湘教版数学九年级上册期末考试数学试题
湘教版九年级数学上册期末测试卷及参考答案
湘教版九年级数学上册期末测试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠24.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在矩形ABCD 中,AB =10,4=AD ,点E 从点D 向C 以每秒1个单位长度的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从点C 向点D 以每秒2个单位长度的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .103B .4C .143 D .163二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:2x2﹣8=_______.3.正五边形的内角和等于__________度.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解方程:24111 xx x-=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、B7、A8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、2(x+2)(x﹣2)3、5404、a+8b5、6、12三、解答题(本大题共6小题,共72分)1、3x=2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
湘教版九年级数学上册期末考试卷(及参考答案)
湘教版九年级数学上册期末考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:a 2b+4ab+4b=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =__________.5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、C5、C6、D7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、b(a+2)23、0或14、255.5、136、24 5三、解答题(本大题共6小题,共72分)1、3x=2、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.4、羊圈的边长AB,BC分别是20米、20米.5、(1)5,20,80;(2)图见解析;(3)3 5.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
湘教版九年级上册数学期末测试卷(完整版)
湘教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知函数是二次函数,则m的值为()A.-2B.±2C.D.2、如图,在△ABC中,已知MN∥BC,DN∥MC.以下四个结论:① ;② ;③ ;④ . 其中正确结论的个数为( )A.1B.2C.3D.43、方程x(x﹣1)=5(x﹣1)的解是()A.1B.5C.1或5D.无解4、在中,,则边的长为()A. B. C. D.5、已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为( )A.1B.1和-3C.-3D.不等于1的任何数6、如图,在△ABC中,,分别交AB,AC于点D,E.若AD=1,DB=3,则的面积与的面积的比等于()A. B. C. D.7、如图,在平行四边形中,,,那么的值等于()A. B. C. D.8、如图,点A是反比例函数交反比例函数的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A.2B.3C.4D.59、如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AEF :S△AFD为()A.1:2B.3:2C.2:3D.3:410、如图,在四边形ABCD中,∠ABC=∠BCD=90°,,把沿着AC翻折得到,若,则线段DE的长度()A. B. C. D.11、如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,AC=6,DE=1.5,则DF的长为()A.7.5B.6C.4.5D.312、如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定13、方程(x+1)(x-2)=x+1的解是()A.2B.3C.-1,2D.-1,314、如图,已知O是坐标原点,△OBC与△ODE是以0点为位似中心的位似图形,且△OBC与△ODE的相似比为1:2,如果△OBC内部一点M的坐标为(x,y),则M在△ODE中的对应点M′的坐标为()A.(﹣x,﹣y) B.(﹣2x,﹣2y)C.(﹣2x,2y)D.(2x,﹣2y)15、如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数(x>0)和(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于x轴对称D.△POQ的面积是二、填空题(共10题,共计30分)16、已知实数a,b,c满足a+b+c=10,且,则的值是________17、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).18、如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________.19、已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=________.20、若,则=________.21、△ABC与△DEF相似,其面积比为1:4,则它们的相似比为________.22、如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为m,则树的高度为________m.23、一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是________ 米.24、如图,E为平行四边形ABCD的边AD延长线上-一点,且D为AE的黄金分割点,BE交DC于点F,若AB= +1,且AD>DE,则CF的长为________ 。
湘教版九年级上册数学期末考试试题有答案
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。
湘教版九年级上册数学期末考试试卷及答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数经过(-2,3),则下列哪个点在此函数图象上()A .(-1,-6)B .(3,2)C .(-2,-3)D .(-6,1)2.一元二次方程x 2+4x=3配方后化为()A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-13.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为()A .2B .2C .12D 1-4.Rt △ABC 中,∠C=90°,若AB=4,cosA=35,则AC 的长为()A .95B .125C .163D .55.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为()A .4hB .5hC .6hD .7h6.已知二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,则m 的值为()A .BC .D .27.如图,在△ABC 中,∠A =90°,sinB =35,点D 在边AB 上,若AD =AC ,则tan ∠BCD 的值为()A .15B .16C .17D .188.函数y =mx与y =mx ﹣m (m ≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .9.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是()A .2m ≠B .6m =且2m ≠C .6m <D .2m =或6m ≤10.如图,已知直线l 1∥l 2∥l 3,直线m 、n 分别与直线l 1、l 2、l 3分别交于点A 、B 、C 、D 、E 、F ,若DE =3,DF =8,则BC AC的值为()A .35B .58C .53D .85二、填空题11.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.12.已知2334b a b =-,则a b=________13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h 为___米.14.若关于x 的一元二次方程220x x k +-=有实数根,则k 的取值范围是__________.15.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.16.如图所示,D 为AB 边上一点,AD :DB=3:4,DE //AC 交BC 于点E ,则S △BDE :S △AEC 为_____.17.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =24x (x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C 、D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E 、F ,则OFBEADS S 的值为_____.三、解答题18.计算:4sin60°+(3.14- )0-tan 230°.19.随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.20.某高速公路建设中,需要确定隧道AB 的长度.已知在离地面1800m 高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角分别为60°和45°(即∠DCA =60°,∠DCB =45°).求隧道AB 的长.(结果保留根号)21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°,(1)求证:BD 2=BA·BE ;(2)若AB=6,BE=8,求CD 的长.22.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根.(1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值.23.如图,直线y 1=kx+b 与函数y 2=(0)kx x的图象相交于点A(-1,6),与x 轴交于点C ,且∠ACO=45°,点D 是线段AC 上一点.(1)求k 的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B 点,直接写出y 1<y 2自变量x 的取值范围,并求出△AOB 的面积.(3)若S △COD :S △AOC =2:3,求点D 的坐标.24.如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.25.(1)如图1,在四边形ABCD中,点M在BC上,∠B=∠C=∠AMD时.求证:△ABM∽△MCD.(2)如图2,在△ABC中,点M是边BC的中点,点D,E分别在边AB,AC上.若∠B =∠C=∠DME=45°,BC=2CE=6,求DE的长.参考答案1.D【分析】将已知点代入反比例函数的解析式kyx=中求出k值,再根据k=xy解答即可.【详解】解:设反比例函数的解析式为kyx =,将(﹣2,3)代入解析式中,得:k=﹣2×3=﹣6,只有D选项满足k=﹣6×1=﹣6,故选:D.【点睛】本题考查反比例函数图象上的点的坐标特征、待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解答的关键.2.B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.B【分析】根据黄金分割的定义可得出较长的线段AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴AC,∵AC=4,∴BC=2.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=12AB≈0.618AB,并且线段AB的黄金分割点有两个.4.B【分析】根据三角函数可求出AC长.【详解】解:∵∠C=90°,若AB=4,∴cosA=ACAB,即345AC=,AC=12 5,故选:B.【点睛】本题考查了三角函数的计算,解题关键是理解余弦的意义,熟练进行计算.5.C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.6.A 【分析】根据次数为2可列方程,再根据函数增减性确定m 值.【详解】解:根据题意可知,232m -=,解得,m =∵二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,∴m+2<0,解得m <-2,综上,m=故选:A .【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.7.C 【分析】作DE ⊥BC 于E ,在△CDE 中根据已知条件可求得DE,CE 的长,从而求得tan ∠BCD.【详解】解:作DE ⊥BC 于E.∵∠A =90°,sinB =35,设AC=3a=AD ,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=35a,∴根据勾股定理,得BE=45a,∴CE=BC-BE=215a,∴tan ∠BCD=1.7DE CE =故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.8.C 【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.9.D 【分析】分两种情况讨论,当方程是一元一次方程时,20m -=,或方程是一元二次方程时,根据一元二次方程的定义,二次项系数不为零,再结合一元二次方程根的判别式:当0∆≥时,方程有实根,据此解题.【详解】解:当20m -=时,即2m =时,原方程是一元一次方程450x +=54x ∴=-,方程有实根;当2m ≠时,一元二次方程2(2)230m x mx m -+++=有实根,则0∆≥即22444(2)(3)0b ac m m m -=--+≥4240m -+≥解得6m ≤故选:D .【点睛】本题考查方程的根、一元二次方程的根的情况求参数等知识,是重要考点,涉及分类讨论的数学思想,掌握相关知识是解题关键.10.B 【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵l 1∥l 2∥l 3,∴=EF BCDF AC,∵DE =3,DF =8,∴838BCAC-=,即BCAC=58,故选:B.【点睛】本题考查了平行线分线段成比例定理,注意:一组平行线截两条直线,所截的线段对应成比例.11.2k>【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k->,解得2k>,故答案为:2k>.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.12.11 9【解析】∵2334ba b=-,∴8b=3(3a-b),即9a=11b,∴119ab=,故答案为11 9 .13.1.4【分析】根据相似三角形对应边成比例列式计算即可得解.【详解】由题意得,40.8 43h=+,解得h=1.4.故答案为1.4.【点睛】本题考查了相似三角形的应用,熟练掌握性质定理是解题的关键. 14.1k≥-【分析】一元二次方程220x x k +-=有实数根,即240b ac ∆=-≥【详解】解: 一元二次方程220x x k +-=有实数根24440b ac k ∴∆=-=+≥解得1k ≥-【点睛】本题考查24b ac ∆=-与系数的关系.15.7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.16.16:21【分析】根据平行线分线段成比例得出DE :AC=BD :AB=4:7,再根据相似三角形的面积比等于相似比的平方可求得S △BDE :S 四边形ADEC =16:33,然后根据平行线间的距离相等得到S △ADE :S △AEC =DE :AC=4:7,进而可求得S △BDE :S △AEC .【详解】解:∵DE ∥AC ,∴△BDE ∽△BAC ,又AD :DB=3:4,∴DE :AC=BD :AB=4:7,∴S △BDE :S △BAC =16:49,∴S △BDE :S 四边形ADEC =16:33,∵DE ∥AC ,∴△ADE 与△AEC 的高相等,∴S △ADE :S △AEC =DE :AC=4:7=12:21,∴S △BDE :S △AEC =16:21,故答案为:16:21.【点睛】本题考查平行线分线段成比例、相似三角形的判定与性质、平行线的性质、比例性质,熟练掌握平行线分线段成比例和相似三角形的面积比等于相似比的平方是解答的关键.17.16【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a ,∵BE ∥x 轴,∴点F 纵坐标为24a ,∵点F 是抛物线2y x =上的点,∴点F横坐标为12x a ==,∵CD x 轴,∴点D 纵坐标为2a ,∵点D 是抛物线24x y =上的点,∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴====∴1141218362OFB EAD BF OE S S AD CE ⋅⋅==⨯=⋅⋅ ,故答案为16.【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.18.23.【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果.【详解】4sin60°+(3.14-π)0-tan 230°=4×2+1-2()3=13=23.【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键.19.(1)见解析;(2)48︒;(3)800人.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【详解】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90−24−18−12=36,补全的条形统计图如图所示:;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360︒×1290=48︒,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48︒;(3)3000×2490=800(人),答:该校对在线阅读最感兴趣的学生有800人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.隧道AB的长为(1800﹣3m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB 的长.【详解】解:∵CD//OB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在Rt CAO中,tan∠CAO=COOA=tan60°,∴18003 OA=,∴OA=3在Rt CAO中,tan∠CBO=COOB=tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣3答:隧道AB的长为(1800﹣3m.本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE,∴BD:BE=BA:BD,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8,∴∴AD2=BD2-AB2=12即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)0m ;(2)-2(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可;【详解】解:(1)∵此方程有两个不相等的实数根,∴b 2-4ac>0,即4m 2-4(m 2+m)>0,∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m ,∵x 12+x 22=12,∴(x 1+x 2)2-2x 1x 2=12,∴m=3或m=-2,由(1)可知m<0,故m=3舍去,∴m=-2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a ⋅=.23.(1)16,5k y x =-=-+;(2)10x -<<或6x >,352;(3)D (1,4)【分析】(1)将A(-1,6)代入y=(0)k x x <可求出k 的值,再求出点C 的坐标,然后用待定系数法即可求出一次函数的解析式;(2)解1256y x y x =-+⎧⎪-⎨=⎪⎩即可求出点B 的坐标,根据图象可求出y 1<y 2时自变量x 的取值范围,根据S △AOB =12OC AE ⋅求解即可求出△AOB 的面积;(3)过点D 作DF ⊥x 轴,垂足为F ,设D(x ,-x+5)(x >0),然后根据DF :AE=2:3列方程即可求解.【详解】解:(1)∵反比例函数经过点A(-1,6),∴k=-1×6==-6.如图1,作AE ⊥x 轴,交x 轴于点E ,∴E(-1,0),EA=6,∵∠ACO=45°,∴CE=AE=6,∴C(5,0),∴650k b k b -+=⎧⎨+=⎩,∴15k b =-⎧⎨=⎩,∴直线y 1`=-x+5;(2)解1256y x y x=-+⎧⎪-⎨=⎪⎩,得x 1=-1,x 2=6,故B(6,-1).如图2,由图象可知,当y 1<y 2时,-1<x<0或x>6,S △AOB =1·2OC AE =352;(3)如图1,作DF⊥x轴,交x轴于点F.:S△AOC=2:3,∵S△COD∴DF:AE=2:3.设点D(x,-x+5),即有(-x+5):6=2:3,∴x=1,∴D(1,4).【点睛】本题考查了反比例函数与一次函数额综合,待定系数法求解析式,三角形的面积等,解题关键是能够熟练运用反比例函数的性质.24.(1)2=-++;(2)存在,P(1,2),△PAC1032;(3)y x2x3存在,点M的坐标为(1,1),(16),(1,6),(1,0)【分析】(1)将A、B、C分别代入抛物线表达式中求解a、b、c即可解答;(2)由于10PAC的周长最小,只需PA+PC最小,由点A与点B关于对称轴对称,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置,求出直线BC的解析式,将x=1代入即可求得点P的坐标及最小周长;(3)根据题意,分三种情况:①MA=MC;②MA=AC;③MC=AC进行求解即可解答.【详解】解:(1)将A,B,C代入抛物线的解析式y=ax2+bx+c中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++;(2)因为,所以要使得△PAC 的周长最小,只需PA+PC 最小,由题意,抛物线的对称轴为直线x=1,根据抛物线的对称性,点A 的对称点为B ,连接BC ,与对称轴的交点即为△PAC 周长取得最小值点P 的位置.设直线BC 的解析式为y=kx+t ,将B(3,0)、C (0,3)代入,得303k t t +=⎧⎨=⎩,解得:13k t =-⎧⎨=⎩,∴直线BC 的解析式为y=﹣x+3,当x=1时,y=2,∴P(1,2),又BC==∴△PAC 周长的最小值为AC+BC=+;(3)设M (1,n ),A(-1,0),C(0,3),则MA 2=4+n 2;MC 2=1+(3-n)2;AC 2=10,根据题意,分三种情况:①当MA=MC 时,由4+n 2=1+(3-n)2得:n=1,②当MA=AC 时,由4+n 2=10得:n=,③当MC=AC 时,由1+(3-n)2=10得:n 1=0,n 2=6,但当n=6时,A ,C ,M 三点共线,不构不成三角形,需舍去,综上所述,满足条件的点M 的坐标为(1,1),(1),(1,),(1,0).【点睛】本题是二次函数的综合题,主要考查待定系数法求二次函数的解析式、二次函数的图象与性质、轴对称-最短路径、两点间距离公式、等腰三角形的判定、解一元一次方程、解一元二次方程等知识,解答的关键是明确题意,找寻知识的关联点,利用数形结合思想和分类讨论的方法等解题方法进行推理、探究和计算.25.(1)见解析;(2)10 3【分析】(1)由∠AMB+∠AMD+∠DMC=180°及△ABM内角和为180°、∠B=∠AMD,可得∠BAM=∠DMC,从而可判定△ABM∽△MCD;(2)可判定△BDM∽△CME,从而有对应边成比例,则易求得BD的长,然后在Rt△ADE 中,利用勾股定理或求得DE的长.【详解】(1)∵∠AMB+∠AMD+∠DMC=180°,∠B+∠AMB+∠BAM=180°,∠B=∠AMD∴∠BAM=∠DMC∵∠B=∠C∴△ABM∽△MCD(2)∵M是BC的中点∴BM=CM=11822 22BC=⨯=∵∠DMB+∠DME+∠EMC=180°,∠B+∠DMB+∠BDM=180°,∠B=∠DME ∴∠BDM=∠EMC∵∠B=∠C∴△BDM∽△CME∴BM BD CE CM=∴1663 BM CMBDCE===∵∠B=∠C=45°∴∠A=180°-∠B-∠C=90°∴由勾股定理得:AB=AC=82BC=∴AD=AB-BD=168833-=,AE=AC-CE=8-6=2在Rt△ADE中,由勾股定理得:103 DE===【点睛】本题考查了相似三角形的判定与性质,勾股定理,三角形内角和定理,关键是得出两个三角形相似.。
湘教版九年级上册数学期末考试试卷含答案详解
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.函数22y mx x m=+-(m是常数)的图像与x轴的交点个数为()A.0个B.1个C.2个D.1个或2个2.下列命题中,假命题是()A.半圆(或直径)所对的圆周角是直角B.对顶角相等C.四条边相等的四边形是菱形D.对角线相等的四边形是平行四边形3.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球.A.30B.15C.20D.124.已知点A(2,y1)、B(4,y2)都在反比例函数kyx=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定5.某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行23小时到达B处,那么tan∠ABP=()A.12B.2C D6.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x﹣1)2C.y=3(x﹣1)2+2D.y=2x27.如图为二次函数y=ax2+bx+c (a≠0)的图象,则下列说法:∠a>0 ∠2a+b=0 ∠a+b+c>0 ∠ 当-1<x<3时,y>0 其中正确的个数为()A.1B.2C.3D.48.一元二次方程22310x x++=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.已知直线y=kx(k>0)与双曲线3y=x交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为( )A.﹣6 B.﹣9 C.0 D.910.在一个不透明的口袋中,装有红色、黑色、白色的玻璃球共40个,除颜色外其余都相同,小明通过许多次摸球实验后发现,其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.18 B.17 C.16 D.15二、填空题11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.12.如图,D是AB上的一点.∠ABC∠∠ACD,且AD=2,BD=4,∠ADC=65°,∠B=43°,则∠A=________,AC=________.13.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=________.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则x1+x2=________.15.如图,反比例函数6yx=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则∠AOB的面积是________.16.如图,反比例函数(0)k y k x=>的图象与矩形ABCO 的两边相交于E F ,两点,若E 是AB 的中点,2BEF S ∆=,则k 的值为_____________.17.在同一时刻,身高1.6m 的小明的影长是3.2m ,某建筑物的影长是15m ,则建筑物的高为________m .18.一元二次方程x 2+kx ﹣3=0的一个根是x =1,则另一个根是___.三、解答题19.如图,在∠ABC 中,AB =8,AC =6,AD =12,点D 在BC 的延长线上,且∠ACD ∠∠BAD ,求BD 的长.20.如图,直线y =x +3与坐标轴分别交于A ,B 两点,抛物线y =ax 2+bx -3a 经过点A ,B ,顶点为C ,连接CB 并延长交x 轴于点E ,点D 与点B 关于抛物线的对称轴MN 对称.(1)求抛物线的解析式及顶点C 的坐标;(2)求证:四边形ABCD是直角梯形.21.有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.22.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.23.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.24.计算:24cos30cot45 tan602sin45-+.25.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.参考答案1.D【详解】当m=0时,函数为y=x,此时图像与x轴的交点个数为1个,当m≠0时,二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数即为y=0时方程mx2+x-2m=0的解的个数,∠=1+8m2>0,故图象与x轴的交点个数为2个.故选D.【点睛】解答此题要明确抛物线y=mx2+x-2m的图象与x轴交点的个数与方程mx2+x-2m=0解的个数有关.2.D【解析】A、半圆(或直径)所对的圆周角是直角,真命题;B、对顶角相等,真命题;C、四条边相等的四边形是菱形,真命题;D、对角线互相平分的四边形是平行四边形,假命题,故选D.3.B【详解】解:∠小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x个,∠0.4(x+10)=10,解得x=15.4.B 【详解】试题分析:∠当k<0时,y=kx在每个象限内,y随x的增大而增大,∠y1<y2,故选B.考点:反比例函数增减性.5.A【分析】根据题意知道北偏东30°与北偏西60°成直角,利用正切的定义求值即可.【详解】∠灯塔A位于客轮P的北偏东30°方向,且相距20海里.∠PA=20∠客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,∠∠APB=90°BP=60×23=40∠tan∠ABP=APBP=2040=12.6.D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确.故选D.7.C【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断-1<x<3时,y的符号.∠由二次函数y=ax 2+bx+c (a≠0)的开口向下,可知a <0,故错误;∠由二次函数与x 轴的交点的坐标为(-1,0),(3,0),可知对称轴为x=1312-+==1,即-2b a =1,因此可得b=-2a ,即2a+b=0,故正确;∠由函数的顶点在第一象限,因此可知,当x=1时,y=a+b+c >0,故正确;∠由二次函数与x 轴的交点的坐标为(-1,0),(3,0),图象开口向下,因此当-1<x <3时,y >0,故正确.共3个正确的.故选C.8.A【详解】试题分析:∠∠=2342110-⨯⨯=>,∠方程有两个不相等的实数根.故选A .考点:根的判别式.9.A【详解】解:∠点A (x 1,y 1),B (x 2,y 2)是双曲线3y=x 上的点, ∠x 1•y 1=x 2•y 2=3.∠直线y=kx (k >0)与双曲线3y=x交于点A (x 1,y 1),B (x 2,y 2)两点, ∠x 1=﹣x 2,y 1=﹣y 2∠x 1y 2+x 2y 1=﹣x 1y 1﹣x 2y 2=﹣3﹣3=﹣6.故选A .10.C【解析】解:∠红色球、黑色球的频率稳定在15%和45%,∠摸到白球的频率稳定在40%,∠口袋中白色球的概率为40%,故白球的个数为40×40%=16个.故选C .点睛:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11.3 -4试题分析:根据韦达定理可得:1x ·2x =c a=3,则方程的另一根为3;根据韦达定理可得:1x +2x =-b a=4=-m ,则m=-4. 考点:方程的解12.72°【解析】试题解析:∠∠ABC∠∠ACD ,∠∠ACD=∠B=43°,AD AC AC AB=,∠∠A=180°-∠ADC -∠ACD=72°,13.a (1+x )2【详解】试题分析:∠一月份新产品的研发资金为a 元,2月份起,每月新产品的研发资金与上月相比增长率都是x ,∠2月份研发资金为(1)a x +,∠三月份的研发资金为2(1)(1)(1)y a x x a x =++=+. 故答案为2(1)a x +.考点:根据实际问题列二次函数关系式.14.2.【详解】试题分析:∠x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,∠x 1+x 2=﹣21-=2. 故答案为2.【考点】根与系数的关系.15.8.【详解】试题分析:首先根据反比例函数得出A 、B 点的坐标,然后得出线段AC 、BD 、OC 、OD 、BC 的长度,根据∠OAB 的面积=∠OAC 的面积+梯形ACDB 的面积-∠OBC 的面积进行计算.试题解析:根据题意可得A(2,3),B(6,1),过点A 作AC∠x 轴,过点B 作BD∠x 轴 则AC=3,BD=1,OC=2,OD=6,BC=4∠=+OAB OAC OBD ACDB S S S S -梯形=2×3÷2+(3+1)×4÷2-6×1÷2=3+8-3=8.考点:利用补形法求三角形的面积16.8【分析】设E 点坐标为(a,k a ),则B 点纵坐标为k a,把F 的横坐标代入反比例函数解析式得到F 的纵坐标坐标,再根据三角形的面积公式列方程即可求解.【详解】设E 点坐标为(a,k a ),则B 点纵坐标为k a, ∠E 是AB 中点,∠BE=a ,∠F 的横坐标为2a,代入解析式得F(2a ,2k a) ∠BF=k a -2k a =2k a ∠1222BEF k aS a ∆=⨯=⨯ 解得k=8,故填:8.【点睛】此题主要考查反比例函数与几何,解题的关键是熟知反比例函数的图像与三角形面积公式. 17.7.5.【解析】设该建筑物的高为xm ,根据题意得1.6:3.2=x:15,解得x=7.5.故该建筑物的高是7.5m.故答案为7.5m.18.-3.【详解】解:∠x=1是一元二次方程的根,∠12+k×1-3=0,∠k=2,∠x2+2x-3=0,∠(x+3)(x-1)=0,∠x1=-3,x2=1.故答案为-3.19.BD=16.【详解】试题分析:由∠ACD∠∠BAD,根据相似三角形的对应边成比例,可得AD:BD=AC:AB,继而求得答案.试题解析:解:∠∠ACD∠∠BAD,∠AD:BD=AC:AB,∠AB=8,AC=6,AD=12,∠12:BD=6:8,解得:BD=16.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例.20.(1)y=-x2-2x+3,顶点C的坐标为(-1,4);(2)证明见解析.【详解】(1)解:∠y=x+3与坐标轴分别交于A,B两点,∠A点坐标(-3,0)、B点坐标(0,3).∠抛物线y=ax2+bx-3a经过A,B两点,∠9330 {33a b aa--= -=解得1 {2 ab=-=-∠抛物线解析式为:y=-x2-2x+3.∠y=-x2-2x+3=-(x+1)2+4,∠顶点C的坐标为(-1,4).(2)证明:∠B,D关于MN对称,C(-1,4),B(0,3),∠D(-2,3).∠B(0,3),A(-3,0),∠OA=OB.又∠AOB=90°,∠∠ABO=∠BAO=45°.∠B,D关于MN对称,∠BD∠MN.又∠MN∠x轴,∠BD∠x轴.∠∠DBA=∠BAO=45°.∠∠DBO=∠DBA+∠ABO=45°+45°=90°.设直线BC的解析式为y=kx+b,把B (0,3),C (-1,4)代入得, 3{4b k b =-+=解得1{3k b =-= ∠y =-x +3.当y =0时,-x +3=0,x =3,∠E (3,0). ∠OB =OE ,又∠∠BOE =90°, ∠∠OEB =∠OBE =∠BAO =45°. ∠∠ABE =180°-∠BAE -∠BEA =90°. ∠∠ABC =180°-∠ABE =90°. ∠∠CBD =∠ABC -∠ABD =45°. ∠CM∠BD ,∠∠MCB =45°. ∠B ,D 关于MN 对称,∠∠CDM =∠CBD =45°,CD∠AB.又∠AD 与BC 不平行,∠四边形ABCD 是梯形. ∠∠ABC =90°,∠四边形ABCD 是直角梯形. 21.415. 【解析】试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与从每组卡片中各抽取一张,两张都是B 的情况,再利用概率公式即可求得答案. 试题解析:列表得:∠共有15种等可能的结果,从每组卡片中各抽取一张,两张都是B的有4种情况,∠从每组卡片中各抽取一张,两张都是B的概率为:415.考点:列表法与树状图法.22.54米.【分析】首先由AB∠CD∠EF可得出∠CDG∠∠ABG,∠EFH∠∠ABH,再根据相似三角形的对应边成比例列出比例式求解即可.【详解】解:∠AB∠BH,CD∠BH,EF∠BH,,∠AB∠CD∠EF,∠∠CDG∠∠ABG,∠EFH∠∠ABH,∠CD DGAB DG BD=+,EF FHAB FH DF BD=++,∠CD=DG=EF=2m,DF=52m,FH=4m,∠222AB BD=+,24452ABBD=++,∠242452BD BD=+++,解得BD=52,∠212252AB=+,解得AB=54.答:建筑物的高为54米.【点睛】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.23.16.【解析】试题分析:根据比例的性质可设a=2k,b=3k,c=4k,则利用2a+3b-2c=10得到4k+9k-8k=10,解得k=2,于是可求出a、b、c的值,然后计算a-2b+3c的值.试题解析:∠a:b:c=2:3:4,∠设a=2k,b=3k,c=4k,而2a+3b-2c=10,∠4k+9k-8k=10,解得k=2,∠a=4,b=6,c=8,∠a-2b+3c=4-12+24=16.考点:比例的性质.24.【解析】试题分析:把30°、45°、60°角的各种三角函数值代入计算即可.试题解析:解:原式=2 41⨯-点睛:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.25.(1)8万份;(2)10% .【详解】(2)试题分析:(1)根据题意列式计算即可得出结果;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得(9.5-0.5)+(1.8+k)=11.4,解得k=0.6;,设A品牌产销线平均每份获利的年递减百分数为x,根据题意得(1.8+2×0.6)×(1+2x)2=10.89),解方程即可得结论.试题解析:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设B品牌产销线的年销售量递增相同的份数为k万份,由题意得,(9.5-0.5)+(1.8+k)=11.4解得k=0.6;设A品牌产销线平均每份获利的年递减百分数为x,根据题意得,(1.8+2×0.6)×(1+2x)2=10.89),解得x1=0.05,x2=-1.05(不合题意,舍去),∠2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.考点:一元二次方程的应用.。
湘教版九年级上册数学期末考试试卷含答案详解
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.一元二次方程x2+5x=6的一次项系数、常数项分别是( )A .1,5B .1,-6C .5,-6D .5,62.若反比例函数 y =k x (k≠0)的图象经过点 P (-1,1),则k 的值是( ) A .0 B .-2 C .2 D .-13.一元二次方程x2+x+1=0的根的情况为( )A .有两个相等的实数根B .没有实根C .只有一个实数D .有两个不相等的实数根4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为( )A .9cm 2B .16cm 2C .56cm 2D .24cm 25.sin30°+tan45°-cos60°的值等于( )A .3B .0C .1D .-36.在直角三角形ABC 中,已知∠C=90°,∠A=60°,AC=103,则BC 等于( ) A .30 B .10 C .2 D .537.如图,Rt △ABC ∽Rt △DEF ,∠A=35°,则∠E 的度数为( )A .35°B .45°C .55°D .65°8.如图,为测量河两岸相对两电线杆A 、B 间的距离,在距A 点16m 的C 处()AC AB ⊥,测得ACB 52∠=,则A 、B 之间的距离应为( )A .16sin52° mB .16cos52° mC .16tan52° mD .16tan52m 9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞 20 只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出 40 只青蛙,其中有标记的青蛙有 4 只,请你估计 一下这个池塘里有多少只青蛙?( )A .100只B .150只C .180只D .200只10.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为()A .B .C .D .二、填空题11.若()221a y a x -=+是反比例函数,则a 的取值为______.12.已知关于x 一元二次方程ax 2+bx +c =0有一个根为1,则a +b +c =_____.13.甲同学身高为.5m ,某时刻他影长为1m ,在同一时刻一中老塔影长为20m ,则塔高为____m .14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S 甲 2=17,S 乙 2=15.则成绩比较稳定的是_____(填“甲”、“乙”中的一个).15.已知sinα=35,则tanα=____. 16.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是____米.17.已知锐角A 满足关系式2sin2A-7sinA+3=0,则sinA 的值为_____.18.已知关于 x 的一元二次方程x 2+2x-a=0的两个实根为x1,x2,且121123x x +=,则 a 的值为 .三、解答题19.解下列方程(1)x (x-2)+x-2=0;(2)x2-4x-12=0.20.已知x=-1是一元二次方程x2-mx-2=0的一个根,求m 的值和方程的另一个根.21.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问 卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图).根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为 人,表中m 的值为 ;(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?22.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.23.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3 1.732,60千米/小时≈16.7米/秒)24.在矩形ABCD中,E为CD的中点,H为BE上的一点,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若EHBH=3,∠CGF=90°,求ABBC的值.25.如图,已知在平面直角坐标系xOy中,直线y=12x+b经过点B(1,3),且与直线y=﹣2x交于点A,抛物线y=(x﹣m)2+n的顶点在直线y=﹣2x上运动.(1)求点A的坐标.(2)当抛物线经过点A时,求抛物线的解析式.(3)当﹣1<x<1时,始终满足(x﹣m)2+n<12x+b,结合图象,直接写出m的取值范围.参考答案1.C【详解】试题解析:x 2+5x=6,x 2+5x-6=0,一次项系数是 5,常数项-6.故选C .考点:一元二次方程的一般形式.2.D .【解析】试题解析:∵反比例函数y=kx (k≠0)的图象经过点 P (-1,1),∴1=1k,解得k=-1.故选D .考点:反比例函数图象上点的坐标特征.3.B【详解】试题解析:一元二次方程x 2+x+1="0" 中,△=1-4×1×1<0,∴原方程无解.故选B .考点:根的判别式.4.A【详解】∵两个相似多边形的周长比是 2:3,∴两个相似多边形的相似比是 2:3,∴两个相似多边形的面积比是 4:9,∵较小多边形的面积为4cm 2,∴较大多边形的面积为9cm 2,故选A .5.C .【解析】试题解析:原式=12+1-12=1.故选C.考点:特殊角的三角函数值.6.A【详解】试题解析:∵∠C=90°,∠A=60°,∴∠B=90°-60°=30°,∴由勾股定理得:.故选A.考点:1.勾股定理;2.含30度角的直角三角形.7.C.【解析】试题解析:∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°.∵∠F=90°,∴∠E=55°.故选C.考点:相似三角形的性质.8.C【详解】试题解析:因为AC=16 米,∠C=52°,在直角△ABC 中tan52°=ABAC,所以AB=16•tan52°米.故选C.考点:解直角三角形的应用.9.D.【解析】试题解析:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为440,∴池塘里青蛙的总数为20÷440=200.故选D.考点:用样本估计总体.10.C【详解】试题解析:如图,由勾股定理得AC=.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选C.考点:1.勾股定理;2.三角形的面积.11.1【分析】先根据反比例函数的定义列出关于a的不等式和方程,求出a的值即可.【详解】∵此函数是反比例函数,∴210 21a a +≠⎧⎨-=-⎩,解得a=1.故答案为1.【点睛】本题考查的是反比例函数的定义,即形如y=kx(k为常数,k≠0)的函数称为反比例函数.12.0.【详解】试题解析:根据题意,一元二次方程ax2+bx+c="0" 有一个根为1,即x=1时,ax2+bx+c=0成立,即a+b+c=0,考点:一元二次方程的解.13.30.【解析】试题解析:∵同一时刻物高与影长成正比例∴1.5:1=塔高:20∴塔高为30m.考点:相似三角形的应用.14.乙.【解析】试题解析:∵S甲2=17,S乙2=15,15<17,∴成绩比较稳定的是乙.考点:方差.15.34.【解析】试题解析:如图:设∠A=α,∵sinα=35,∴35 BCAB=,设AB=5x,BC=3x,则,∴tanα=34 BCAC=.考点:同角三角函数的关系.16.250.【解析】试题解析:∠AOB=90°-60°=30°,∵∠ABO=90°,OA=500m ,∴AB=12OA=250m .考点:1.含30度角的直角三角形;2.方向角.17.12【解析】试题解析:2sin 2A-7sinA+2=0,把方程左边分解因式得:(sinA-3)=0,2sinA-1=0,sinA-3=0,解得:sinA=12或sinA=3(不合题意舍去)考点:1.解一元二次方程-因式分解法;2.锐角三角函数的定义.18.3.【详解】解:∵关于 x 的一元二次方程x 2+2x-a=0 的两个实根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a , ∴12121211223+-+===-x x x x x x a∴a=3.19.(1)x 1=2,x 2=-1.(2)x 1=6,x 2=-2.【详解】试题分析:(1)提取公因式,转化为两个一元一次方程,解一元一次方程即可. (2)分解因式转化为两个一元一次方程,解一元一次方程即可.试题解析:(1)x (x-2)+x-2=0,提取公因式,得(x-2)(x+1)=0,解得x1=2,x2=-1.(2)x2-4x-12=0,分解因式得,(x-6)(x+2)=0,解得x1=6,x2=-2.考点:解一元二次方程-因式分解法.20.m的值为1,方程的另一根为x=2.【分析】由于x=-1是方程的一个根,直接把它代入方程即可求出m的值,然后解方程可以求出方程的另一根.【详解】解:∵x=-1是关于x的一元二次方程x2-mx-2=0的一个根,∴(-1)2-m×(-1)-2=0,∴m=1,将m=1代入方程得x2-x-2=0,(x-2)(x+1)=0解得:x=-1或x=2.故m的值为1,方程的另一根为x=2.【点睛】本题考查一元二次方程的解及解一元二次方程,掌握因式分解的解方程技巧是解题关键.21.(1)200,90;(2)90°,补全图形见解析(3)200人.【详解】试题分析:(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用2000人×调查的学生中“不太了解”的学生所占百分比.试题解析:(1)40÷20%=200人,200×45%=90人;(2)50200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所示:(3)2000×10%=200人.答:这些学生中“不太了解”梅山文化知识的人数约为200人.考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表.22.(1)20%.(2)小华选择方案一购买更优惠.【解析】试题分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2元列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.试题解析:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.考点:一元二次方程的应用.23.(1)112米(2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米)。
湘教版九年级(上)期末数学考试题(含答案)
湘教版九年级数学(上)期末卷(时间:90分钟 满分100分)学校:___________班级:__________姓名:_____________学号:______得分:_______一、填空(每小题3分,共24分)1.人们口语中常说的:“鸡蛋里挑骨头”是指某一事件______发生(填“必然”、“不可能”或“有可能”)2.已知2143y x x =--,23y x =+,当x =_______时,1y 与2y 的值相等.3.若25a b =,则a b a b+-=_________. 4.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组,m n 的值可以是m =_________,n =_________. 5.点C 是线段AB 的黄金分割点,若AB =5cm ,则BC 的长是_______.6.如图,已知△ABC ∽△DBE . DB =8 , AB =6 ,则ABC S ∆:DBE S ∆=_________.7.在△ABC 中,∠C =90°, cosB = , a =3,则b =_______.8.同时抛两枚质地均匀的骰子,则朝上的点数之积为偶数的概率是________.二、选择题(每小题3分,共30分)1.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是( )A.14 B.12 C.34D. 1 2.在Rt △ABC,∠C =90°, sinB =35,则sinA 的值是( ) A.35 B.45 C.53 D.54 3.已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =8 ,则此梯形的周长为( )A. 19B. 20C. 21D.224.如图2,点A 、B 、C 表示某公司三个车间的位置,现在要建一个仓库,要求它到三个车间的距离相等,则仓库应建在( )A.△ABC 三边的中线的交点上B.△ABC 三内角平分线线交点上C.△ABC 三条边高的交点上D.△ABC 三边垂直平分线的交点上5.已知3x =是关于方程23230x ax a +-=的一个根,则关于y 的方程212y a -=的解 是( )得分 评卷人得分 评卷人 3以上答案都不对6.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组共有( )A. 8人B. 9人C. 10人D. 11人7.在△ABC 中,若sinA =sinB =12, 则△ABC 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.若顺次连结四边形ABCD 各边的中点所得到的四边形是正方形,则四边形ABCD 一定是( )A.矩形B.菱形C.正方形D.对角线垂直且相等的四边形9.把方程2310x x +-=的左边配方后可得方程( ) A.2313()24x += B.235()24x += C.2313()24x -= D. 235()24x -= 10.在Rt △ABC 中,∠ACB =90°, CD ⊥AB 于D,下列式子中错误的是( )A.BC 2=DB ·ABB.A C 2=AD ·ABC.AB 2=AC ·BCD.CD 2=AD ·BD三、解答题(每小题8分,共24分)1.解下列方程(1)23720x x -+= (2)2(21)4(12)50x x -+--=2.计算:(1)12sin30- (2)tan 30tan 451tan 30tan 45--3.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图3的两个可以自由转动的转盘各一次,当两个转盘停后,指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会。
湘教版九年级数学上册期末考试卷【及答案】精选全文完整版
可编辑修改精选全文完整版湘教版九年级数学上册期末考试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)14=____________.2.因式分解:a 3-ab 2=____________.3.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象经过A (-1,0)、B (4,0)、C (0,2)三点.(1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E 、F ,若△PEB 、△CEF 的面积分别为S 1、S 2,求S 1-S 2的最大值.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、B7、A8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a+b )(a ﹣b )3、44、-45、16、15.三、解答题(本大题共6小题,共72分)1、x =7.2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略(2-14、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)50;(2)240;(3)12. 6、(1)4元或6元;(2)九折.。
湘教版九年级数学上册期末试卷及答案【完整】
湘教版九年级数学上册期末试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x=+ C .1201508x x =- D .1201508x x =+ 4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( ) A .()2,2 B .()2,3 C .()2,4 D .(2,5)5.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .106.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A .180B .182C .184D .1869.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:232)(32)=__________.2.分解因式:x 2﹣9x =________.3.若a 、b 为实数,且b 2211a a -+-+4,则a+b =__________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、B7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x-9)3、5或34、255.5、)6、8﹣2π三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)3a2-ab+7;(2)12.3、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
湘教版九年级上册数学期末考试试卷附答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.将方程2368x x =-+化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为( )A .3、6、8B .3、-6、-8C .3、-6、8D .3、6、-8 2.已知反比例函数ky x=的图象过点()2,3-则该反比例函数的图象位于( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.关于x 的一元二次方程3x 2﹣6x+m=0有两个不相等的实数根,则m 的取值范围是 A .m <3B .m≤3C .m >3D .m≥34.若()()()1233,,2,,1,A y B y C y --三点都在函数1y x=-的图象上,则123y y y ,,的大小关系是( )A .123 y y y <<B .123y y y >>C .132 y y y <<D .无法确定5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A .438(1+x )2=389B .389(1+x )2=438C .(1+2x )2=438D .438(1+2x )2=3896.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于( )A .50%B .55%C .60%D .65%7.如图,若P 为△A BC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC的有( )A .∠ACP=∠B B .∠APC=∠ACBC .AC AP AB AC= D .PC ACBC AB = 8.如图,正方形网格中,ABC 如图放置,其中点A 、B 、C 均在格点上,则( )A .tanB=32B .cosB=23C .D . 9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A B .14C .13D 10.如图,△ABC 中,D 、E 两点分别在BC 、AD 上,且AD 为∠BAC 的角平分线.若∠ABE=∠C ,AE:ED=2:1,则△BDE 与△ABC 的面积比为何?( )A .1:6B .1:9C .2:13D .2:15二、填空题11.随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为13x =甲,13x =乙,23.6s =甲,24.2s =乙,则小麦长势比较整齐的是______.12.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.13.如图,在△ABC 中,∠A =30°,∠B =45°,AC =AB 的长为_______.14.如图所示,AB ⊥BD ,CD ⊥BD ,连接AC 交BD 于O .若AB =3,BO =4,BD =12,则OC 的长是________.15.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A 处前进4米到达B 处时,测得影子BC 长为1米,已知小明身高1.6米,他若继续往前走4米到达D 处,此时影子DE 长为______米.三、解答题16.解一元二次方程:(1)241210x -= (2)4)25()(x x --=17.计算:(1)2cos3045︒(2)()11202023tan303π-⎛⎫--+︒ ⎪⎝⎭18.钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问海监船继续航行多少海里与钓鱼岛A 的距离最近?19.如图,等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上点,且满足AB 2=DB·CE.(1)求证:△ADB ∽△EAC ;(2)若∠BAC=40°,求∠DAE 的度数.20.某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?21.已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm ?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于? (3)PQB △的面积能否等于27cm ?请说明理由.22.如图,一次函数y=kx+b的图像与反比例函数y=mx的图像相交于A(1,2),B(n,-1)两点.(1)求一次函数和反比例函数的表达式.(2)直线AB交x轴于点C,点P是x轴上的点,若△ABP的面积是6,求点P的坐标.23.如图,已知二次函数222(1)2(0)y x m x m m m=-+++>的图像与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC BC、.(1)线段AB=______;(2)若AC平分OCB∠,求m的值;(3)该函数图像的对称轴上是否存在点P,使得PAC△为等边三角形?若存在,求出m的值;若不存在,说明理由.24.如图1在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),连接AE,过点A 作AF AE ⊥交CB 延长线于点F ,连接EF ,点G 为EF 的中点,且点G 在线段AB 的左侧,连接BG .(1)求证:ADE ∽ABF ;(2)若20AB =,10AD =,设DE x =,点G 到直线BC 的距离为y . ①求y 与x 的函数关系式; ②当85EC BG =时,求x 的值; (3)如图2,若AB BC =,设四边形ABCD 的面积为S ,四边形BCEG 的面积为1S ,当114S S =时,求DC :DE 的值.参考答案1.D 【分析】先将该方程化为一般形式,即可得出结论. 【详解】解:先将该方程化为一般形式:23+680x x-=.从而确定二次项系数为3,一次项系数为6,常数项为-8 ,故选择:D.【考点】本题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.2.C【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数kyx=(k≠0)的图象经过点P(2,-3),∴k=2×(-3)=-6<0,∴该反比例函数经过第二、四象限.故选:C.【点睛】本题考查了反比例函数的性质.反比例函数kyx=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.3.A【分析】一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【详解】解:根据题意得△=(﹣6)2﹣4×3×m>0,解得m<3.故选A.4.A【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【详解】解:∵点A(3,y1),B(-2,y2),C(-1,y3)在反比例函数1yx=-的图象上,∴y 1=13-,y 2=12,y 3=1,又∵13-<12<1,∴y 1<y 2<y 3. 故选择:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键. 5.B 【分析】先用含x 的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程. 【详解】解:设每半年发放的资助金额的平均增长率为x , 则去年下半年发放给每个经济困难学生389(1+x )元, 今年上半年发放给每个经济困难学生()23891x +元, 由题意,得:()23891438x +=, 故选:B . 【点睛】本题考查求平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=. 6.C 【详解】先求出m 的值,再用一周课外阅读时间不少于4小时的人数除以抽取的学生数即可: ∵m=40﹣5﹣11﹣4=20,∴该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:20+440×100%=60%. 故选C . 7.D【解析】试题分析:本题中隐含着一个条件,即∠A=∠A,选项A和B可以利用有两个角相等的两个三角形相似得到判定;C选项可以利用两组对应边分别成比例,且夹角相等来判定两个三角形相似;D选项无法进行判定.考点:三角形相似的判定.8.C【分析】在Rt△ABC中,AC=2,BC=3,由勾股定理得:AB=利用锐角三角函数定义求出tanB,cosB,SinB即可选出答案.【详解】解:如图在Rt△ABC中,AC=2,BC=3,由勾股定理得:,∴tanB=AC2=BC3,∴cosB=BCAB∴SinB=ACAB.故选:C.【点睛】本题考查网格中锐角三角函数问题,掌握三角函数的定义,熟记锐角三角函数的定义是解题关键.9.A【分析】证明△BEF∽△DAF,得出EF=12AF,EF=13AE,由矩形的对称性得:AE=DE,得出13EF DE=,设EF=x,则DE=3x,由勾股定理求出DF=再由三角函数定义即可得出答案.【详解】∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴12EF BE AF AD ==, ∴EF=12AF , ∴EF=13AE , ∵点E 是边BC 的中点,∴由矩形的对称性得:AE=DE ,∴EF=13DE ,设EF=x ,则DE=3x ,∴,∴tan ∠BDE=EF DF =. 故选A .【点睛】 本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.10.D【分析】根据已知条件先求得S △ABE :S △BED =2:1,再根据三角形相似求得S △ACD =94S △ABE =92S △BED ,根据S △ABC =S △ABE +S △ACD +S △BED 即可求得答案.【详解】解:∵AE :ED =2:1,∴S △ABE :S △BED =2:1,AE :AD =2:3,∵∠ABE =∠C ,∠BAE =∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =94S △ABE , ∵S △ABE =2S △BED ,∴S △ACD =94S △ABE =92S △BED , ∵S △ABC =S △ABE +S △ACD +S △BED =2S △BED +92S △BED +S △BED =152S △BED , ∴S △BDE :S △ABC =2:15,故选D .【点睛】本题考查了相似三角形的判定和性质,利用不同底等高的三角形面积的之间的关系进行等量代换是解决本题的关键.11.甲【分析】根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵13x =甲,13x =乙,由方差的意义2 3.6s =甲,2 4.2s =乙, ∵3.6 4.2<,∴2s <甲2s 乙,∴甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是熟练掌握方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.-2【分析】根据根与系数的关系即可求解.∵x 1+x 2=-2,x 1.x 2=k-1,22212121212()3x x x x x x x x +-=+-⋅=4-3(k-1)=13,K=-2.故答案为:-2.【点睛】此题主要考查一元二次方程根与系数的关系,解题的关键是熟知根与系数的关系及应用.13.3【详解】过C 作CD ⊥AB 于D ,∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD .∵∠A =30°,AC =∴CD =∴BD CD =由勾股定理得:3AD ,∴3AB AD BD =+=故答案是:314.10由CD⊥BD,AB⊥BD,与∠DOC=∠BOA,可证△DOC∽△BOA,由性质OC CD OD==OA AB OB,在Rt△AOB中,由勾股定理AO=5,可求OC=6【详解】解:∵CD⊥BD,AB⊥BD,∴∠D=∠B=90º∵∠DOC=∠BOA∴△DOC∽△BOA∴OC CD OD== OA AB OB∵AB=3,BO=4,BD=12,∴OD=BD-BO=12-4=8在Rt△AOB中由勾股定理∴OC8= 54∴OC=10故答案为:10【点睛】本题考查勾股定理与相似三角形的判定与性质,掌握勾股定理与相似三角形的判定与性质是解题关键15.2【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE长.【详解】如图,由FB ∥AP 可得,△CBF ∽△CAP , ∴CB BF CA AP=,即1 1.614AP +=, 解得AP=8,由GD ∥AP 可得,△EDG ∽△EAP , ∴ED GD EA PA =,即 1.6448ED ED ++=, 解得ED=2,故答案为2.【点睛】此题考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.16.(1)121111,22x x ==-;(2)1233x x == 【分析】(1)利用直接开平方法求解即可;(2)利用公式法求解即可.【详解】解:(1)∵241210x -=,∴24121x =, ∴21214x =, ∴12111122x x ==-,; (2)∵4)25()(x x --=,∴2630x x -+=,∴3x ==∴1233x x ==【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17.(1(2)0 【分析】(1)先把函数值代入,在进行二次根式的乘方,再乘法,最后计算加减即可;(2)先把函数值代入同时计算零次幂负指数去绝对值,再进行二次根式的乘除法,最后合并同类项即可.【详解】解:(1)2cos3045︒ ,212⎝⎭,(2)()101202023tan303π-⎛⎫--+︒ ⎪⎝⎭,=1323-+=132-+=0.【点睛】本题考查特殊三角函数值化简求值问题,掌握特殊的三角函数值及零次幂,负指数,绝对值化简,二次根式混合运算法则是解题关键.18.50海里【分析】过点A 作AD ⊥BC 于D ,根据题意得∠ABC=30°,∠ACD=60°,∠BAC =30°,可证CA=CB ,由CB=50×2=100(海里),可求CA=100(海里),在直角△ADC 中,CD=AC 0cos 60=100×12=50(海里)即可.【详解】解:过点A作AD⊥BC于D,根据题意得∠ABC=90°-60°=30°,∴∠ACD=90°-30°=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,=50(海里).∴CD=AC cos60 =100×12答:船继续航行50海里与钓鱼岛A的距离最近.【点睛】本题考查特殊角三角函数在解直角三角形中的应用,等腰三角形的判定与性质,掌握三角函数的定义,关键是作出正确的图形.19.(1)见解析;(2)(2)∠DAE=110︒【解析】试题分析:(1)根据AB=AC,求得∠ABD=∠ACE,再利用AB2=DB•CE,即可得出对应边成比例,然后即可证明.(2)由△ADB∽△EAC,得出∠BAD=∠E,∠D=∠CAE,则∠DAE=∠BAD+∠BAC+∠CAE=∠D+∠BAD+∠BAC,很容易得出答案.试题解析:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴AB DB CE AB=,∵AB=AC,∴AB DB CE AC=∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.20.(1)见解析;(2)180名【分析】()1由条形图与扇形图知良好的人数与百分比可求抽取的学生数:1640%40(÷=人);可求抽取的学生中合格的人数10,可求合格所占百分比:25%,优秀人数百分比:124030%÷=,即可补全条形图与扇形图;()2求出成绩未达到良好的男生所占比例为:30%,用部分估计总体60030%180(⨯=名)即可.【详解】解:()1由条形图与扇形图知良好的人数16人,百分比为40%则抽取的学生数:1640%40(÷=人);抽取的学生中合格的人数:401216210---=,合格所占百分比:104025%÷=,优秀人数所占百分比:124030%÷=,如图所示:;()2成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180(⨯=名),九年级有600名男生成绩未达到良好有180名.【点睛】本题考查条形统计图、扇形统计图、解题的关键是明确题意,利用数形结合的思想解答问题. 21.(1)1秒;(2)3秒;(3)不能,理由见解析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm , 由142BP BQ ⋅=,得()15242x x -⨯=, 整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∴3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm , 即72BQ BP ⨯=,()2572t t -⨯=, 整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∴PQB △的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(1)y =x +1,2y x =;(2)(-5,0)或(3,0) 【分析】(1)根据反比例函数的图象过点A (1,2),可以求得反比例函数的解析式,然后即可得到点B 的坐标,再根据一次函数y =kx +b 的图象过点A 和点B ,然后即可得到一次函数的解析式;(2)根据一次函数的解析式可以得到一次函数与x 轴的交点,然后根据△ABP 的面积是6,即可求得点P 的坐标.【详解】解:(1)∵反比例函数m y x =的图象过点A (1,2),B (n ,-1), ∴21m =, 解得m =2, 即反比例函数的解析式为2y x=, ∴21n -=,解得n =-2, ∴点B (-2,-1),∵一次函数y =kx +b 的图象过点A (1,2),B (-2,-1),∴221k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=⎩, 即一次函数的解析式为y =x +1;(2)设点P 的坐标为(p ,0),∵一次函数y =x +1,∴当y =0时,x =-1,∵△ABP 的面积是6,点A (1,2),B (-2,-1), ∴()()12162p --⨯--⎡⎤⎣⎦=,解得p =-5或p =3,即点P 的坐标为(-5,0)或(3,0).【点睛】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)2;(2(3【分析】(1)设1(A x ,0),2(B x ,0),12()x x <,根据题意可得1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,解出1x ,2x ,进而得出212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,根据角平分线的性质可得AD OA m ==,推测出sin OC AD OBC BC AB∠==, 进而解得2(2)BC m =+,在Rt BOC 中利用勾股定理可得,m =(3)连接PB ,P 为对称轴上的点,所以PA PB =,又PAC ∆为等边三角形推出PA PC =,进而可得点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,推出1302OBC APC ∠=∠=︒,进而可得tan OC OBC OB ∠==m . 【详解】解:(1)设1(A x ,0),2(B x ,0),12()x x <,1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,即1x ,2x 为方程()[(2)]0(0)x m x m m --+=>的根,所以1x m =,2x m 2=+所以212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,若AC 平分OCB ∠,则有AD OA m ==, 因为sin OCADOBC BC AB ∠==, 即222m mmBC +=,所以2(2)BC m =+,在Rt BOC 中,因为222OC OB BC +=,所以2222(2)(2)[2(2)]m m m m +++=+,即2222(2)(2)4(2)m m m m +++=+,0m >,所以2(2)0m +≠,所以214m +=,解得m(3)存在点P 满足题意,连接PB ,则有PA PB =,因为PAC ∆为等边三角形,所以PA PC =,所以PA PB PC ==,所以点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,所以11603022OBC APC ∠=∠=⨯︒=︒,所以tan OC OBC OB ∠=因为0m >,所以20m +≠,所以m =.【点睛】本题考查二次函数的图象和性质,角平分线,等边三角形的判定,解题的关键是掌握相关知识的,利用数形结合的思想来解答,属于中档题.24.(1)证明见解析;(2)①110(020)2y x x =-+<<;②10011;(3 【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)①作GH ⊥BF 于H .利用三角形的中位线定理,推出EC=2y ,再根据DE+EC=20,即可解决问题;②由85EC BG =,可以假设EC=8k ,BG=5k ,利用相似三角形的性质构建方程求出k 即可解决问题;(3)连接BE ,先证△ADE ≌△ABF ,设DE=a ,CD=BC=b ,则==BF DE a ,根据112EBG ECB BFE EBC S S S S S =+=+△△△△及14S S =,构建一元二次方程,即可解决问题. 【详解】证明:(1)AE AF ⊥,90EAF ∴∠=︒,四边形ABCD 是矩形,90BAD ABC ABF D ∴∠=∠=∠=∠=︒,EAF BAD ∴∠=∠,FAB DAE ∴∠=∠,90ABF D ∠=∠=︒,ADE ∴∽ABF ;(2)①如图1中,作GH BF ⊥于H ,90GHF C ∠=∠=︒,//GH EC ∴,FG GE =,FH HC ∴=,22EC GH y ∴==,20DE EC CD AB +===,220x y ∴+=,110(020)2y x x ∴=-+<<. ②∵85EC BG =,∴ 假设8EC k =,5BG k =,∵2EC GH =,∴4GH k =,∴3BH k =,∴310FH CH k ==+,∴610FB k =+∵1102y x =-+,∴208x k =-,∵ADE ∽ABF ,ADABDE BF ∴=, 即102020-8610k k =+, 解得:1511k =, ∴10011x =;(3)如图2中,连接BE ,∵ABCD 为矩形且AB=BC ,∴四边形ABCD 为正方形,∴AB=AD ,∠ABF=∠ADE=90°,又∵AF ⊥AE ,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD ,∴△ADE ≌△ABF ,设DE a =,CD BC b ==,∴==BF DE a , ∴112EBG ECB BFE EBC S S S S S =+=+△△△△()()221111142244a b a b b a b a ab=-+-=--∵2S b =,14S S =,∴2222b b a ab =--,即220b ab a --=, ∴210b b a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,∴b a = b a =舍去) ,∴DC DE = 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,正方形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.。
湘教版九年级数学上册期末试卷及答案
湘教版九年级数学上册期末试卷一、选择题(每题3分,共24分)1.方程x2-2x=0的根是()A.x1=x2=0 B.x1=x2=2C.x1=0,x2=2 D.x1=0,x2=-22.下列各点中,在函数y=12x图象上的是()A.(-2,6) B.(3,-4) C.(-2,-6) D.(-3,4) 3.为了比较甲、乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取100株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是0.32,1.5,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐4.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0的根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定(第4题)(第7题)(第8题)5.已知反比例函数y=6x的图象上有两点A(1,m),B(2,n),则m与n的大小关系是()A.m>n B.m<n C.m=n D.不能确定6.某地修建高速公路,要从B地向C地修一条隧道(B,C在同一水平面上).为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,竖直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( ) A .100 3 mB .50 2 mC .50 3 mD.100 33 m7.如图,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为( ) A .3B .4C .5D .68.如图,已知等腰三角形ABC 中,顶角∠A =36°,BD 平分∠ABC ,则AD AC 的值为( ) A.12B.5-12C .1D.5+12二、填空题(每题4分,共32分) 9.若x y =23,则y x +y=____________.10.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中5名学生的数学成绩达90分以上.据此估计该校七年级360名学生中期末考试数学成绩达90分以上的学生约有____________. 11.在△ABC 中,∠C =90°,若tan A =125,则sin A =________.12.某楼盘2017年房价为每平方米10 000元,经过两年连续降价后,2019年房价为每平方米8 100元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________________.13.利用标杆CD 测量建筑物的高度的示意图如图所示,若标杆CD 的高为1.5米,测得DE =2米,BD =18米,则建筑物的高AB 为________米.(第13题) (第14题) (第16题)14.如图,△ABO 的顶点A 在函数y =kx (x >0)的图象上,∠ABO =90°,过AO边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP的面积为3,则k 的值为________.15.已知关于x 的一元二次方程x 2-(2m +3)x +m 2=0有两个实数根,且满足x 1+x 2=m 2,则m 的值是____________.16.如图,在平面直角坐标系xOy 中,以O 为位似中心,将边长为8的等边三角形OAB 作n 次位似变换,经第一次变换后得到等边三角形OA 1B 1,其边长OA 1缩小为OA 的12,经第二次变换后得到等边三角形OA 2B 2,其边长OA 2缩小为OA 1的12,经第三次变换后得到等边三角形OA 3B 3,其边长OA 3缩小为OA 2的12,…,按此规律,经第n 次变换后,所得等边三角形OA n B n 的顶点A n 的坐标为(128 ,0),则n 的值是____________.三、解答题(17,18题每题6分,19,20题每题8分,21~24题每题9分,共64分)17.计算:(1)(-1)2 021-2-1+cos 60°+(π-3.14)0;(2)sin 45°·tan 45°+tan 60°·tan 30°-2sin 30°·cos 45°.18.用适当的方法解下列方程:(1)x 2-4x +3=0; (2)-x 2+8x +4=0.19.如图,A ,B 是双曲线y =kx 上的点,点A 的坐标是(1,4),B 是线段AC 的中点.(第19题)(1)求k的值;(2)求点B的坐标;(3)求△OAC的面积.20.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60<x≤70;B:70<x≤80;C:80<x≤90;D:90<x≤100,并绘制出如下不完整的统计图.(第20题)(1)求被抽取的学生中,成绩在C组的有多少人;(2)所抽取学生成绩的中位数落在________组内;(3)若该校有1 500名学生,估计全校这次竞赛成绩在A组的学生有多少人.21.为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼的水平距离BC为21米,求条幅AE的长约是多少米.(结果精确到0.1米,3≈1.732)(第21题)22.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.23.如图,直线y=ax+1与x轴,y轴分别交于A,B两点,与双曲线y=k x(x>0)交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).(1)求双曲线的表达式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.(第23题)24.将正方形ABCD的边AB绕点A逆时针旋转至AB′的位置,记旋转角为α.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图①,当α=60°时,△DEB′的形状为__________________,BB′CE的值为__________.(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图②的情形进行证明;如果不成立,请说明理由.②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.(第24题)答案一、1.C 2.C3.A 【点拨】方差反映一组数据的波动大小,方差越大,波动性越大,∵甲、乙的方差分别是0.32,1.5,即s 甲2<s 乙2,∴甲秧苗出苗更整齐. 4.C 【点拨】根据函数y =kx +b 的图象可得k <0,b <0,在一元二次方程x 2+x +k -1=0中,Δ=12-4×1×(k -1)=5-4k >0, 则一元二次方程x 2+x +k -1=0的根的存在情况是有两个不相等的实数根. 5.A 【点拨】∵k =6>0,∴在反比例函数y =6x中,在每个象限内y 随x 的增大而减小.∵反比例函数y =6x 的图象上有两点A (1,m ),B (2,n ),1<2,∴m >n .6.A 【点拨】根据题意得∠ABC =30°,AC ⊥BC ,AC =100 m ,在Rt △ABC 中,BC =ACtan ∠ABC=100 3 m.7.C 【点拨】在△ABC 中,∠C =90°,AC =8,BC =6,∴AB =AC 2+BC 2=10.∵DE ⊥AB ,∴∠AED =∠C .又∵∠A =∠A ,∴△ADE ∽△ABC ,∴DE BC =ADAB ,即36=AD 10,∴AD =3×106=5.8.B 【点拨】设AB =AC =m ,AD =x ,则CD =m -x ,∵∠A =36°,BD 平分∠ABC ,∴∠CBD =12∠ABC =12×12×(180°-36°)=36°.在△ACB 和△BCD 中,⎩⎨⎧∠C =∠C ,∠A =∠CBD =36°,∴△ACB ∽△BCD , ∴AC ∶BC =BC ∶DC , 易知BC =BD =DA =x , ∴m ∶x =x ∶(m -x ), ∴x 2+mx -m 2=0, 解得x =5-12m (已舍去负根),∴AD ∶AC =5-12.二、9.35 【点拨】∵x y =23,∴x +y y =x y +1=53,∴y x +y =35.10.60名 【点拨】由题意可得530×360=60(名). 11.1213 【点拨】∵tan A =a b =125,设a =12k ,则b =5k ,∴c =a 2+b 2=13k , ∴sin A =a c =1213. 12.10 000(1-x )2=8 100 13.15 【点拨】∵AB ∥CD ,∴△EDC ∽△EBA , ∴CD AB =ED EB ,即1.5AB =22+18, ∴AB =15米. 14.1815.3 【点拨】根据根与系数的关系得x 1+x 2=2m +3,∵x 1+x 2=m 2,∴m 2=2m +3,解得m =3或-1.又∵方程有两个实数根,∴[-(2m +3)]2-4m 2≥0,即m ≥-34,∴m =3. 16.11三、17.解:(1)原式=-1-12+12+1=0.(2)原式=22×1+3×33-2×12×22=22+1-22=1. 18.解:(1)分解因式得(x -1)(x -3)=0,可得x -1=0或x -3=0, 解得x 1=1,x 2=3.(2)∵a =-1,b =8,c =4, ∴Δ=64+16=80>0, ∴x =-8±4 5-2=4±2 5,则x1=4-2 5,x2=4+2 5.19.解:(1)把(1,4)代入y=kx得4=k1,解得k=4.(2)由B是AC的中点可得B点的纵坐标是A点纵坐标的一半,即y=2,把y=2代入y=4x得2=4x,解得x=2,故点B的坐标为(2,2).(3)由点A,B的坐标求得直线AB的表达式为y=-2x+6,令y=0,求得x =3,∴点C的坐标为(3,0),∴△OAC的面积为12×3×4=6.20.解:(1)∵被抽取的总人数为12÷20%=60(人),∴被抽取的学生中,成绩在C组的有60-6-12-18=24(人).(2)C(3)估计全校这次竞赛成绩在A组的学生有1 500×660=150(人).21.解:如图,过点D作DF⊥AB于点F.(第21题)在Rt△ADF中,DF=21米,∠ADF=45°,∴AF=DF×tan 45°=21米.在Rt△EDF中,DF=21米,∠EDF=30°,∴EF=DF×tan 30°=7 3米.∴AE=AF+EF=21+7 3≈33.1(米).答:条幅AE的长约为33.1米.22.解:因为围成的矩形一边长为x米,所以其邻边长为(16-x)米.(1)依题意得x(16-x)=60,即(x-6)(x-10)=0.解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米.(2)不能围成面积为70平方米的养鸡场.理由如下:当养鸡场面积为70平方米时,x(16-x)=70,即x2-16x+70=0.因为Δ=(-16)2-4×1×70=-24<0,所以该方程无解.即不能围成面积为70平方米的养鸡场.23.解:(1)把(-2,0)代入y=ax+1中,求得a=12,∴y=12x+1,∵PC=2,∴P点纵坐标为2,把y=2代入y=12x+1,得x=2,即P(2,2),把P点坐标代入y=kx得k=4,则双曲线表达式为y=4x(x>0).(2)如图,设Q(m,n),∵Q(m,n)在双曲线y=4x(x>0)上,∴n=4m,(第23题)易知B点坐标为(0,1),∴OB=1.当△QCH∽△BAO时,可得CHAO=QHBO,即m-22=n1,∴m-2=2n,即m-2=8m,解得m=4或m=-2(舍去).当m=4时,n=1.∴Q(4,1);当△QCH∽△ABO时,可得CHBO=QHAO,即m-21=n2,整理得2m-4=4m,解得m=1+3或m=1-3(舍去),当m=1+3时,n=2 3-2,∴Q(1+3,2 3-2).综上,Q(4,1)或Q(1+3,2 3-2).24.解:(1)等腰直角三角形; 2(2)①仍然成立.证明:连接BD.∵AB=AB′,∠BAB′=α,∴∠B′AD=α-90°,∠AB′B=90°-α2.∵AD=AB′,∴∠AB′D=135°-α2.∴∠EB′D=∠AB′D-∠AB′B=45°. ∵DE⊥BB′,∴∠EDB′=45°=∠EB′D.∴△DEB′是等腰直角三角形.∴DB′DE= 2.∵四边形ABCD为正方形,∴BDCD=2,∠BDC=45°.∴BDCD=DB′DE,∠EDB′=∠BDC,∴∠B′DB=∠EDC. ∴△B′DB∽△EDC.∴BB′CE=BDCD= 2.②BEB′E的值为3或1.湘教版九年级数学上册期末试卷一、选择题(每题3分,共30分)1.已知非零实数a ,b ,c ,d 满足a b =cd ,则下列关系中成立的是( )A.a d =c bB.a c =bd C .ac =bd D.a +1b =c +1d2.在Rt △ABC 中,∠C =90°,则下列式子肯定成立的是( )A .sin A =sinB B .cos A =cos BC .tan A =tan BD .sin A =cos B 3.若反比例函数的图象经过点(2,-2),(m ,1),则m 的值为( )A .1B .-1C .4D .-44.某种植基地2020年蔬菜产量为80吨,预计2022年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1-x )2=80C .80(1+2x )=100D .80(1+x 2)=1005.如图,在平面直角坐标系中,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ),则代数式1a -1b 的值为( ) A .-12 B.12 C .-14 D.146.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为点D ,CD =1,则AB 的长为( )A .2B .2 3 C.33+1 D.3+17.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量/千克14 21 27 17 18 20 19 23 19 22 据调查,市场上今年樱桃的批发价格为每千克30元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别为() A.200千克,6 000元B.1 900千克,57 000元C.2 000千克,60 000元D.1 850千克,55 500元8.已知反比例函数y=abx,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根和一个负根D.没有实数根9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan ∠BDE的值为()A.24 B.14 C.13 D.2310.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是()A.3 s或4.8 s B.3 s C.4.5 s D.4.5 s或4.8 s二、填空题(每题3分,共24分)11.方程(x-2)(x-3)=6的解为____________.12.在△ABC中,∠A,∠B都是锐角,若sin A=32,cos B=12,则∠C=________.13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查,整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,则估计喜欢“踢毽子”的学生有________名.14.如图,在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为________,△ABC 的面积为________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为110 m ,那么该建筑物的高度BC 约为________m .(结果保留整数,3≈1.73)16.如图,在▱ABCD 中,过点B 的直线与AC ,AD 及CD 的延长线分别相交于E ,F ,G .若BE =6,EF =2,则FG 等于________.17.已知关于x 的方程x 2-(a +b )x +ab -1=0,x 1,x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.18.关于x 的反比例函数y =a +4x 的图象如图所示,A ,P 为该图象上的点,且关于原点成中心对称.在△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是______________.三、解答题(19,20题每题8分,22,23题每题10分,21,24题每题15分,共66分) 19.计算或解方程:(1)tan 260°+4sin 30°·cos 45°-(2 021-π)0; (2)2x 2-3x -9=0.20.如图,Rt△ABO的顶点A是双曲线y=kx与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B,且S△ABO=3 2.(1)求双曲线和直线的表达式;(2)求直线与双曲线的两个交点A,C的坐标及△AOC的面积.21.2022年2月4日~20日第24届冬季奥林匹克运动会将在北京市和张家口市联合举行.某校对九年级学生开展了“冬奥会知多少”的调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“不太了解”“基本了解”“比较了解”“非常了解”四个等级,对调查结果进行统计后,绘制了如下不完整的条形统计图,已知“基本了解”的人数占抽样调查人数的25%,根据统计图提供的信息,回答下列问题:(1)此次调查抽取了________名学生;(2)补全条形统计图;(3)若该校七年级有600名学生,请估计“比较了解”和“非常了解”的学生共有多少名?22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克.根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y/千克…34.8 32 29.6 28 …售价x/(元/千克) …22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利150元,那么该水果的售价为多少元/千克?23.一名徒步爱好者来衡阳旅行,他从宾馆C处出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆C处南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离.(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?24.如图①,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=12时,OP=________,S△ABP=________.(2)当△ABP是直角三角形时,求t的值.(3)如图②,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B. 求证:AQ·BP=3.答案一、1.B 2.D 3.D 4.A 5.C 【点拨】由题意得,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ), ∴ab =4,b =a -1,∴b -a =-1, ∴1a -1b =b -a ab =-14. 6.D 7.C 8.C9.A 【点拨】∵四边形ABCD 是矩形, ∴AD ∥BC ,AD =BC .∴△ADF ∽△EBF . ∴AD EB =AF EF =DF BF .∵点E 是BC 的中点,AD =BC , ∴ADEB =2. ∴AF EF =DFBF =2. 设EF =x ,则AF =2x . 易知△ABF ∽△BEF , ∴AF BF =BFEF .∴BF =2x . ∵DFBF =2, ∴DF =22x .在Rt △DEF 中,tan ∠BDE =EF DF =x 22x =24.故选A .10.A二、11.x 1=0,x 2=512.60° 【点拨】∵在△ABC 中,∠A ,∠B 都是锐角,sin A =32,cos B =12, ∴∠A =∠B =60°.∴∠C =180°-∠A -∠B =180°-60°-60°=60°.13.200 14.3;322 15.300 16.16 17.①②18.没有实数根 【点拨】∵反比例函数y =a +4x 的图象在第一、三象限内, ∴a +4>0,即a >-4.∵A ,P 两点关于原点成中心对称,PB ∥y 轴,AB ∥x 轴,△P AB 的面积大于12, ∴2(a +4)>12,即a +4>6, ∴a >2.∴(-1)2-4(a -1)×14=2-a <0.∴关于x 的方程(a -1)x 2-x +14=0没有实数根.三、19.解:(1)原式=(3)2+4×12×22-1=3+2-1=2+2. (2)方法一:因为a =2,b =-3,c =-9, 所以b 2-4ac =(-3)2-4×2×(-9)=81, 所以x =3±814,所以x 1=3,x 2=-32.方法二:原方程可化为(x -3)(2x +3)=0,所以x 1=3,x 2=-32. 20.解:(1)由题易知12|k |=32, ∴|k |=3,∴k =±3.∵双曲线位于第二、四象限,∴k =-3.∴双曲线的表达式为y =-3x ,直线的表达式为y =-x -2. (2)联立⎩⎪⎨⎪⎧y =-3x ,y =-x -2, 解得⎩⎨⎧x 1=-3,y 1=1,⎩⎨⎧x 2=1,y 2=-3.∴A 点的坐标为(1,-3),C 点的坐标为(-3,1).设直线AC 与y 轴交于点D ,则D 点的坐标为(0,-2),则S △AOC =S △AOD +S △COD =12×2×1+12×2×3=4.21.解:(1)40(2)如图所示:(3)估计“比较了解”和“非常了解”的学生共有600×⎝ ⎛⎭⎪⎫1540+1140=390(名). 22.解:(1)设y 与x 之间的函数表达式为y =kx +b .将⎩⎨⎧x =22.6,y =34.8和⎩⎨⎧x =24,y =32分别代入y =kx +b ,得⎩⎨⎧22.6k +b =34.8,24k +b =32,解得⎩⎨⎧k =-2,b =80,∴y 与x 之间的函数表达式为y =-2x +80.当x =23.5时,y =-2x +80=33.答:当天该水果的销售量为33千克.(2)根据题意得(x -20)(-2x +80)=150,解得x 1=35,x 2=25.∵20≤x ≤32,∴x =25.答:如果某天销售这种水果获利150元,那么该水果的售价为25元/千克.23.解:(1)如图,过点C 作南北方向线l ,作CD ⊥AB 于D 点,根据垂线段最短可知线段CD 的长是从石鼓书院走到雁峰公园的途中与宾馆的最短距离. 由题意知,∠1=30°,AB ∥l ,所以∠A =∠1=30°.在Rt△ACD中,AC=2 000米,所以CD=12AC=1 000米.答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离为1 000米.(2)由(1)可知CD=1 000米.由题意知,∠2=45°,所以∠B=∠2=45°.在Rt△BCD中,BC=2CD=1 0002米.设这名徒步爱好者从雁峰公园返回宾馆用了x分钟,根据题意,得100x=1 0002.解得x=102.因为102<15,所以这名徒步爱好者在15分钟内能到达宾馆.24.(1)1;3 3 4(2)解:∵∠A<∠BOC=60°,∴∠A不可能是直角.如图①,当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB,即2t=2.∴t=1.如图②,当∠APB =90°时,作PD ⊥AB ,垂足为D , 则∠ADP =∠PDB =90°.∵OP =2t ,∠BOP =60°,∴OD =t ,PD =3t ,∴AD =2+t ,BD =1-t .∴BP 2=(1-t )2+3t 2,AP 2=(2+t )2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t )2+3t 2+(2+t )2+3t 2=9,即4t 2+t -2=0.解得t 1=-1+338,t 2=-1-338(舍去). 综上,当△ABP 为直角三角形时,t =1或t =-1+338. (3)证明:∵AP =AB ,∴∠APB =∠B .如图③,作OE ∥AP ,交BP 于点E ,∴∠OEB =∠APB =∠B .∵AQ ∥BP ,∴∠QAB +∠B =180°.∵∠3+∠OEB =180°,∴∠3=∠QAB .∵∠AOC =∠2+∠B =∠1+∠QOP , ∠B =∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP .∴AQ EO =AO EP ,即AQ ·EP =EO ·AO .∵OE ∥AP ,∴△OBE ∽△ABP .∴OE AP =BE BP =BO BA =13.∴OE =13AP =13AB =1,BP =3BE .∴BP =32EP .∴AQ ·BP =AQ ·32EP =32AO ·OE =32×2×1=3.。
湘教版九年级上册数学期末考试试卷及答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下面结论中正确的是( )A .1sin 602︒= B .tan 60︒C .sin 45︒=D .1cos302︒= 2.用配方法解方程 2210x x +-= 时,原方程应变形为( )A .()212x +=B .()212x -=C .()229x +=D .()229x -= 3.已知非零实数a ,b ,c ,d 满足a cb d =,则下面关系中成立的是( ) A .a b d b = B .ac bd = C .a b c d = D .11a c b d ++= 4.在Rt △ABC 中,∠ABC=90°、tanA=43 ,则sinA 的值为( ) A .45 B .35 C .34 D .435.如图,已知345////l l l ,它们依次交直线1l 、2l 于点E ,A ,C 和点D ,A ,B ,如果2AD =,3AE =,4AB =,那么CE =( )A .6B .32C .83D .96.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学成绩90分以上的有25人,由此推测全校九年级学生的数学成绩90分以上的人数大约有( )人 A .50 B .75 C .100 D .125 7.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-且0k ≠ B .1k ≥-且0k ≠ C .1k ≥- D .1k ≤且0k ≠ 8.已知x=1是一元二次方程x 2-2mx+1=0的解,则m 的值是( )A .-1B .0C .1D .0或1 9.已知三角形ABC 与三角形EFM 的相似比为2,且这两个三角形面积的和为25,则三角形ABC 的面积为( )A .5B .21C .15D .2010.如图所示,四边形ABCD 中,//AD BC ,CA 是BCD ∠的平分线,且AB AC ⊥,4AB =,6AD =,则tan B 等于( )A .B .C .114D .二、填空题11.如图,若点 A 的坐标为 ( ,则 sin 1∠ =________.12.已知345x y z ==,则x y z y +-=______. 13.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.14.如果反比例函数y=34a x-的图象在每一个象限内y 随x 的增大而增大,那么a 满足的条件是________ 15.线段6AB cm =,C 为线段AB 上一点(AC BC >),当AC =______cm 时,点C 为AB 的黄金分割点.16.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .17.若1x ,2x 是一元二次方程2420200x x +-=的两个根,则1212x x x x +-的值是______. 18.如图,在△ABC 中,AB=5,BC=12,AC=13,点D 是AC 的中点,则BD=______.三、解答题19.计算:()20112sin 6023π-⎛⎫-+-+︒- ⎪⎝⎭ 20.解方程:(1)2410x x -+=(2)252340x x +-=21.某市对参加今年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分,请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为______,b 的值为______,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,求视力正常的人数占被统计人数的百分比,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?22.如图,湛河两岸AB 与EF 平行,小亮同学假期在湛河边A 点处,测得对岸河边C 处视线与湛河岸的夹角∠CAB=37°,沿河岸前行140米到点B 处,测得对岸C 处的视线与湛河岸夹角∠CBA=45°.问湛河的宽度约多少米?(参考数据:sin37°≈0.60,cos37°=0.80,tan37°=0.75)23.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为60平方米.两块绿地之间及周边留宽度相等的人行通道,请问人行道的宽度为多少米?24.如图,在Rt ABC ∆中,90ACB ∠=,CD AB ⊥,垂足为D ,E 为BC 上一点,连接AE ,作EF AE ⊥交AB 于F .(1)求证:EFB AGC ∆∆.(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)25.已知反比例函数y =m 8x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图,过点A 作直线AC 与函数y =m 8x -的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.26.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x =点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x=于点E ,交BD 于点C . (1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.参考答案1.B【分析】根据特殊角三角函数值进行判断【详解】解:A. sin60︒=B. tan60︒=C. sin45=°,故此选项不符合题意;D. cos30=°,故此选项不符合题意;故选:B【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.A【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程作边利用完全公式表示即可.【详解】x2+2x=1,x2+2x+1=2,(x+1)2=2.故选A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.C【分析】将比例式变形直接求解即可.【详解】解:因为非零实数a ,b ,c ,d 满足a cb d=, 所以肯定有a b c d =,或ad=bc ; 故选:C .【点睛】 此题考查比例线段问题,能够根据比例正确进行解答是解题关键.4.A【解析】如图设AB=3a ,BC=4a ,由勾股定理得AC=5a , sinA=4455BC a AC a ==, 故选A.5.D【分析】 根据平行线分线段成比例定理得到AD AE AB AC=,求得AC 的长,然后利用线段的和差可计算出CE 的长.【详解】解:∵345////l l l ∴AD AE AB AC =,234AC =,解得:AC=6 ∴CE=AE+AC=3+6=9故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 6.D【分析】先求出数学成绩90分以上的认识在样本中所占百分比,再用样本所占比例估计整体的比例,即用总数×样本90分以上所占百分比计算即可.【详解】解:∵随机抽取了100名学生的数学成绩90分以上的有25人,∴数学成绩90分以上的有25人所占百分比为:25100%=25%100⨯, ∴全校九年级学生的数学成绩90分以上的人数大约有500×25%=125人,故选择:D .【点睛】本题考查用样本所占百分比估计总体的数量,掌握样本的选择具有普遍性,随机性,具有代表性,会求样本中考查对象所占样本的百分比,利用总体乘以样本中含量的百分比是解题关及.7.A【分析】根据根的判别式得出k≠0且△=(-2)2-4k•(-1)>0,求出即可.【详解】∵关于x 的一元二次方程kx 2−2x −1=0有两个不相等的实数根,∴k ≠0且△=(−2)2−4k (−1)>0,解得:k >−1且k ≠0.故选择:A .【点睛】 本题考查了根的判别式,和不等式的解法,熟练掌握一元二次方程的定义及的意义,不等式的解法是解题的关键.8.C【解析】试题分析:把x=1代入方程x 2﹣2mx+1=0,可得1﹣2m+1=0,得m=1,故选C .考点:一元二次方程的解.9.D【分析】由ABC ∆与EFM ∆的相似比为2:1,可得S S 4:1ABC EFM ∆∆=:,变形S 4S ABC EFM ∆∆=由S +S =25ABC EFM ∆∆,可求S EFM ∆=5即可.【详解】解:∵ABC ∆与EFM ∆的相似比为2:1,∴S S 4:1ABC EFM ∆∆=:,∴S 4S ABC EFM ∆∆=,∵S +S =25ABC EFM ∆∆,∴4S +S =5S =25EFM EFM EFM ∆∆∆,∴S EFM ∆=5,∴S 4S =45=20ABC EFM ∆∆=⨯,故选择:D .【点睛】本题考查相似三角形的性质,掌握相似三角形的性质,会利用面积比等于相似比的平方构造方程是解题关键.10.B【分析】过点D 作DE ⊥AC 于E ,根据等腰三角形三线合一的性质可得AE=12AC ,根据两组角对应相等的两个三角形相似求出△ABC ∽△EDC ,再根据相似三角形对应边成比例求出BC ,然后利用勾股定理求出AC 的长,从而∠B 的正切值即可得解.【详解】解:∵AD ∥BC ,∴∠DAC=∠BCA ,又∵CA 是BCD ∠的平分线∴∠DCA=∠ACB ,∴∠DAC=∠DCA ,∴AD=CD=6,过点D 作DE ⊥AC 于E ,则AE=CE=12AC ,∵∠DCA=∠ACB ,∠BAC=∠DEC ,∴△ABC ∽△EDC , ∴CD CE BC AC =,即612BC =, ∴BC=12,在直角△ABC 中,∴tan =AC B AB == 故选:B【点睛】本题考查了相似三角形的判定与性质,平行线的性质,等腰三角形三线合一的性质,勾股定理以及求锐角三角函数,作辅助线构造出相似三角形并求出BC 的长度是解题的关键.11 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =2.sin ∠1=AB OA =12.12【分析】 设=0,345x y z k ==≠可得3,4,5,x k y k z k ===再代入求值即可得到答案. 【详解】解:设=0,345x y zk ==≠ 3,4,5,x k y k z k ∴===∴34521.442x y z k k k k y k k +-+-=== 故答案为:1.2【点睛】本题考查的是比例的基本性质,掌握利用设参数法解决比例问题是解题的关键. 13.120 【分析】通过统计图求出课外阅读时间为8小时的人数占总人数的550即可解题. 【详解】解:估计该校1200名学生一周的课外阅读时间为8小时的人数是1200550⨯=120人, 故答案为120人 【点睛】本题考查了条形统计图的实际应用,属于简单题,会看统计图是解题关键. 14.34a >【分析】根据反比例函数的性质可得3-4a <0,再解不等式即可. 【详解】 ∵反比例函数y=34ax-每一个象限内y 随x 的增大而增大, ∴3-4a <0, 解得:a >34,故答案为a >34.【点睛】本题考查了反比例函数的性质.对于反比例函数y=kx,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.15.3()【分析】根据黄金分割点的定义,知AC为较长线段;则,代入数据即可得出AC的值.【详解】解:由题意可得:63=故答案为:3()【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.16.15.【详解】解:29180x x-+=,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1517.2016【分析】根据一元二次方程根与系数的关系可得出12=4x x+-,12=2020x x-,此题得解.【详解】解:由题意可得:12=4x x+-,12=2020x x-∴1212=4(2020)2016x x x x+----=故答案为:2016【点睛】本题考查了一元二次方程根与系数的关系,牢记12=bx x a+-,12c =x x a 是解题的关键.18.6.5 【分析】试题分析:由△ABC 的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC 为斜边,再由D 为斜边上的中点,得到BD 为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD 的长. 【详解】解:∵AB=5,BC=12,AC=13,∴AB 2+BC 2=25+144=169,AC 2=132=169,即AB 2+BC 2=AC 2, ∴△ABC 为以AC 为斜边的直角三角形, 又∵D 为AC 的中点,即BD 为斜边上的中线, ∴BD=12AC=6.5. 故答案为6.5.考点:勾股定理的逆定理;直角三角形斜边上的中线.19.8+【分析】先计算零指数幂,负整数指数幂,代入三角函数值以及绝对值的化简,然后再计算加减即可. 【详解】解:021(1)()2sin 6023π--+-+︒()(21322=+-+-192=+8=+【点睛】本题主要考查零指数幂、特殊锐角三角函数值、负整数指数幂以及绝对值的化简运算,掌握运算顺序和计算法则正确计算是解题关键.20.(1)12x =22x =(2)113x =,218x =- 【分析】(1)使用配方法解一元二次方程; (2)因式分解法解一元二次方程. 【详解】解:(1)2410x x -+= 移项,得:241x x -=- 配方,得:2224+21+2x x -=-2(2)3x -=2x -=∴12x =22x = (2)252340x x +-=(+18)(13)0x x -= +180x =或130x -=∴113x =,218x =-. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 21.(1)60,0.05,见解析;(2)4.6 4.9x ≤<;(3)35%, 17500人. 【分析】(1)先由视力在4.0 4.3x ≤<范围内这个小组有20人,求解总人数,再利用总人数乘以范围在4.9 5.2x ≤<这一小组的频率可求解,a 利用频率公式求解b ,再补全图形,即可得到答案;(2)由200个数据,排在最中间的两个数据是第100个,第101个,而这两个数据的平均数就是中位数,从而可得答案;(3)由视力在4.9以上(含4.9)有两个小组,可列式6010200+,从而可得答案,再利用视力正常的人数占被统计人数的百分比乘以总体的总人数可得答案. 【详解】解:(1)由视力在4.0 4.3x ≤<范围内这个小组有20人,所以总人数为:20=2000.1人, ∴ 2000.360=⨯=a (人), 100.05,200b == 补全图形如下:故答案为:60,0.05,(2)因为200个数据,排在最中间的两个数据是第100个,第101个,这两个数据的平均数就是中位数,所以甲同学的视力情况应在4.6 4.9x ≤<范围内. (3)由视力在4.9以上(含4.9)有两个小组, 所以601035%200+=, 即视力正常的人数占被统计人数的百分比35%, 而5000035%17500⨯=(人)所以估计全市初中毕业生中视力正常的学生有17500人. 【点睛】本题考查的是频数分布直方图,频数与频率的理解,中位数的概念,利用样本估计总体,掌握以上知识是解题的关键. 22.湛河的宽度约60米 【详解】试题分析:过C 作CD ⊥AB 于点D ,设CD =x 米.由∠CBD =45°,得到BD =CD =x . 在Rt △ADC 中,用tan ∠CAD 表示出AD .根据AB =AD +DB =140,列方程求解即可. 试题解析:解:过C 作CD ⊥AB 于点D ,设CD =x 米. 在Rt △BDC 中,∠CDB =90°,∠CBD =45°,∴BD =CD =x .在Rt △ADC 中,∠ADC =90°,∠CAD =37°,∴AD =04tan 370.753x x x== .∵AB =AD +DB =140,∴41403xx +=,∴x =60. 答:湛河的宽度约60米.23.人行道的宽度为1米. 【分析】设人行道的宽度为x 米,根据矩形绿地的面积之和为60米2,列出一元二次方程,再进行求解即可得出答案. 【详解】设人行道的宽度为x 米,根据题意,得(183)(62)60x x --=, 解得11x =,28x =(不合题意,舍去). ∴人行道的宽度为1米. 【点睛】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.24.(1)证明见解析;(2)有,见解析. 【分析】(1)通过线段垂直和三角形内角之和为180°求出BFE DGE ∠=∠和EAC BEF ∠=∠,从而证明AGC EFB △∽△.(2)通过两内角相等写出所有相似三角形即可. 【详解】(1)∵CD AB EF AE ⊥⊥,∴90FDG FEG ∠=∠=︒ ,∴3609090180DGE DFE ∠+∠=︒︒︒=︒-- 又∵180BFE DFE ∠+∠=︒ , ∴BFE DGE ∠=∠ , 又∵DGE AGC ∠=∠ ∴AGC BFE ∠=∠ , 又∵90ACB FEG ∠=∠=︒ ,∴180909090AEC BEF AEC EAC ∠+∠=︒︒=︒∠+∠=︒-, , ∴EAC BEF ∠=∠ , ∴AGC EFB △∽△(2)∵90GAD FAE ADG AEF ∠=∠∠=∠=︒, , ∴AGD AFE △∽△ ; ∴CAD BAC ∠=∠ , ∴ACD ABC △∽△ , 同理得BCD BAC ∽△△ , ∴ACD CBD △∽△ ,即ACD ABC CBD △∽△∽△ , 【点睛】本题考查了相似三角形的性质以及证明,掌握相似三角形的判定定理是解题的关键. 25.(1)m 的值为2;(2)C (﹣4,0). 【解析】试题分析:(1)将A 点坐标代入反比例函数解析式即可得到一个关于m 的一元一次方程,求出m 的值;(2)分别过点A 、B 作x 轴的垂线,垂足分别为点E 、D ,则△CBD ∽△CAE ,运用相似三角形知识求出CD 的长即可求出点C 的横坐标. 试题解析:(1)∵图象过点A (-1,6),∴861m -=-, 解得m=2.(2)分别过点A 、B 作x 轴的垂线,垂足分别为点E 、D ,由题意得,AE=6,OE=1,即A (-1,6), ∵BD ⊥x 轴,AE ⊥x 轴, ∴AE ∥BD , ∴△CBD ∽△CAE , ∴CB BDCA AE=, ∵AB=2BC , ∴13CB CA =, ∴136BD =, ∴BD=2.即点B 的纵坐标为2.当y=2时,x=-3,即B (-3,2), 设直线AB 解析式为:y=kx+b , 把A 和B 代入得:6{32k b k b -+=-+=,解得28=⎧⎨=⎩k b ,∴直线AB 解析式为y=2x+8,令y=0,解得x=-4, ∴C (-4,0).考点:反比例函数综合题.26.(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222∆∆======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可. 【详解】解:(1)∵(),80D -, ∴B 点的横坐标为8-,代14y x =入中,得2y =-. ∴B 点坐标为()8,2--. ∵A 、B 两点关于原点A 对称, ∴()8,2A .∴8216k xy ==⨯=;(2)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上, ∴mn k =,2,2n B m ⎛⎫-- ⎪⎝⎭,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBOOENDCNO OBCE S S S Sk =--==矩形四边形.∴4k =.∵2,2n B m ⎛⎫-- ⎪⎝⎭在双曲线4y x =与直线14y x =上,∴()()2421242n m n m ⎧⎛⎫-⨯-= ⎪⎪⎪⎝⎭⎨⎪⨯-=-⎪⎩,解得1122m n =⎧⎨=⎩或2222m n =-⎧⎨=-⎩(舍去)∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-⎧⎨+=⎩,解得23a b ==. ∴直线CM 的解析式是2233y x =+. 【点睛】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBOOENDCNO OBCE S S S Sk =--==矩形四边形构造方程组解决问题.。
湘教版九年级数学上册期末测试卷及答案【完整】
湘教版九年级数学上册期末测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A .55×105B .5.5×104C .0.55×105D .5.5×1055.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________. 2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中x =5+2,y =5-2.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象经过A (-1,0)、B (4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、B5、B6、A7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、432、(y ﹣1)2(x ﹣1)2.3、增大.4、10.5、)120016、①③④. 三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、2xy x y - ,123、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)补图见解析;50°;(2)35. 6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
湘教版九年级数学上册期末考试卷【带答案】
湘教版九年级数学上册期末考试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .17.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.因式分解:a3-a=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.6.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、B5、D6、D7、A8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、a (a -1)(a + 1)3、24、15°5、6、35r <<.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、123、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)略;(2)略.5、(1)50;(2)见解析;(3)16. 6、(1)120件;(2)150元.。
湘教版九年级数学上册期末试卷【带答案】
湘教版九年级数学上册期末试卷【带答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.如果23a b -=22()2a b a b a a b+-⋅-的值为( ) A 3B .23C .33D .434.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD •AC D . AD AB AB BC= 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.分解因式:x3﹣4xy2=_______.3.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于__________.4.如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于__________.5.如图,某校教学楼AC与实验楼BD的水平间距153CD=米,在实验楼顶部B点测得教学楼顶部A点的仰角是30,底部C点的俯角是45︒,则教学楼AC的高度是__________米(结果保留根号).6.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、A5、B6、B7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、32、x(x+2y)(x﹣2y)3、20284、135、(15+153)6、-1三、解答题(本大题共6小题,共72分)1、4x2、(1)k≤58;(2)k=﹣1.3、(1)略(2)2-14、(1)y= 8x;(2)y=﹣12x+152;5、(1)600(2)见解析(3)3200(4)6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
湘教版九年级上册数学期末考试试卷含答案解析
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列方程中,没有实数根的是()A.x2+2x-1=0 B.x2C.x2D.-x2+x+2=02.如图,在ABC中,点D,E,F分别在边AB,AC,BC上,且DE BC,EF AB.若AD2BD,则CFBC的值为()A.13B.14C.15D.233.在Rt△ABC中,∠ABC=90°、tanA= 43,则sinA的值为()A.45B.35C.34D.434.据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x,根据题意,所列方程为()A.11.3(1﹣x%)2=8.2 B.11.3(1﹣x)2=8.2C.8.2(1+x%)2=11.3 D.8.2(1+x)2=11.35.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价后售价为148元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A.200(1+x)2=148 B.200(1-x)2=148 C.200(1-2x)=148 D.148(1+x)2=200 6.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B 两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°7.在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于( ) A .45 B .5 C .15 D .1458.若x 1,x 2是一元二次方程x 2+4x ﹣2016=0的两个根,则x 1+x 2﹣x 1x 2的值是( ) A .﹣2012 B .﹣2020 C .2012 D .20209.已知函数 y =4x 2−4x +m 的图像与x 轴的交点坐标为 (x 1,0) (x 2,0) 且 (x 1+x 2)(4x 12−5x 1−x 2)=8 ,则该函数的最小值是( )A .2B .-2C .10D .-1010.如图,反比例函数(0)k y k x=≠的图象上有一点A ,AB 平行于x 轴交y 轴于点B ,AC 平行于y 轴交x 轴于点C ,四边形ABOC 的面积为5,则反比例函数的表达式是( )A .52y x =B .5y x =-C .5y x =D .34y x=二、填空题11.如图,若点 A 的坐标为 ( ,则 sin 1∠ =________.12.如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h 为_____.13.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .14.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________.15.若方程(m ﹣x )(x ﹣n )=3(m 、n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则将m ,n ,a ,b 按从小到大的顺序排列为________.16.如图,一次函数1y x 1=-与反比例函数22y x=的图象交于点()A 2,1、()B 1,2--,则使12y y >的x 的取值范围是______.三、解答题17.解方程:(1)x 2﹣3x ﹣1=0. (2)x 2+4x ﹣2=0.18.我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x 2﹣4x ﹣1=0②x (2x+1)=8x ﹣3③x 2+3x+1=0④x 2﹣9=4(x ﹣3)我选择第________个方程.19.如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有 (写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=.20.如图所示.在△ABC中,EF∥BC,且AE:EB=m,求证:AF:FC=m.21.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax2+bx+c=0(a、b、c为常数,a≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?22.如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA 于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.24.已知反比例函数y=m8x-(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=m8x-的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.25.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为60平方米.两块绿地之间及周边留宽度相等的人行通道,请问人行道的宽度为多少米?26.如图,在平面直角坐标系中直线y=x ﹣2与y 轴相交于点A ,与反比例函数在第一象限内的图象相交于点B (m ,2).(1)求反比例函数的关系式;(2)将直线y=x ﹣2向上平移后与反比例函数图象在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式.参考答案1.C【解析】试题解析:A.2210x x +-=24440b ac ∆=-=+>,∴方程有两个不相等的实数根;B. 220x ++=24880b ac ∆=-=-=,∴方程有两个相等的实数根; C. 24240b ac ∆=-=-<,∴方程没有实数根; D.24180b ac ∆=-=+>,∴方程有两个不相等的实数根;故选C.2.A【解析】试题解析:∵AD =2BD ,∴BD :AB =1:3,//DE BC ,∴CE :AC =BD :AB =1:3,//EF AB ,∴CF :CB =CE :AC =1:3.故选A.3.A【解析】如图设AB=3a ,BC=4a ,由勾股定理得AC=5a , sinA=4455BC a AC a ==, 故选A.4.D【解析】试题分析:设这两年兰州市旅游收入的平均增长率为x ,根据两年期间从8.2亿元增加到11.3亿元,列方程即可.解:设这两年兰州市旅游收入的平均增长率为x ,由题意得,8.2(1+x )2=11.3.故选D.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是设出未知数,找出合适的等量关系列方程.5.B【解析】【分析】设平均每次降价的百分率为x,根据某商品原价为200元,连续两次降价后售价为148元,可列出方程.【详解】设平均每次降价的百分率为x,由题意,得200(1-x)2=148.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,降价两次,关键知道降价前和降价后的价格,列出方程求解.6.A【详解】解:如图,过点C作CG∥AE,因为AE∥BF,所以AE∥CG∥BF,所以∠ACG=∠CAE,∠BCG=∠CBF,因为∠CAE=50°,∠CBF=40°,∴∠ACB=∠ACG+∠BCG=50°+40°=90°故选A.【点睛】本题主要考查了方向角和平行线的性质,在有关方向角的问题中,注意向北的方向是互相平行的,由此结合平行线的性质即可得到图形中的角的关系,解题的关键是要过点C 作平行线.7.B【详解】 1sin 3BC A AB == , 1115533BC AB ∴==⨯= . 故选B8.C【解析】试题分析:根据一元二次方程根与系数之间的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则x 1+x 2=﹣b a,x 1x 2=c a .由x 1,x 2是一元二次方程x 2+4x ﹣2016=0的两个根,可得x 1+x 2=﹣4,x 1x 2=﹣2016,即x 1+x 2﹣x 1x 2=﹣4﹣(﹣2016)=2012.故选C .考点:根与系数的关系9.D【解析】试题解析:∵函数y=4x 2-4x+m 的图象与x 轴的交点坐标为(x 1,0),(x 2,0), ∴x 1与x 2是4x 2-4x+m=0的两根,∴4x 12-4x 1+m=0,x 1+x 2=1,x 1•x 2=m4,∴4x 12=4x 1-m ,∵(x 1+x 2)(4x 12-5x 1-x 2)=8,∴(x 1+x 2)(4x 1-m-5x 1-x 2)=8,即(x 1+x 2)(-m-x 1-x 2)=8,∴1•(-m-1)=8,解得m=-9,∴抛物线解析式为y=4x 2-4x-9,∵y=2(x-12)2-10,∴该函数的最小值为-10.故选D .考点:抛物线与x 轴的交点.10.C【分析】根据反比例函数系数k 的几何意义知k =四边形ABOC 的面积.【详解】k =四边形ABOC 的面积=5∴k=5或-5 又函数图象位于第一象限∴k=5,则反比例函数解析式为5y x =故选C.【点睛】本题考查了反比例函数系数k 的几何意义,本题是中考的重点,同学们应高度重视.11【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =2.sin ∠1=AB OA =12.1.5米.【详解】如图,∵DE ∥BC ,∴△ADE∽△ACB.∴DE AE CB AB=.∴40.84+3.5AB=,解得h=1.5(米).13.15.【详解】解:29180x x-+=,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1514.②③【解析】【分析】根据正方形、矩形、等边三角形、等腰三角形的性质进行判断即可.【详解】①所有的等腰三角形都相似,错误;②所有的正三角形都相似,正确;③所有的正方形都相似,正确;④所有的矩形都相似,错误.故答案为②③.【点睛】本题考查了相似图形的知识,熟练掌握各特殊图形的性质是解题的关键,难度一般.15.m<a<b<n【解析】【分析】利用数形结合的思想,根据题意得到二次函数y=-(x-m)(x-n)与直线y=3的交点的横坐标分别为a、b,加上二次函数y=-(x-m)(x-n)与x轴的两交点的坐标为(m,0),(n,0),抛物线开口向下,于是可得到m<a<b<n.【详解】因为方程(m-x)(x-n)=3(m、n为常数,且m<n)的两实数根分别为a、b(a<b),所以二次函数y=-(x-m)(x-n)与直线y=3的交点的横坐标分别为a、b,而二次函数y=-(x-m)(x-n)与x轴的两交点的坐标为(m,0),(n,0),抛物线开口向下,所以m<a<b<n.故答案为m<a<b<n.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-b a ,x1x2=ca.也考查了抛物线与直线的交点问题.16.x>2或﹣1<x<0【分析】当y1>y2时,一次函数的图象在反比例函数的图象上方;由图知:符合条件的函数图象有两段:①第一象限,x>2时,y1>y2;②第三象限,-1<x<0时,y1>y2.【详解】从图象上可以得出:在第一象限中,当x>2时,y1>y2成立;在第三象限中,当-1<x<0时,y1>y2成立.所以使y1>y2的x的取值范围是x>2或-1<x<0.17.(1)x1x2(2)x1=﹣x2=﹣2【分析】(1)使用公式法求解;(2)使用配方法求解.【详解】解:(1)∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=9+4=13,∴∴方程的解为:x1,x2(2)移项得:x 2+4x=2,配方得:x 2+4x+4=2+4,即(x+2)2=6,∴∴x 1=﹣x 2=﹣2【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种方法是解答的关键.18.①2x = ②121,32x x == ③x = ④121,3x x ==【详解】解:我选第①个方程,解法如下:x 2-4x-1=0,这里a=1,b=-4,c=-1,∵△=16+4=20,∴则x 1x 2我选第②个方程,解法如下:x (2x+1)=8x-3,整理得:2x 2-7x+3=0,分解因式得:(2x-1)(x-3)=0,可得2x-1=0或x-3=0,解得:x 1=12,x 2=3;我选第③个方程,解法如下:x 2+3x+1=0,这里a=1,b=3,c=1,∵△=9-4=5,∴,则x 1x 2我选第④个方程,解法如下:x 2-9=4(x-3),变形得,(x+3)(x-3)-4(x-3)=0,因式分解得,(x-3)(x+3-4)=0,∴x-3=0或x+3-4=0,∴x 1=3,x 2=1.19.①②⑤.【详解】试题分析:∵∠APB=∠APE ,∠MPC=∠MPN ,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB ,∵四边形ABCD 是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP ∽△BPA .故①正确,设PB=x ,则CP=4﹣x ,∵△CMP ∽△BPA ,∴PB AB CM PC =,∴CM=14x (4﹣x ),∴S 四边形AMCB =12[4+14x (4﹣x )]×4==21(2)102x --+,∴x=2时,四边形AMCB 面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y ,在RT △PCN 中,222(2)(4)2y y +=-+解得43y =,∴NE≠EP ,故③错误,作MG ⊥AB 于G ,∵AM=22MG AG +=216AG +,∴AG 最小时AM 最小,∵AG=AB ﹣BG=AB ﹣CM=4﹣14x (4﹣x )=21(1)34x -+,∴x=1时,AG 最小值=3,∴AM 的最小值=169+=5,故④错误.∵△ABP ≌△ADN 时,∴∠PAB=∠DAN=22.5°,在AB 上取一点K 使得AK=PK ,设PB=z ,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z ,,∴,∴z=4,∴PB=4故⑤正确.故答案为①②⑤.考点:相似形综合题.20.证明见解析【分析】首先由EF∥BC可以得到AF:FC=AE:EB,而AE:EB=m,由此即可证明AF:FC=m.【详解】∵EF∥BC,∴AF:FC=AE:EB.∵AE:EB=m,AF:FC=m.【点睛】本题考查了平行线分线段成比例定理,比较简单,有的同学因为没有找准对应关系,从而导致错误.21.5x2-2x-15=0(答案不唯一)【分析】本题主要考查一元二次方程的定义,由(2)(3)可确定a c、的值,任意给出b的值即可得到所求方程.【详解】解:由(1)知这是一元二次方程,由(2)(3)可确定a c、,而b的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x2-2x-15=022.调整后的滑梯AD比原滑梯AB增加2.5米【详解】试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用AD AB-即可求得增加的长度.试题解析: Rt△ABD中,∵30ADB∠=,AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,58 3.53AB AC sin m=÷≈,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.23.30mm【详解】解:作出示意图连接AB,同时连结OC并延长交AB于E,因为夹子是轴对称图形,故OE是对称轴∴OE⊥AB AE=BE∴Rt△OCD∽Rt△OAE∴OC CD OA AE=而26 OC=即24103910AE15 2415AE26⨯=∴== +∴AB=2AE=30(mm)答:AB两点间的距离为30mm.24.(1)m的值为2;(2)C(﹣4,0).【解析】试题分析:(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.试题解析:(1)∵图象过点A(-1,6),∴861m-=-,解得m=2.(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(-1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD ∽△CAE , ∴CB BD CA AE=, ∵AB=2BC , ∴13CB CA =, ∴136BD =, ∴BD=2.即点B 的纵坐标为2.当y=2时,x=-3,即B (-3,2),设直线AB 解析式为:y=kx+b ,把A 和B 代入得:6{32k b k b -+=-+=, 解得28=⎧⎨=⎩k b , ∴直线AB 解析式为y=2x+8,令y=0,解得x=-4,∴C (-4,0).考点:反比例函数综合题.25.人行道的宽度为1米.【分析】设人行道的宽度为x 米,根据矩形绿地的面积之和为60米2,列出一元二次方程,再进行求解即可得出答案.【详解】设人行道的宽度为x 米,根据题意,得(183)(62)60x x --=,解得11x =,28x =(不合题意,舍去).∴人行道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.26.(1)8y x=;(2)y=x+7. 【分析】 (1)设反比例解析式为k y x=,将B 坐标代入直线y=x ﹣2中求出m 的值,确定出B 坐标,将B 坐标代入反比例解析式中求出k 的值,即可确定出反比例解析式.(2)过C 作CD 垂直于y 轴,过B 作BE 垂直于y 轴,设y=x ﹣2平移后解析式为y=x+b ,C 坐标为(a ,a+b ),由ABC ABE ACD BCDE S S S S ∆∆∆=+-梯形,根据已知三角形ABC 面积列出关系式,将C 坐标代入反比例解析式中列出关系式,两关系式联立求出b 的值,即可确定出平移后直线的解析式.【详解】解:(1)将B 坐标代入直线y=x ﹣2中得:m ﹣2=2,解得:m=4,∴B (4,2),即BE=4,OE=2. 设反比例解析式为k y x=, 将B (4,2)代入反比例解析式得:k=8,∴反比例解析式为8y x=. (2)设平移后直线解析式为y=x+b ,C (a ,a+b ),对于直线y=x ﹣2,令x=0求出y=﹣2,得到OA=2,过C 作CD ⊥y 轴,过B 作BE ⊥y 轴,将C 坐标代入反比例解析式得:a (a+b )=8①,∵ABC ABE ACD BCDE S S S S 18∆∆∆=+-=梯形, ∴()()()()111a 4a b 2224a a b 218222⋅+⋅+-+⋅+⋅-⋅⨯++=②. 联立,解得:b=7.∴平移后直线解析式为y=x+7.。
湘教版九年级上册数学期末考试试卷附答案
Q/CLY ******新能源有限公司企业标准Q/CLY 001-2010纯超级电容器Supercapacitor2011-1-1发布 2011-1-1实施******新能源有限公司发布目次前言1 范围 (1)2 规范性引用文件 (1)3 术语、定义和符号 (1)4 分类 (2)5 要求及试验方法 (2)6 检验规则 (8)7 标志、包装、运输和储存 (8)前言由于纯超级电容器在仪器仪表、电动工具、便携式电子产品等领域的应用还没有可执行国家标准和行业标准。
因此,本企业根据《标准化法》规定的要求制订了本企业标准,作为组织生产和交货验收的依据。
本标准由*************有限公司提出。
本标准由******新能源有限公司起草。
本标准主要起草人:***本标准由***新能源有限公司负责解释。
纯超级电容器1.范围本标准规定了纯超级电容器的技术要求、试验方法、检验规则及标志、包装、运输、储存;本标准适用于纯超级电容器。
2.规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡注明日期的引用文件其随后的修改(不包括勘误的内容)均不适用于本标准。
但提倡使用本规范的各方探讨使用其最新版本的可能性。
凡不注日期或版次的引用文件,其最新版本适用于本规范。
除以下标准外还参照了国内外主要从事超级电容器研究和生产企业的企业标准和测试手册。
QC/T 741-2006 车用超级电容器QC/T 743-2006 电动汽车用锂离子蓄电池GB/T 2900.11 蓄电池名词术语(eqv IEC 60050(482):2003)3.术语、定义和符号3.1术语和定义本标准除采用GB/T 2900.11中的术语外,还增加了下列术语和定义。
3.1.1超级电容器 supercapacitors超级电容器是一种介于普通电容器和电池之间的电化学储能器件。
3.1.2能量型超级电容器 high energy density Supercapacitors以高比能量为特点,主要用于高能量输入、输出的电容器。
湘教版九年级上册数学期末考试试卷含答案解析
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知直角三角形一锐角是60°,斜边长是1,那么这个三角形的周长是( )A .52B .3C D2.一元二次方程x(x x 的根是( )A .-1BC .1D .-13.cos60°-sin30°+tan45°的值为( )A .2B .-2C .1D .-1 4.在反比例函数(0)k y k x =<的图像上有两点(-1,y 1),(14-,y 2),则y 1-y 2的值是( ) A .负数 B .非正数 C .正数 D .不能确定 5.A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别是()A x a y b ++,,()B x y ,,下列结论正确的是( )A .a 0>B .a 0<C .b=0D .ab 0< 6.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .47.某校为了解八年级学生每周课外阅读情况,随机调查了50名八年级学生,得到他们在某一周里课外阅读所用时间的数据,并绘制成频数分布直方图,如图所示,根据统计图,可以估计在这一周该校八年级学生平均课外阅读的时间约为( )A .2.8小时B .2.3小时C .1.7小时D .0.8小时8.如图,河坝横断面迎水坡AB 的坡比是BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .D .9.如图,在Rt △ABC 中,∠C =90°,∠A =30°,c =10,则下列不正确的是( )A .∠B =60° B .a =5C .b =D .tanB 10.如图,五边形ABCDE 与五边形''''A B C D E '是位似图形,点O 为位似中心,12OD OD '=,则:A B AB ''=( )A .23∶B .32∶C .12∶D .21∶11.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,AC 、BD 、EF 相交于点O ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对12.方程22()60x m x m ++=-有两个相等的实数根,且满足1212x x x x +=则m 的值是( ) A .-2或3 B .3 C .-2 D .-3或213.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在'C 处,'BC 交AD 于E ,则下列结论不一定成立的是( )A .'AD BC =B .EBD EDB ∠=∠C .ABE CBD ∆~∆D .sin AE ABE ED∠=二、填空题 14.若代数式2(4)x -与代数式()94x -的值相等,则x =________.15.若a 1a b 2=- ,则a b=________. 16.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件___,使△ABC ∽△ACD .(只填一个即可)17.某学校为了了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图所示的统计图.若该校共有1200名学生,则估计该校喜欢“踢毽子”的学生有___ 人.18.如图,以O为位似中心,把五边形ABCDE的面积扩大到原来的4倍,得到五边形A1B1C1D1E1,则OD︰OD1=________.19.如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为_________.20.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于______海里.21.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD,下列结论:①∠BAE=30°;②△ABE∽△ECF;③AE⊥EF;④△ADF∽△ECF.其中正确结论是_____.(填序号)22.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(1,2)--,“马”位于点(2,2)-,则“兵”位于点__________.23.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.三、解答题24.解方程或计算:(1)x 2-2x =5 (2)|-1|(5-π)0+4cos45°25.已知关于x 的方程2x 2+kx-1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.26.游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了__ __名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?27.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).28.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14 DC,连结EF并延长交BC的延长线于点G,连结BE.(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG的长.29.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?30.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣3x的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.参考答案1.D【解析】根据直角三角形的性质及勾股定理即可解答.【详解】如图所示,Rt △ABC 中,601B AB ∠==,,则906030,A ∠=-=故1111,222BC AB AC ==⨯===故选:D.【点睛】 考查勾股定理, 含30角的直角三角形,掌握30角所对的直角边等于斜边的一半是解题的关键.2.D【分析】先移项,合并同类项,再因式分解即可,从而得出两个一元一次方程,求解即可.【详解】(x x x ,((0,x x x +=(1)0x x +=,0x 或10x +=,解得121x x==-;故选:D.【点睛】考查解一元二次方程-因式分解法,根据题目选择合适的方法是解题的关键. 3.C【分析】直接把各特殊角的三角函数值代入进行计算即可.【详解】原式111 1. 22=-+=故选:C.【点睛】考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键. 4.A【解析】试题解析:∵反比例函数kyx=中的k<0,∴函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大;又∵点(-1,y1)和(-14,y2)均位于第二象限,-1<-14,∴y1<y2,∴y1-y2<0,即y1-y2的值是负数,故选A.考点:反比例函数图象上点的坐标特征.5.B【分析】根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A. C. D都不对,只有选项B正确,故选B.6.C【分析】根据正方形基本性质和相似三角形性质进行分析即可.【详解】①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=13CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴FH EF GC EG=EF=DE=2,GF=3,∴EG=5,∴25 FH EF GC EG==∴S△FGC=S△GCE﹣S△FEC=11218 34433 2255x x x x x z⎛⎫-=⎪⎝⎭故选C.【点睛】考核知识点:相似三角形性质. 7.B【解析】【分析】根据图表数据,利用算术平均数的求解方法列式进行计算即可求解.【详解】根据图表,10120215354104045202.35050⨯+⨯+⨯+⨯+++==,即平均课外阅读的时间约为2.3小时.故选:B.【点睛】考查频数分布直方图,读懂统计图是解题的关键.8.B【详解】由图可知,:BC AC =tan BAC ∠=,∴30BAC ∠=︒, ∴36m 1sin302BCAB ===︒.故选B .9.D【解析】【分析】在Rt △ABC 中,解直角三角形,先求∠B ,再求a, tanB=ba .【详解】在Rt △ABC 中,因为∠C =90°,∠A =30°,c =10,所以,∠B =90°-∠A =90°-30°=60°, a=12b a.所以,选项A,B,C 正确,选项D 错误.故选D【点睛】本题考核知识点:解直角三角形. 解题关键点:熟记直角三角形性质.10.D【解析】【分析】根据位似图形的性质解答即可.【详解】∵位似中心到对应点的距离之比等于相似比,所以::2:1AB O D B D A O '='='.故选D.【点睛】本题考查了位似图形的性质,熟练掌握位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比是解答本题的关键.11.C【分析】找图中的相似三角形,根据相似三角形的判定方法,有两组对应角相等的三角形相似即可判定.【详解】AB ∥CD ,∴,,,ABO CDO OAB OCD AOE FOC BOE FOD ∠=∠∠=∠∠=∠∠=∠∴.AEO CFO ABO CDO BEO DFO ∽,∽,∽∴共有3对相似三角形.故选:C.【点睛】考查相似三角形的判定,有两组对应角相等的三角形相似是判定两个三角形相似的常用方法.12.C【分析】根据根与系数的关系有:x 1+x 2=m+6,x 1x 2=m 2,再根据x 1+x 2=x 1x 2得到m 的方程,解方程即可,进一步由方程x 2-(m+6)+m 2=0有两个相等的实数根得出b 2-4ac=0,求得m 的值,由相同的解解决问题.【详解】解:∵x 1+x 2=m+6,x 1x 2=m 2,x 1+x 2=x 1x 2,∴m+6=m 2,解得m=3或m=-2,∵方程x 2-(m+6)x+m 2=0有两个相等的实数根,∴△=b2-4ac=(m+6)2-4m2=-3m2+12m+36=0解得m=6或m=-2∴m=-2.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=ba-,x1•x2=ca.13.C【详解】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=AE BE,∵∠EBD=∠EDB ∴BE=DE∴sin∠ABE=AE ED.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.14.4或5-【解析】【分析】利用两代数式的值相等列方程(x-4)2=9(4-x),再移项得到(x-4)2+9(x-4)=0,然后利用因式分解法解方程.【详解】解:根据题意得(x-4)2=9(4-x),(x-4)2+9(x-4)=0,(x-4)(x-4+9)=0,x-4=0或x-4+9=0,所以x 1=4,x 2=-5.故答案为4或-5.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).15.-1【解析】【分析】根据两内项之积等于两外项之积整理即可得解.【详解】 1,2a ab =- , 2.a a b ∴=- ,,a b ∴=- ,1.a b∴=- . 故答案为: 1.-.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积的性质,熟记性质是解题的关键.16.∠ABC =∠ACD (答案不唯一)【详解】由题意得,∠A =∠A (公共角),则可添加∠ACD =∠ABC ,使△ABC ∽△ACD . 17.300.【详解】∵随机抽取本校的100名学生中喜欢“踢毽子”的学生有:100-40-20-15=25(人), ∴喜欢“踢毽子”的频率为:25÷100=0.25.∴该校喜欢“踢毽子”的学生有:1200×0.25=300(人).18.1︰2【解析】因为五边形ABCDE和五边形A1B1C1D1E1面积的比等于1︰4,所以对应边的比等于1︰2.因为位似图形对应点到位似中心的距离的比等于相似比,所以OD︰OD1=1︰2.19.2【详解】试题分析:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为2.考点:反比例函数系数k的几何意义20.【详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD,又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以AD CD CD BD=,即:2)(20)x x=+,求出x=10,故CD=考点:1、等腰三角形;2、三角函数21.②③【解析】设边长是4,则CF=1,DF=3,BE=EC=2,利用勾股定理知,5,所以=所以2AE+2EF=2AF,所以AE⊥EF;③正确. ∠AEB+∠FEC=90°,∠CFE+∠FEC=90°,所以∠AEB=∠CFE,∠B=∠C,所以△ABE∽△ECF②正确.故答案为②③.22.(3,1)-【详解】解:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系23.13【解析】【分析】根据正方形的性质得出AD=AB ,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB ,根据AAS 推出△AED ≌△BFA ,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】∵ABCD 是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF ⊥a 于点F ,DE ⊥a 于点E ,∴在Rt △AFB 和Rt △AED 中,∵90{AFB DEA FBA EAD AB DA∠=∠=︒∠=∠=,∴△AFB ≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED ≌△BFA 是解此题的关键.24.(1)x 1=1x 2=1 .【解析】【分析】(1)用配方法解一元二次方程即可.(2) 按照实数的运算顺序进行运算即可.【详解】(1)225,x x -=2216,x x -+=()216,x -=1x -=1x -=解得1211x x ==()2原式11142=-⨯+11=+【点睛】考查解一元二次方程以及实数的混合运算,掌握实数的运算法则是解题的关键.25.(1)证明见解析;(2)12.【分析】(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;(2)利用根与系数的关系可直接求出方程的另一个根.【详解】解:(1)∵△=k 2+8>0,∴不论k 取何值,该方程都有两个不相等的实数根;(2)设方程的另一个根为x 1,则1112x -⋅=-, 解得:112x =, ∴方程的另一个根为12.【点睛】本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(1)400;(2)详见解析;(3)100.【解析】【分析】(1)根据一定会的人数和所占的百分比即可求出总人数;(2)用总人数减去其它人数得出不会的人数,再根据家长陪同的人数除以总人数得出家长陪同时会的所占的百分比,从而补全统计图;(3)用2000乘以一定会下河游泳所占的百分百,即可求出该校一定会下河游泳的人数.【详解】(1)总人数是:20÷5%=400(人);(2)一定不会的人数是400−20−50−230=100(人), 家长陪同的所占的百分百是230100%57.5%400⨯=, 补图如下:(3)根据题意得:2000×5%=100(人).答:该校2000名学生中大约有多少人“一定会下河游泳”有100人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期期末考试数学试题
时间:120分钟满分:120分
一、选择题(本大题共10个小题,每小题3分,共30分) 1.一元二次方程x(x-2)=2-x的根是( ) A.-1 B. 2 C.1和 2 D.-1和 2 2.cos60°-sin30°+tan45°的值为( ) A.2 B.-2 C.1 D.-1
3.在反比例函数y=k
x (k<0)的图象上有两点(-1,y1),(-
1
4
,y2),则y1
-y2的值是( )
A.负数 B.非正数 C.正数 D.不能确定
4.某校为了解八年级学生每周课外阅读情况,随机调查了50名八年级学生,得到他们在某一周里课外阅读所用时间的数据,并绘制成频数分布直方图,如图所示,根据统计图,可以估计在这一周该校八年级学生平均课外阅读的时间约为( )
A.2.8小时 B.2.3小时 C.1.7小时 D.0.8小时
,第4题图) ,第5题图)
,第6题图)
,第7题图)
5.如图,河坝横断面迎水坡AB的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( ) A.9 m B.6 m C.6 3 m D.3 3 m
6.如图,在Rt△ABC中,∠C=90°,∠A=30°,c=10,则下列不正确的是( )
A.∠B=60° B.a=5 C.b=5 3 D.tan B=
3 3
7.如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,O 为位似
中心,OD =12
OD ′,则A ′B ′∶AB 为( ) A .2∶3 B .3∶2 C .1∶2 D .2∶1
8.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则
m 的值是( )
A .-2或3
B .3
C .-2
D .-3或2
9、如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,则下列结论不一定成立的是( )
A .AD =BC ′
B .∠EBD =∠EDB
C .△ABE ∽△CB
D D .sin ∠
ABE =AE ED
10、已知二次函数2
y ax bx c =++的图象如图所示,对称轴是1x =,则下列结论中正确的是( ).
A.0ac > B.0b < C.240b ac -< D.20a b +=
9题 10题
二、填空题(本大题共8个小题,每小题3分,共24分)
11.若代数式(x -4)2与代数式9(4-x )的值相等,则x = .
12.若a
a -
b =12,则a b
= . 13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ABC ∽△ACD .(只填一个即可) ,第13题图)
,第14题图)
14.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查,整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有 人.
15.将二次函数
22(1)3y x =+-的图象向右平移3个单位,再向上平移1个单位,那么平移后的二次函数的顶点坐标是 。
16.如图,点A 是反比例函数y =6x
的图象上一点,过点A 作AB ⊥x 轴,垂足为点B ,线段AB 交反比例函数y =2x
的图象于点C ,则△OAC 的面积为 .
,第16题图) ,第17题图)
,第18题图)
17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,则海岛C 到航线AB 的距离CD 等于 __海里.
18.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14
CD ,下列结论:①∠BAE =30°;②△ABE ∽△ECF ;③AE ⊥EF ;④△ADF ∽△ECF .其中正确结论是 .(填序号)
三、解答题(共66分)
19.(6分)解方程 x 2-2x =5; 20(6分) 计算:00201tan30tan 60sin 4512----+
.
21、(8分)已知:关于x 的方程2x 2+kx -1=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k 的值.
22、(8分)游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了名学生;
(2)补全两个统计图;
(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?
23、(8分)如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长.(结果保留根号)
24、(8分)如图,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=
ED,DF=1
4
DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
25、(10分)如图,一次函数y=-x+2的图象与反比例函数y=-3
x
的图象交于A,B两点,与x轴交于D点,且C,D两点关于y轴对称.
(1)求A,B两点的坐标;
(2)求△ABC的面积.
26、(12)如图,在矩形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从A开始向点B 以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积;提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
初中数学试卷。