第一章有理数复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数复习(1)

教学目标

一、知识与技能

1.复习有理数的意义及其有关概念。其内容包括正负数、有理数、数轴、有理数大小

的比较、相反数与绝对值等。通过复习使学生系统掌握有理数这一章的有关基本概念;

2.使学生提高辨别概念能力;

二、过程与方法

利用数轴来认识、理解有理数的有关概念.

三、情感态度与价值观

鼓励学生自己回顾本单元的学习内容。并与同伴交流在本单元学习中的收获和

不足,培养他们的反思意识。

教学重难点

理解掌握有理数的有关概念

教学方法启发式分层次教学法

教学过程

一、复习提问:

1.什么叫数轴?画出一个数轴来。

2.什么是有理数?有理数集包括哪些数?有理数和数轴上的点有什么关系?

答:整数和分数统称为有理数。有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。

每一个有理数都可以用数轴上唯一确定的点来表示。但反过来以后可以看到,数轴上任一点并不一定表示有理数。表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。

1.观察数轴分别说出A,B,C,D,E,F各点表示的数是什么?

2.点A与F,点B与E所表示的数分别存在什么关系?(互为相反数)互为相反数

的几何意义?(互为相反数就是在原点两侧且到原点等距的两点所表示的数。)

相反数的性质?(只有符号不同的两个数是互为相反数,a的相反数为-a;)

各点所表示的数的绝对值是多少?绝对值的几何意义?(在数轴上,表示数a的点到原点的距离叫做数a的绝对值)绝对值的代数意义?(a=a(a>0),a=0(a=0),a=

-a(a<0)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

1.说出各数的倒数?(一个数除以1所得的商是这个数的倒数,零没有倒数)

1.比较各点表示的数的大小?

方法一:零大于一切正数,而小于一切负数;

两个负数,绝对值大的反而小。

方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。

其余相关概念:

(1)代数和:

把有理数的加、减运算统一写成加法形式,成为几个有理数的和,通常称为代数和;省略加号的和的形式。

(2)去括号与添括号:

去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。

五、例题讲解:

例1 下列说法是否正确,请将错误的改正过来。

⑴所有的有理数都能用数轴上的点表示; ( )

⑵符号不同的两个数是互为相反数; ( )

⑶两个有理数的和一定大于每一个加数; ( )

⑷有理数分为正数和负数; ( )

例2 用数轴上的点表示下列有理数,并求其相反数、倒数和绝对值。

-0.5,-3.5,7,-4.5,-4

例3 写出符合下列条件的数。

⑴最小的正整数; ⑵最大的负整数;⑶大于-3且小于2的所有整数; ⑷绝对值最小的有理数; ⑸绝对值大于2且小于5的所有负整数;

例4 一只蜗牛从数轴上的原点出发,先向右移动2个单位,再向左移动5个单位,这时蜗牛与数轴上的田螺相距1.5个单位,求田螺表示的数

例5 观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。 ⑴-23,-18,-13, , ;

⑵64

5,324,163,82--, , ; ⑶-2,-4,0,-2,2, , 。

例6 某数学俱乐部有一种“秘密”的记帐方式。当他们收入300元时,记为-240;当他们用去300元时,记为360。猜一猜,当他们用去100元时,可能记为多少?当他们收入100元时,可能记为多少?说明你的理由。

例7 若的值求式子2731982,220052006+++=a a a a .

六、课堂小结

七、作业 课本第51页第5题(双号题) 第6、7题

课后反思

相关文档
最新文档