几何图形中的函数问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C

B

A 几何图形中的函数问题

1如图,在梯形ABCD 中,AB ∥CD .

(1)如果∠A =︒50,∠B =︒80,求证:AB CD BC =+.

(2)如果AB CD BC =+,设∠A =︒x ,∠B =︒y ,那么y 关于x 的函数关系式是_______.

2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm).

(1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。

3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2,

①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③

x 取何值时,矩形EFGH 的面积最大。

A B

D

A

B

C

D E

F

M

H

G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式;

(2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由.

6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在

矩形ABCD 边AB 、BC 、DA 上,AE =2.

(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分)

(2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示);

D

C

A B

E

F

D

C

A B

E

F

H

G

已知一直角三角形纸片ABC (如图①),∠ACB =90°,AC =2,BC =4。折叠该纸片,使点B 落在

边AC 上,折痕与边BC 交于点M ,与边AB 交于点N 。

(1)若折叠后,点B 与点C 重合,试在图②中画出大致图形,并求点C 与点N 的距离; (2)若折叠后,点B 与点A 重合,试在图③中画出大致图形,并求CM 的长;

(3)若折叠后点B 落在边AC 上的点P 处(如图④),设CP =x ,CM =y ,求出y 关于x 的函数

关系式,并写出定义域。

、已知△ABC 中,D AC BC AB ,8,6,10===是AB 边中点,将一块直角三角板的直角顶点

放在D 点旋转,直角的两边分别与边BC AC ,交于F E ,。

①取运动过程中的某一瞬间,如图,画出△ADE 关于D 点的中心对称图形,E 的对称点为E ',试判断BC 于E B '的位置关系,并说明理由。

②设y BF x AE ==,,求y 与x 的函数关系式,并写出定义域。

已知:如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于点Q,QR⊥AC于点R。

(1)求证:PQ=BQ;

(2)设BP=x,CR=y,求y关于x的函数解析式,并写出定义域;

(3)当x为何值时,PR

已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D、E、F分别在边BC、AC、AB上(点E、F与△ABC顶点不重合),AD平分∠CAB,EF⊥AD,垂足为H.

(1)求证:AE=AF:

(2)设CE=x,BF=y,求x与y之间的函数解析式,并写出定义域;

(3)当△DEF是直角三角形时,求出BF的长.

已知一直角三角形纸片OAB,∠AOB=90°,OA=2,OB=4.将该纸片放在平面直角坐标系中(如

图①),折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .

(1) 若折叠后使点B 与O 重合(如图②),求点C 的坐标及C 、A 两点的距离; (2) 若折叠后使点B 与A 重合(如图③),求点C 的坐标;

(3) 若折叠后点B 落在边OA 上的点为B′(如图④),设OB′= x,OC = y ,求出y 关于x

的函数关系式,并写出定义域.

图① 图④

图③ D

图②

如图,在菱形ABCD中,∠A = 60°,AB = 4,E是AB边上的一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M、DC于点N.

(1)请判断△DMF的形状,并说明理由;

(2)设EB = x,△DMF的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当x取何值时,S△DMF = 3 .

如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A 向点B运动,点Q从点C向点D运动,且保持AP=CQ。设AP=x,BE=y

(1)线段PQ的垂直平分线与BC边相交,设交点为E求y与x的函数关系式及x取值范围;(2)在(1)的条件是否存在x的值,使△PQE为直角三角形?若存在,请求出x的值,若不存在请说明理由。

如图,已知长方形纸片ABCD的边AB=2,BC=3,点M是边CD上的一个动点(不与点C重合),把这张长方形纸片折叠,使点B落在M上,折痕交边AD与点E,交边BC于点F.

(1)、写出图中全等三角形;

(2)、设CM=x,AE=y,求y与x之间的函数解析式,写出定义域;

能否可能等于90度?如可能,请求出此时CM的长;如不能,请说明理由.(3)、试判断BEM

相关文档
最新文档