单因素方差分析讲解学习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素方差分析
定义:
单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
前提:
1总体正态分布。当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
一、单因素方差分析
1选择分析方法
本题要判断控制变量组别”是否对观察变量成绩”有显著性影响,而控制变量只有一个,即组别”所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。
2建立数据文件
在SPSS17.0中建立数据文件,定义3个变量:“人名”成绩”组别”。控制变量为组别”观察变量为成绩”在数据视图输入数据,得到如下数据文件:
3正态检验(P>0.05,服从正态分布)正态检验操作过程:
“分析”7“描述统计”7“探索”,出现“探索”窗口,将因变量“成绩”放入因变量列
表”,将自变量组别”放入因子列表”,将“人名”放入“标注个案”;
点击“绘制”,出现“探索:图”窗口,选中直方图”和“带检验的正态图”,点击继续”;
点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。因子变量是影响因变量的因素,例如分组变量。标注个案
是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q 概率图和无趋势正态Q-Q概率图。
*.这是真实显著水平的下限。
正态检验结果分析:
p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从
正态分布(检验中的零假设是数据服从正态分布)。即p值》0.05,数据服从正态分布。
4单因素方差分析操作过程
“分析”7 “比较均值”7 “单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入因变量列表”,将自变量组别”放入因子”列表;点击选项”选择方差同质性检验”和描述性”,点击继续”,回到主对话框;点击两两比较”选择“LS却“S-N-K”、“Dunnett' s C”,点击继续”,回到主对话框;点击对比”,选择多项式”,点击继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。
5单因素方差分析结果分析
表1描述
表1描述性统计,组1成绩取值范围:平均值土标准差,
表2 方差齐性检验
表2方差齐性检验,P=0.330> 0.05,方差齐性,且正态检验结果为正态分布,所以可以用
重比较用“Dunnett' s C S-N-K法多重比较结果为无差别表达方式,即把差别没有显著性意义的比较组在同一列里)
表3 ANOVA
表3 ANOVA单因素方差分析结果,P=0.00<0.01,说明组别”对观察变量成绩”有显著性影响
表4多重比较
因变量
成绩
*.表4多重比较,组1和组2的P=0.060>0.05,说明组1和组2无显著性差异;组1和组3的P=0.000<0.01 ,说明 组1和组3有极显著性差异; 组2和组3的P=0.001<0.01,说明组2和组3有极显著性差异。
表5为S-N-K 多重比较结果, 说明组1和组2无显著性差异,组1和组3有显著性差异,组 2和组3 有显著性差异。
SNK 法多重比较结果是把差别没有显著性意义的比较组在同一列里,有差异的放在不同列里。 每一列最下面有一个"显著性"
P 值,表示列内部水平的差异的
P 值;检验水准%= 0.05,不同
列间差异有显著意义,同列间各组差异无显著意义。 我的前三个浓度之间无显著差异,倒数
2-5个浓度之间无差异。
学生组1
学生组2 学生组3
注:不同的小写字母间,差异显著;不同的大写字母间 ,差异极显著。
组1成绩 土 ;组1成绩 土 ;组1成绩土。组1和组2无显著性差异,组 1和组3有显著 性差异,组2和组3有显著性差异。
多重比较有几种的方法: 符号标记法、标记字母法、列梯形表法、划线法
注:与学生组1比较,*P W 0.05,差异显著;** P V 0.01,差异极显著。 注:不同的小写字母间,差异显著;不同的大写字母间
,差异极显著。
士
A ±
B