【高教版】5.6《 三角函数的图像和性质》优秀教案

合集下载

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。

2. 能够运用三角函数的图像与性质解决实际问题。

3. 提高学生的数学思维能力,培养学生的数学审美观念。

二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。

2. 难点:三角函数图像与性质的综合应用。

四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。

2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。

3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。

4. 开展小组讨论,培养学生的合作与交流能力。

五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。

2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。

3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。

4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。

5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。

6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。

7. 课堂小结:对本节课的内容进行总结,强调重点知识点。

8. 课后作业:布置相关练习题,巩固所学知识。

9. 课后反思:教师对本节课的教学进行反思,总结经验教训。

10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。

六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。

利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案第一章:正弦函数的图像与性质1.1 教学目标了解正弦函数的定义和基本概念学会绘制正弦函数的图像掌握正弦函数的性质1.2 教学内容正弦函数的定义和基本概念正弦函数的图像特点正弦函数的性质:奇偶性、周期性、对称性、单调性1.3 教学步骤1. 引入正弦函数的概念,引导学生理解正弦函数的定义。

2. 利用数学软件或图形计算器,绘制正弦函数的图像,让学生观察和分析图像的特点。

3. 讲解正弦函数的性质,结合图像进行解释,让学生理解和掌握性质。

1.4 教学评价通过课堂讲解和图像分析,评估学生对正弦函数的定义和图像的理解程度。

通过例题和练习题,评估学生对正弦函数性质的掌握程度。

第二章:余弦函数的图像与性质2.1 教学目标了解余弦函数的定义和基本概念学会绘制余弦函数的图像掌握余弦函数的性质2.2 教学内容余弦函数的定义和基本概念余弦函数的图像特点余弦函数的性质:奇偶性、周期性、对称性、单调性2.3 教学步骤1. 引入余弦函数的概念,引导学生理解余弦函数的定义。

2. 利用数学软件或图形计算器,绘制余弦函数的图像,让学生观察和分析图像的特点。

3. 讲解余弦函数的性质,结合图像进行解释,让学生理解和掌握性质。

2.4 教学评价通过课堂讲解和图像分析,评估学生对余弦函数的定义和图像的理解程度。

通过例题和练习题,评估学生对余弦函数性质的掌握程度。

第三章:正切函数的图像与性质3.1 教学目标了解正切函数的定义和基本概念学会绘制正切函数的图像掌握正切函数的性质3.2 教学内容正切函数的定义和基本概念正切函数的图像特点正切函数的性质:奇偶性、周期性、对称性、单调性1. 引入正切函数的概念,引导学生理解正切函数的定义。

2. 利用数学软件或图形计算器,绘制正切函数的图像,让学生观察和分析图像的特点。

3. 讲解正切函数的性质,结合图像进行解释,让学生理解和掌握性质。

3.4 教学评价通过课堂讲解和图像分析,评估学生对正切函数的定义和图像的理解程度。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。

2. 学会绘制和分析三角函数的图象。

3. 掌握三角函数的周期性、奇偶性、单调性等性质。

4. 能够应用三角函数的性质解决问题。

二、教学内容1. 三角函数的定义和基本性质。

2. 三角函数的图象绘制方法。

3. 三角函数的周期性性质。

4. 三角函数的奇偶性性质。

5. 三角函数的单调性性质。

三、教学重点与难点1. 三角函数的定义和基本性质的理解。

2. 三角函数图象的绘制和分析。

3. 三角函数周期性、奇偶性、单调性的理解和应用。

四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。

2. 利用数学软件或图形计算器进行图象绘制和分析。

3. 引导学生通过观察、分析和归纳三角函数的性质。

4. 利用例题和练习题巩固所学知识。

五、教学安排1. 第一课时:三角函数的定义和基本性质。

2. 第二课时:三角函数的图象绘制方法。

3. 第三课时:三角函数的周期性性质。

4. 第四课时:三角函数的奇偶性性质。

5. 第五课时:三角函数的单调性性质。

六、教学目标1. 理解正弦函数、余弦函数的周期性。

2. 学会应用周期性解决实际问题。

3. 掌握正弦函数、余弦函数的相位变换。

七、教学内容1. 正弦函数、余弦函数的周期性。

2. 周期性在实际问题中的应用。

3. 正弦函数、余弦函数的相位变换。

八、教学重点与难点1. 周期性的理解和应用。

2. 相位变换的理解和应用。

九、教学方法1. 通过实例讲解周期性在实际问题中的应用。

2. 利用数学软件或图形计算器进行相位变换的演示。

3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。

十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。

2. 第七课时:周期性在实际问题中的应用。

3. 第八课时:正弦函数、余弦函数的相位变换。

十一、教学目标1. 理解正切函数的图象和性质。

2. 学会应用正切函数解决实际问题。

3. 掌握正切函数的周期性和奇偶性。

《三角函数的图像和性质》教学设计与反思

《三角函数的图像和性质》教学设计与反思

《三角函数的图像和性质》教学设计与反

一、教学设计
1. 教学目标
- 理解正弦函数、余弦函数和正切函数的图像和性质
- 掌握三角函数的周期性和对称性
- 能够利用图像和性质解决三角函数相关问题
2. 教学步骤
步骤一:引入概念
- 通过示意图介绍正弦函数、余弦函数和正切函数的定义
- 强调函数的周期性和对称性
步骤二:讲解图像和性质
- 展示正弦函数、余弦函数和正切函数的图像
- 分析图像特征,如振幅、周期、对称轴等
- 阐述三角函数的性质,如奇偶性、界值等
步骤三:解决问题
- 提供一些典型问题,引导学生运用图像和性质求解
- 示范解题方法,包括利用性质、缩放变换等
3. 教学资源
- 投影仪和电脑
- 教学PPT
- 相关练题和答案
4. 教学评估
- 设计小组练题,测试学生对三角函数图像和性质的理解程度
- 实时观察学生解题过程,评估其解题方法和思维能力
- 结合学生回答问题和总结教学效果
二、教学反思
本次教学设计在引入概念、讲解图像和性质以及解决问题等环
节上都能够使学生参与,从而提高学生的主动研究能力。

通过图像
的展示和性质的阐述,学生可以直观地理解三角函数的规律和特点。

而解决问题的训练则有助于学生运用所学知识解决实际问题。

值得改进的地方是在评估方面,可以加入更多的互动环节和个别评价,以更准确地评估学生的掌握情况。

此外,教学资源可以进一步扩充,包括实物展示和多媒体辅助工具,以提升教学效果。

总体而言,本次教学设计能够满足教学目标并促进学生的参与和思维能力培养,但仍需在实施过程中加以优化和改进。

三角函数的图像与性质优秀教案

三角函数的图像与性质优秀教案

ﻩ三角函数图像与性质复习教案目标:1、掌握五点画图法,会画正余弦、正切函数图象以及相关得三角函数图象及性质。

2、深刻理解函数得定义与正弦、余弦、正切函数得周期性。

重点:五点作图法画正余弦函数图象,及正余弦函数得性质,及一般函数得图象。

难点:一般函数得图象与性质。

【教案内容】1、引入:有个从未管过自己孩子得统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照瞧一下4个年幼好动得孩子。

当妻子回家时,她交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球得平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样得星期六0次。

”2、三角函数知识体系及回忆正余弦函数得概念与周期函数:正弦函数:余弦函数:周期函数:注意:最小正周期:一般函数中: 表示,表示及频率: ,相位:。

正切函数:3、三角函数得图象:值域:tan ;tan .2222x x x x x x ππππ<→→+∞>-→-→-∞当且时,当且时, 单调性:对每一个,在开区间内,函数单调递增、对称性:对称中心:,无对称轴。

五点作图法得步骤:(由诱导公式画出余弦函数得图象)【例题讲解】例1 画出下列函数得简图(1)(2)(3)例2 (1)方程解得个数为( )A、0B、1 C、2 D、3(2)解不等式例3已知函数(Ⅰ)求函数得最小正周期与图象得对称轴方程;(Ⅱ)求函数在区间上得值域。

例4已知函数(其中)得周期为,且图象上一个最低点为、(Ⅰ)求得解读式;(Ⅱ)当,求得最值、例5写出下列函数得单调区间及在此区间得增减性:(1);(2)、【过手练习】1、函数图像得对称轴方程可能就就是()A、ﻩB、ﻩC、ﻩD、2、已知函数在区间[0,2π]得图像如下,那么ω=()A、1ﻩﻩB、2ﻩﻩﻩC、 1/2ﻩD、3、函数得最小值与最大值分别为A、-3,1ﻩﻩﻩB、-2,2ﻩC、-3,ﻩD、-2,4、函数y=定义域就就是____________________、5、函数得单调递增区间就就是_____________________得单调递增区间就就是_____________________________6、使函数与同时为单调递增函数得区间就就是、【拓展训练】1、已知函数()得最小正周期为、(Ⅰ)求得值;(Ⅱ)求函数在区间上得取值范围、2、已知函数f(x)=,求f(x)得定义域,判断它得奇偶性,并求其值域、3、求证:(1) 得周期为、补充:设函数、(Ⅰ)求得最小正周期、(Ⅱ)若函数与得图像关于直线对称,求当时得最大值、【课后作业】1、在上,满足得得取值范围就就是()A、B、C、D、2、得图象向左平移个单位后,得到得图象,则得解读式( )A、B、C、D、3、函数得周期就就是_____________。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图象和性质。

2. 学会利用三角函数图象和性质解决实际问题。

3. 培养学生的数学思维能力和图形感知能力。

二、教学内容:1. 三角函数的定义及基本概念。

2. 正弦函数、余弦函数、正切函数的图象和性质。

3. 三角函数在实际问题中的应用。

三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图象和性质。

2. 难点:三角函数图象和性质的灵活运用。

四、教学方法与手段:1. 采用讲解、演示、练习、讨论等多种教学方法。

2. 使用多媒体课件辅助教学,增强学生对图象的直观感受。

五、教学过程:1. 导入新课:回顾初中阶段学习的三角函数知识,引出本节课的主题——三角函数的图象与性质。

3. 练习与讨论:布置适量练习题,让学生巩固所学知识,并进行小组讨论,分享解题心得。

4. 实际问题解决:选取几个实际问题,让学生运用三角函数图象和性质进行解答,提高学生的应用能力。

6. 布置作业:布置适量作业,巩固所学知识,提高学生的自主学习能力。

附:教学课件及练习题(略)六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习题评价:通过学生完成的练习题,评估学生对三角函数图象和性质的理解程度。

3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、交流能力、分享精神等。

4. 实际问题解决评价:评估学生在解决实际问题时,运用三角函数图象和性质的准确性及灵活性。

七、教学拓展:1. 引导学生研究三角函数图象的变换规律,如平移、缩放等。

2. 介绍三角函数在工程、物理等领域的应用,拓宽学生的知识视野。

3. 鼓励学生探索三角函数与数列、几何等学科的联系,提高学生的综合运用能力。

八、教学反思:1. 反思教学目标的设定,是否符合学生的实际需求。

2. 反思教学内容的选择,是否适合学生的认知水平。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。

2. 学会绘制和分析三角函数的图像。

3. 掌握三角函数的性质,并能应用于实际问题。

二、教学重点:1. 三角函数的定义和图像。

2. 三角函数的性质。

三、教学难点:1. 三角函数图像的绘制和分析。

2. 理解和应用三角函数的性质。

四、教学准备:1. 教学课件或黑板。

2. 三角函数图像的示例。

3. 练习题和解答。

五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。

2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。

3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。

4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。

5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。

6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。

7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。

8. 作业:布置一些练习题,让学生巩固所学内容。

六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。

通过讲解和演示,让学生理解和掌握三角函数的图像和性质。

通过练习和实际问题解决,让学生应用所学知识。

整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。

作业的布置有助于巩固所学内容。

总体来说,本节课达到了预期的教学目标。

六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。

2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。

3. 能够分析实际问题,选择合适的三角函数模型进行求解。

七、教学重点:1. 三角函数图像的变换规律。

2. 三角方程和不等式的求解方法。

八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。

2. 解决实际问题中三角函数的应用。

高中数学教案《三角函数的图像与性质》

高中数学教案《三角函数的图像与性质》

教学计划:《三角函数的图像与性质》一、教学目标1.知识与技能:学生能够掌握正弦、余弦、正切函数的基本图像及其关键特征(如周期、振幅、相位等);理解并应用三角函数的奇偶性、单调性、最值等性质。

2.过程与方法:通过绘制函数图像、观察分析、归纳总结等过程,培养学生直观感知、逻辑推理和数学抽象能力;学会运用数形结合的方法解决三角函数问题。

3.情感态度与价值观:激发学生对数学的兴趣,培养探索精神和严谨的科学态度;通过团队合作和交流分享,增强学生的集体意识和协作能力。

二、教学重点和难点●教学重点:正弦、余弦、正切函数的基本图像及性质;数形结合思想在三角函数中的应用。

●教学难点:理解并掌握三角函数图像的变换规律(如平移、伸缩、对称等);运用三角函数的性质解决实际问题。

三、教学过程1. 引入新课(约5分钟)●生活实例:通过展示海浪波动、音乐波形等自然现象或人工制品中的周期性变化,引导学生思考这些现象与三角函数的关系,引出三角函数图像的重要性。

●复习旧知:简要回顾三角函数(正弦、余弦、正切)的定义和基础性质,为后续学习做好铺垫。

●提出问题:提出探究性问题,如“正弦函数的图像是什么样的?它有哪些基本性质?”激发学生的好奇心和探索欲。

2. 讲授新知(约15分钟)●图像绘制:利用多媒体演示或指导学生动手绘制正弦、余弦、正切函数的图像,强调图像的连续性、周期性等特点。

●性质讲解:结合图像,详细讲解三角函数的振幅、周期、相位等关键特征,以及奇偶性、单调性、最值等性质。

●对比分析:引导学生对比正弦、余弦、正切函数图像的差异,理解它们各自的特点和相互之间的关系。

3. 图像变换(约10分钟)●理论讲解:介绍三角函数图像的平移、伸缩、对称等变换规律,结合具体例子说明变换后的图像特征。

●实践操作:组织学生分组进行实践操作,尝试通过改变参数来绘制变换后的三角函数图像,并观察分析变化规律。

●总结归纳:引导学生总结归纳三角函数图像变换的一般规律和方法,形成系统的知识体系。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标:1. 让学生理解三角函数的定义和基本概念,掌握正弦函数、余弦函数和正切函数的图象和性质。

2. 培养学生运用数形结合的思想方法研究三角函数的图象与性质。

3. 培养学生的逻辑思维能力和数学审美能力。

二、教学重点与难点:1. 教学重点:三角函数的图象与性质。

2. 教学难点:正弦函数、余弦函数和正切函数的图象与性质的推导和应用。

三、教学方法与手段:1. 教学方法:采用讲练结合、师生互动、分组讨论等教学方法。

2. 教学手段:利用多媒体课件、黑板、粉笔等教学工具。

四、教学过程:1. 导入新课:通过复习三角函数的定义和基本概念,引导学生关注三角函数的图象与性质。

2. 讲解与示范:讲解正弦函数、余弦函数和正切函数的图象与性质,并通过多媒体课件展示图象,让学生直观地感受三角函数的性质。

五、课后作业:1. 绘制正弦函数、余弦函数和正切函数的图象,并分析它们的性质。

2. 练习题:选择适当的函数,分析它们的图象与性质,解决实际问题。

3. 思考题:探讨三角函数图象与性质的内在联系,提出自己的见解。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角函数图象与性质的理解和掌握程度。

2. 观察学生在课堂讨论和练习中的表现,评估他们的逻辑思维能力和数学审美能力。

3. 收集学生对思考题的解答,评价他们的思考深度和创新能力。

七、教学反思:1. 反思本节课的教学内容和方法,评估学生对新知识的接受程度。

2. 思考如何改进教学手段,提高课堂教学效果。

3. 探讨如何引导学生将所学知识应用于实际问题,提高学生的应用能力。

八、教学拓展:1. 介绍三角函数在实际生活中的应用,如测量、信号处理等。

2. 引入高级三角函数的概念,如双曲函数、反三角函数等。

3. 探讨三角函数与其他数学领域的联系,如微积分、线性代数等。

九、教学资源:1. 多媒体课件:三角函数图象与性质的动态展示。

2. 练习题库:涵盖各种难度的练习题。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案一、教学目标:1. 回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 提高学生对三角函数图像与性质的理解和运用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 三角函数的图像与性质的基本概念和公式。

2. 三角函数的周期性及其图像。

3. 三角函数的奇偶性及其图像。

4. 三角函数的单调性及其图像。

5. 三角函数的极值及其图像。

三、教学重点与难点:1. 三角函数的周期性及其图像。

2. 三角函数的奇偶性及其图像。

3. 三角函数的单调性及其图像。

4. 三角函数的极值及其图像。

四、教学方法:1. 采用讲解法,引导学生回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 采用案例分析法,分析三角函数的周期性、奇偶性、单调性和极值的图像特点。

3. 采用练习法,让学生通过练习题目的形式,巩固所学知识,提高解决问题的能力。

五、教学过程:1. 导入:通过复习三角函数的图像与性质的基本概念和公式,激发学生的学习兴趣。

2. 讲解:讲解三角函数的周期性及其图像,引导学生理解周期性的含义和周期函数的图像特点。

3. 分析:分析三角函数的奇偶性及其图像,引导学生理解奇偶性的含义和奇偶函数的图像特点。

4. 讲解:讲解三角函数的单调性及其图像,引导学生理解单调性的含义和单调函数的图像特点。

5. 分析:分析三角函数的极值及其图像,引导学生理解极值的含义和极值函数的图像特点。

6. 练习:布置练习题目,让学生通过练习的形式,巩固所学知识,提高解决问题的能力。

7. 总结:对本节课的内容进行总结,强调三角函数的图像与性质的重要性。

教学反思:在教学过程中,要注意引导学生理解和掌握三角函数的图像与性质的基本概念和公式,提高他们对三角函数图像与性质的理解和运用能力。

要关注学生的学习情况,及时进行反馈和指导,帮助他们解决学习中的问题。

六、教学评价:1. 通过课堂讲解和练习,评价学生对三角函数图像与性质的基本概念和公式的掌握程度。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标1. 知识与技能:(1)了解正弦函数、余弦函数、正切函数的图像和性质;(2)学会分析三角函数图像的变化规律;(3)能够运用三角函数的性质解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳三角函数图像的特性;(2)利用数形结合的方法,研究三角函数的性质;(3)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养学习的积极性;(2)引导学生感受数学的美丽和实用性,提高学生的数学素养;(3)培养学生合作、探究的精神。

二、教学重点与难点1. 教学重点:(1)掌握正弦函数、余弦函数、正切函数的图像和性质;(2)能够运用三角函数的性质解决实际问题。

2. 教学难点:(1)三角函数图像的变换规律;(2)三角函数性质的深入理解。

三、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生探究三角函数的图像与性质;(2)运用数形结合的方法,帮助学生直观地理解三角函数的性质;(3)采用小组合作、讨论的方式,培养学生的团队合作能力。

2. 教学手段:(1)利用多媒体课件,展示三角函数的图像和性质;(2)利用数学软件,进行函数图像的动态演示;(3)提供充足的练习题,巩固所学知识。

四、教学内容与步骤1. 导入新课:(1)复习已知三角函数的图像和性质;(2)引出本节课要学习的内容:三角函数的图像与性质。

2. 探究正弦函数的图像与性质:(1)展示正弦函数的图像;(2)引导学生观察、分析正弦函数的性质;3. 探究余弦函数的图像与性质:(1)展示余弦函数的图像;(2)引导学生观察、分析余弦函数的性质;4. 探究正切函数的图像与性质:(1)展示正切函数的图像;(2)引导学生观察、分析正切函数的性质;五、课堂练习与拓展1. 课堂练习:(1)根据给定的函数式,绘制函数图像;(2)根据函数图像,分析函数的性质;(3)解决实际问题,运用三角函数的性质。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标知识与技能:1. 理解三角函数的定义和基本性质。

2. 学会绘制三角函数的图象。

3. 掌握三角函数的图象与性质之间的关系。

过程与方法:1. 通过观察和分析,培养学生的抽象思维能力。

2. 利用数形结合的方法,引导学生探索三角函数的图象与性质。

情感态度与价值观:1. 激发学生对数学的兴趣和好奇心。

2. 培养学生的团队合作意识和沟通能力。

二、教学重点与难点重点:1. 三角函数的定义和基本性质。

2. 三角函数的图象绘制方法。

难点:1. 理解三角函数的图象与性质之间的关系。

2. 灵活运用三角函数的性质解决问题。

三、教学准备教师准备:1. 三角函数的图象与性质的相关知识资料。

2. 教学课件或黑板。

学生准备:1. 笔记本和文具。

2. 对数学有一定的兴趣和好奇心。

四、教学过程1. 导入:a. 引导学生回顾初中阶段学习的三角函数知识。

b. 提问:你们对三角函数的图象和性质有什么了解?2. 知识讲解:a. 讲解三角函数的定义和基本性质。

b. 通过示例,展示三角函数的图象绘制方法。

3. 课堂练习:a. 布置练习题,让学生独立完成。

b. 选取部分学生的作业进行讲解和评价。

b. 布置作业:绘制几个常见三角函数的图象,并分析其性质。

五、教学反思本节课通过引导学生观察和分析三角函数的图象,让学生更好地理解和掌握三角函数的性质。

在教学过程中,注意关注学生的学习情况,及时进行讲解和指导。

在课堂练习环节,鼓励学生独立思考,培养学生的解决问题的能力。

通过本节课的学习,学生对三角函数的图象与性质有了更深入的了解,为后续的学习奠定了基础。

六、教学活动设计1. 小组合作:学生分组,每组选择一个三角函数进行研究,绘制图象,并分析其性质。

2. 分享与讨论:每组学生向全班展示他们的研究成果,其他学生和教师提出问题和意见,进行讨论和交流。

七、教学评价1. 课堂参与度:观察学生在课堂上的参与程度,包括提问、回答问题、小组合作等。

三角函数图像与性质教学设计(优秀4篇)

三角函数图像与性质教学设计(优秀4篇)

三角函数图像与性质教学设计(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!三角函数图像与性质教学设计(优秀4篇)高考数学三角函数知识中的难点较多,很多学生都难以理解深刻。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。

二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。

2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。

四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。

2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。

3. 组织小组讨论,培养学生的团队协作能力。

五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。

2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。

3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。

4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。

教案编写完毕,仅供参考。

如有需要,请根据实际情况进行调整。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。

2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。

3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。

七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。

三角函数的图象与性质总课时教案

三角函数的图象与性质总课时教案

三角函数的图象与性质总课时教案一、教学目标:1. 理解三角函数的图象和性质,掌握正弦函数、余弦函数和正切函数的图象和性质。

2. 能够运用三角函数的图象和性质解决实际问题,提高解决问题的能力。

3. 培养学生的数学思维能力和图形感知能力,提高学生的数学素养。

二、教学内容:1. 三角函数的图象和性质的基本概念。

2. 正弦函数的图象和性质。

3. 余弦函数的图象和性质。

4. 正切函数的图象和性质。

5. 三角函数图象和性质的应用。

三、教学重点与难点:1. 重点:三角函数的图象和性质的掌握。

2. 难点:正弦函数、余弦函数和正切函数的图象和性质的推导和应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图象和性质。

2. 利用多媒体技术,展示三角函数的图象,增强学生的直观感受。

3. 注重个体差异,鼓励学生提问和发表自己的观点,提高学生的参与度。

五、教学过程:1. 导入:通过复习初中阶段学习的三角函数的知识,引导学生进入本节课的学习。

2. 新课导入:介绍三角函数的图象和性质的基本概念,引导学生了解三角函数图象和性质的重要性。

3. 案例分析:讲解正弦函数的图象和性质,让学生通过观察图象和分析性质,理解正弦函数的特点。

4. 小组讨论:让学生分组讨论余弦函数和正切函数的图象和性质,引导学生通过合作学习,共同探索知识。

5. 总结提升:对正弦函数、余弦函数和正切函数的图象和性质进行总结,让学生形成系统的知识结构。

6. 课堂练习:布置一些有关三角函数图象和性质的练习题,让学生巩固所学知识。

7. 课后作业:布置一些有关的课后作业,让学生进一步巩固三角函数的图象和性质。

六、教学拓展:1. 引导学生探索三角函数图象的变换规律,如平移、缩放等。

2. 介绍数学软件或工具在研究三角函数图象和性质中的应用,如利用Desmos、GeoGebra等软件绘制三角函数图象。

七、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问和回答问题的积极性等。

《三角函数的图象和性质》教案(2)(1)

《三角函数的图象和性质》教案(2)(1)

三角函数的图象和性质【三维目标】:一、知识与技术1.借助正切线画出正切函数的图象,并通过图象明白得正切函数的性质。

2.能够应用正切函数性质解决一些相关问题。

3.把握用数形结合的思想明白得和处置有关问题的技术;发觉数学规律,提高数学素养,培育实践第一观点.二、进程与方式1.类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段取得正切函数的图像;能学以致用,结合图像分析取得正切函数的诱导公式和正切函数的性质。

2.通过作图来熟悉三角函数性质,充分发挥图象在熟悉和研究函数性质中的作用,渗透“数形结合”的思想三、情感、态度与价值观1.会用联系的观点看问题,使学生明白得动与静的辩证关系。

2.通过学生动手操作,激发学生学习数学的爱好和踊跃性,陶冶学生的情操,培育学生坚忍不拔的意志、实事求是的科学学习态度和勇于创新的精神。

【教学重点与难点】:重点:正切函数的图象和性质;难点:正切函数的图象和性质教学疑点:正切函数在每一个单调区间是增函数,并非整个概念域内的增函数;【学法与教学用具】:1. 学法:通过单位圆中的正切线画出正切函数的图像,并从图像观看总结出正切函数的性质。

2. 教学用具:三角板、多媒体、实物投影仪.3. 教学模式:启发、诱导发觉教学、讲练结合 【讲课类型】:新讲课 【课时安排】:1课时 【教学思路】:一、创设情景,揭露课题1.回忆正、余弦函数的性质:概念域、值域、周期性、奇偶性、单调性。

2.求出以下函数的最小正周期,并说明以下函数是不是有最大值、最小值,若是有,请写出取最大值、最小值时的自变量x 的集合. (1)1sin(2)23y x π=--;(2)13cos()26y x π=+. 3. 提问:如何比较sin 20与sin30的大小?4. 提问:可否类比研究正弦、余弦函数性质的方式来研究正切函数的图象和性质?5.练习画下切线(分四个象限) 二、研探新知1.正切函数x y tan =的概念域是什么?2.作)2,2(,tan ππ-∈=x x y 的图象。

《三角函数的图像和性质》教学设计

《三角函数的图像和性质》教学设计

《三角函数的图像和性质》教学设计一、教学内容分析本主题单元共分3部分,第一部分复习三角公式,第二部分复习三角函数图象与性质,第三部分复习正余弦定理,本节课是第二部分“收官”课,期待学生在知识和能力上得到螺旋上升的发展.因此,本节课的重点是三角函数的图象和性质的完美结合与灵活运用.难点则体现在知识转化和变通过程中,学生综合运用知识解决问题能力的提升上.二、命题走向近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本单元复习的重点.在复习时要充分运用数形结合的思想,把图象与性质结合起来,利用图象的直观性得出函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法.三、设计理念与思想翻转课堂的核心理念是使“知识传递发生在课外,知识内化发生在课堂”.所以我们需要重新建构学习流程,“信息传递”是学生在课前进行的,老师不仅提供了视频,还可以提供在线的辅导;“吸收内化”是在课堂上通过互动来完成的,教师能够提前了解学生的学习困难,在课堂上给予有效的辅导,同学之间的相互交流更有助于促进学生知识的吸收内化过程.与传统理念相比,课堂和老师的角色都发生了变化.老师更多的责任是理解学生的问题和引导学生运用知识,发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.四、学生学习情况分析青岛2中分校近年来录取分数线有了明显提高,在孙先亮校长“办学生发展需要的学校”,“每个学生都是好学生”等先进教育理念的引领下,学生的综合能力得到不断提升.本届学生是2中分校成立以来即将毕业的第二届,高三.2班是本人高二分班后新接任的班级,班级整体水平提升较快.五、教学目标1.通过课前视频,自主梳理正弦、余弦、正切函数的图象和性质.2.能灵活运用三角函数的图象与性质设计并解决问题,进一步领会数形结合的思想,提高学生思维的变通性.3.通过独立思考和小讲师的分析,提高学生学习的主动性、参与度,提升合作探究的能力.六、教学过程课前视频:1.播放吕良和刘雨佳同学创作的《三角函数——小苹果版》,复习三角函数的图象与基本性质[设计意图]用熟悉的流行歌曲调动学生的学习积极性2.【自主梳理】三角函数的图象和性质函数y=sin xy=cos xy=tan x一个周期内的图象定义域值域奇偶性周期性对称性对称中心:对称轴:对称中心:对称轴:对称中心:对称轴:单调性在___________________上增,在____________________上减在___________________上增,在___________________上减_____________________上是增函数最值x=___________________时,y取最大值1;x=___________________时,y取最小值-1.x=___________________时,y取最大值1;x=___________________时,y取最小值-1.[设计意图]通过表格的形式使学生自主巩固三个基本初等函数的基本知识,为课堂小讲师搭建表现平台,也为本节课的目标2的达成奠定坚实的基础.3.【自我检测】(1)函数是上的偶函数,则可以是()A. B.C.D.(2)函数的最小值和最小正周期分别是()A.,B.,C.,D.,(3)函数的对称中心是.(4)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则函数单调增区间是.[设计意图]研究三角函数的性质问题,常常先把函数解析式化简为正弦型或余弦型函数,通过正弦型或余弦型函数来解决问题.正弦型或余弦型函数一般都是由几个简单基本初等函数复合而成,这里让学生体会如何由一个题目完成几个知识点的考查,引起学生的探究兴趣,激发求知欲望.4.【创新平台】请你充分运用所学的三角函数知识,试着自编题目,相信你一定与众不同!探究问题一:对于函数,你可以设计哪些问题来考查此函数的图象与性质?探究问题二:若想得到,你又可以怎样设计此题的条件呢?[设计意图],从一题多问到主创条件设计,意在主动思考和探究的过程中,完成知识转化和变通,形成能力并培养学生发散思维、创新思维等.【环节一】预设问题,思维碰撞命题人自编题[设计意图]围绕,从条件给出的不同方式和结论的不同问法两个方面,给学生搭建展示自己创意和智慧的平台,是本节课期待精彩生成的部分,既有利于学生的思维能力的提升,又有利于学生多元智能的发展.课堂展示不仅可以让学生更好地理解学科知识,学生的表达能力、小组交流中的合作能力、领导力等等,都可以在课堂上得到锻炼,数学课堂的价值得到进一步地提升.【环节二】典例分析,形成能力实战演练:已知向量,,函数的最大值为6.(Ⅰ)求;(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.[设计意图]实战演习为2012年高考山东理科卷第17题,要求学生能灵活运用三角函数的图象研究其性质,并体验由简单到复杂、由特殊到一般的化归思想,渗透数形结合的思想,提高思维的变通性.【环节三】回顾反思,拓展深化1.用思维导图小结本节课主要内容[设计意图]宏观把握本单元的思维主线,初步完成知识网络的建构2.自我评价※你完成本节课的情况为__________你感觉收获最大的方面是你发现自己不足的地方有你的困惑你的希望[设计意图]引导学生自评和互评,从过程和结果等多个方面进行评价.培养学生及时总结,概括提升的能力,帮助学生养成反思的习惯.【环节四】课后研究,螺旋上升1.课后互动:自编题漂流2.观看《正、余弦定理》预习视频[设计意图]通过课后思考和整合,使学生达到高考要求并为下节课做准备.。

高教版数学教案——三角函数的图象和性质

高教版数学教案——三角函数的图象和性质

三角函数的图象和性质教学目的:掌握正弦函数,余弦函数,正切函数,余切函数的图象和性质,能应用它们的图象和性质解决有关问题。

教学重点:正弦函数和余弦函数的图象和性质。

求函数的最小正周期和最大最小值。

教学难点:用正弦函数和余弦函数的图象和性质解决有关问题。

计划课时:2课时。

教学过程:一.正余弦和正余切函数的图象。

的图象的图象的图象的图象二.正余弦和正余切函数的性质。

定义域 R R值域R R周期性奇偶性奇函数,图象关于坐标偶函数,图奇函数,图象关于坐标原点对称奇函数,图象关于原点对称原点对称象关于轴对称单调性在区间上单调递增;在区间上单调递减。

在区间上单调递增;在区间上单调递减。

在区间上单调递增。

在区间上单调递减。

三.函数的周期和最值。

1.最小正周期:。

2.最值:(1)当A>0时,,函数有最大值A;,函数有最小值。

(2)当A<0 时,,函数有最大值A;,函数有最小值。

四.应用题型及解答方法。

(一)三角函数的定义域应用。

(一般结合其他函数组合成一个比较复杂的函数,求解时要结合三角函数在各象限的函数值的正负来确定。

)例题1:求函数的定义域。

解:要使函数有意义,必须,即。

(二)正弦余弦函数的值域及其应用。

类型1:形如的函数。

其解法是:解法一:因为,又,所以由不等式可求得即为函数的值域。

解法二:令,则,所以,从而化为一次函数的值域求解。

解法三:直接求解。

当时,最大值为;最小值为。

当时,最大值为;最小值为。

例题2:求函数的值域。

解:(只用一种方法解,另两种方法让同学去练习。

)因为,所以,解得。

类型2:形如的函数。

其解法是:令,把原函数化为关于的二次函数的值域求解。

例题3:求函数的最大值和最小值。

解:原函数可化为:,令,所以因为对称轴为,所以当时,函数有最小值为;当时,函数有最大值为。

(注意:(1)这种类型的函数多时都是以非标准形式出现,此时应先用三角恒等变形化为标准形式;(2)标准形式中的可用含的表达式去代换,如:等;(3)问题的逆向应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】5.6三角函数的图像和性质
【教学目标】
知识目标:
(1) 理解正弦函数的图像和性质;
(2) 理解用“五点法”画正弦函数的简图的方法;
(3) 了解余弦函数的图像和性质.
能力目标:
(1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;
(2) 会用“五点法”作出正弦函数、余弦函数的简图;
(3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.【教学重点】
(1)正弦函数的图像及性质;
(2)用“五点法”作出函数y=sin x在[]
0,2π上的简图.
【教学难点】
周期性的理解.
【教学设计】
(1)结合生活实例,认识周期现象,介绍周期函数;
(2)利用诱导公式,认识正弦函数的周期;
(3)利用“描点法”及“周期性”作出正弦函数图像;
(4)观察图像认识有界函数,认识正弦函数的性质;
(5)观察类比得到余弦函数的性质.
【教学备品】
课件,实物投影仪,三角板,常规教具.
【课时安排】
2课时.(90分钟)
【教学过程】。

相关文档
最新文档