在Fe-Fe3C相图中的位置
F:白色等轴晶粒;Fe3C:呈小白片状分布于F晶界
物相形貌:渗碳体根据形成条件不同
5.2 铁碳合金相图分析
1538℃ L+d
dA H
B 1495℃
NJ
1394℃ d+g
912℃ G
g a+g
铁碳相图
![铁碳相图](https://img.taocdn.com/s3/m/762fe9e981c758f5f61f67fb.png)
铁碳合金相图钢铁应该是机械行业使用最广泛的合金,先来看看纯铁,纯铁中铁的质量百分比在99.8-99. 9,在1538℃结晶为δ-fe,晶格为体心立方(还记得体心立方的晶格是啥样吧),在1394℃是晶体结构发生转变,变为γ-fe,晶格为面心立方,在912℃时再次发生转变,变为α-fe,晶格为体心立方,这是铁的三种同素异晶状态。
这种固态下的同素异晶转变称之为重结晶,它与钢的合金化与热处理有密切关系。
那么铁碳合金又是怎么回事呢?碳可以溶于γ-fe和α-fe中,以间歇原子的形势存在。
在1394℃时,碳溶于γ-fe,称为奥氏体,这时碳一般存在于面心立方的8面体空隙中,在912℃时,碳溶于α-fe,称为铁素体,碳存在于体心立方的8面体空隙中。
其实碳也能溶于δ-fe,0.09%,太少了。
说了这么多,纯铁的塑性和韧性很好,但是强度太低了,所以工业上一般都是用的铁碳合金。
碳可以溶于铁中,但是溶量有限,于是剩下的碳以两种形式存在,一种形式是与铁的间歇化合物fe3c,称为渗碳体,一种是石墨。
ok,我们来看看fe-fe3c合金相图(本来已开始想写一篇相图的blog,但是感觉没有什么好写的)。
由图我们可以看到碳的含量最高可以到6.69%,处于ABCD连线以上的部分为液相区,AHJEC F连线以下为固相区,HJB线这一段发生了包晶转变,包晶转变是指在结晶过程中,已成为固相的部分被液相部分包围从而转变成另一种固相部分,液相的B和δ相的H转变为γ相的J,我们可以看到,这条线非常的短,说明发生转变的区域碳的含量范围很窄为0.09%-0.53%。
ECF线发生了共晶转变,共晶转变是指某液相在结晶时同时转变为两种固相,液相C转变为γ相E和fe3c,γ-fe和fe3c的机械混合物称为莱氏体,这条线就比较长了,说明发生转变的碳的范围比较宽,为2.11%-6.69%。
PSK线发成的是共析转变,共析转变是指由一种固相转变为两种固相的变化,γ-fe转变为α-fe和fe3c,α-fe和fe3c的机械混合物称为珠光体,可以看到发生这个转变的碳的含量范围是相当的宽了,超过0.0218%的碳含量的合金都要发生这个转变。
最全的铁碳相图
![最全的铁碳相图](https://img.taocdn.com/s3/m/c650094d6edb6f1aff001fc4.png)
最全的铁碳相图首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下:合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。
相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。
固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。
铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。
1.铁素体铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。
δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS.铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。
2.奥氏体奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有%(1148℃时),727℃时为%。