2019-2020年中考数学一轮专题复习第8讲一元二次方程及应用精讲精练浙教版

合集下载

(中考数学复习)第8讲 一元二次方程 课件 解析

(中考数学复习)第8讲 一元二次方程 课件 解析

(1)证明:∵一元二次方程为x2-(2k+1)x+k2+k=0,
Δ=[-(2k+1)]2-4(k2+k)=1>0,∴此方程有两个不相等的
实数根.
(2)解:∵△ABC的两边AB、AC的长是这个方程的两个实数
根,由(1)知,AB≠AC,△ABC第三边BC的长为5,且
△ABC是等腰三角形,
基础知识 · 自主学习 题组分类 · 深度剖
=2 014.
3.(2013·日照)已知一元二次方程x2-x-3=0的较小根为x1,
则下面对x1的估计正确的是
( A )
A.-2<x1<-1
B.-3<x1<-2
C.2<x1<3
D.-1<x1<0
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 利用根的判别式解决问题
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 10
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·温州)方程x2-2x-1=0的根是____________. 2.(2013·聊城)若x1=-1是关于x的方程x2+mx-5=0的一个
根,则方程的另一个根x2=___5__.
6
A.x-6=-4 C.x+6=4
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
=x1·(x1+2 013)+2 013x2+x2-2 013 =(x1+2 013)+2 013x1+2 013x2+x2-2 013 =x1+x2+2 013(x1+x2)+2 013-2 013 =1+2 013

2019-2020学年度最新浙教版八年级数学下册《一元二次方程》综合能力训练及答案解析精品试卷

2019-2020学年度最新浙教版八年级数学下册《一元二次方程》综合能力训练及答案解析精品试卷

第二章一元二次方程综合能力训练题(二)一、选择题(3′×10=30′)1.下列方程是一元二次方程的是().A.(x-7)x=x2B.x3+2x+1=0 C.2x+1x+1=0 D.x2=12.一元二次方程x2-9=0的根为().A.3 B.-3 C.3或-3 D.03.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则().A.m=±2 B.m=2 C.m=-2 D.m≠±24.若2x2+3与2x2-4互为相反数,则x为().A.12B.2 C.±2 D.±125.华联超市4月份的营业额为220万元,5月份营业额为242万元,如果保持同样的增长率,6月份应完成营业额()万元.A.264 B.266.2 C.272.4 D.2866.用换元法解方程(x2+x)2+(x2+x)=b时,如果设x2+x=y,那么原方程可变形为().A.y2+y-b=0 B.y2-y-b=0 C.y2-b+b=0D.y2+y+b=07.用配方法解一元二次方程x2-4x-1=0,配方得到的方程是().A.(x-2)2=1 B.(x-2)2=4 C.(x-2)2=5 D.(x -2)2=38.一元二次方程5x2-7x+5=0的根的情况是().A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根9.用换元法解方程3x2+3x=22x x+1,若设x2+x=y,则原方程可化为关于y的一元二次方程是().A.3y2-y-2=0 B.3y2+y+2=0 C.3y2+y-2=0D.3y=2y+110.以1,3为根的一元二次方程是().A.x2+4x-3=0 B.x2-4x+3=0 C.x2+4x+3=0 D.-x2+4x+3=0二、填空题(3′×10=30′)11.写出两个一元二次方程,设每个方程都有一个根为0,并且二次项系数都为1,即________.12.如果-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k 的值为_____.13.方程x 2-3x=0的解是______.14.如图,小明家有一块长150cm ,宽100cm的矩形地毯为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,若设花色地毯的宽为xcm ,则根据题意列方程为______.15.若x=1是一元二次方程ax 2+bx -2=0的根,则a+b=_______.16.已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于_______.17.已知关于x 的方程2142242x x m x x x++++--=1仅有唯一的实数根,则m=______.18.已知关于x 的二次方程x 2-2(a -2)x+a 2-5=0的两根为α、β,且αβ=2α+2β,则a=_____,│α-β│=______. 19.甲,乙两人沿湖边绕湖而行,甲绕湖一周需1.5小时,•现两人同时同地出发相背而行,•两人相遇后继续往前再行2•小时,••才能回到原出发点,••则乙绕湖一周需______小时.20.若m 为实数,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,则x 2-3x+m=0的根是_______.三、解答题(共60′)21.(2×5′=10′)(1)解方程x2-2x-2=0(2)用配方法解方程x2-4x+1=022.(10′)已知一元二次方程x2-4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0•有一个相同的根,求此时m的值.23.(6′)已知关于x的一元二次方程x2-(k+1)x-6=0的一个根是2,•求方程的另一根和k的值.24.(4′)解方程16(x-1)2=81.25.(4′)用配方法解方程x2-4x+3=0.26.(4′)解方程(x-5)2=2(5-x)27.(4′)解方程2x2-3x-1=028.(6′)已知关于x的方程(a-1)x2-(2a-3)x+a=0有实数根.(1)求a的取值范围.(2)设x1,x2是方程(a-1)x2-(2a-3)x+a=0的两根,且x12+x22=9,求a的值.29.(6′)根据方程x(x+5)=36编一道应用题.30.(6′)A,B两地相距60千米,甲骑自行车从A地出发,乙骑摩托车从B•地出发相向而行.如果甲比乙早出发1小时40分钟,那么甲出发后3小时与乙相遇,•相遇后两人继续前进,当甲到达B地时,乙恰好也到达A地,求甲,乙两人速度.答案:一、1.D 2.C 3.B 4.D 5.B6.A 7.C 8.D 9.A 10.B二、11.x2-2x=0,x2+x=0 12.4 13.X1=0,x2=3 14.(150+2x)(100+2x)=2×100•×150 15.2 16.1 17.1或25 18.1 25 19.3 20.3212三、21.(1)x 1=1+3,x1=1-3(2)x 1=2+3,x2=2-322.k<4,m=023.根为-3,k为-2 •24.x1=134,x2=-5425.x 1=3,x 2=126.x 1=5,x 2=327.x 1=3174+,x 2=3174-28.(1)a ≤98(2)a=029.•一长方形的菜地面积为36平方米,长比宽多5米,求菜地的长和宽.30.甲的速度为12•千米/时,乙的速度为18千米/时.。

(名师整理)最新数学中考《一元二次方程的解法》专题复习精讲精练

(名师整理)最新数学中考《一元二次方程的解法》专题复习精讲精练

例题解析
练习 已知关于x的一元二次方程(a﹣1) x2﹣2x+a2﹣1=0有一个根为x=0,则a的值为 () A.0 B.±1 C.1 D.﹣1 【解答】解:∵关于x的一元二次方程(a﹣1) x2﹣2x+a2﹣1=0有一个根为x=0, ∴a2﹣1=0,a﹣1≠0, 则a的值为:a=﹣1. 故选:D.
③令每个因式等于0,得到两个一元一次方程,然后解这个一 元一次方程,求这个方程的解
课前热身
1 解下列方程 (1)2x2=8; (2)x2﹣x﹣6=0.
【考点】解一元二次方程﹣直接开平方法;解一元二次方程 ﹣因式分解法. 【解答】解:(1)x2=4, x=±2, 所以x1=2,x2=﹣2; (2)(x﹣3)(x+2)=0, x﹣3=0或x+2=0, 所以x1=3,x2=﹣2.
知识点点解读
3 公式法
用求根公式解一元二次方程的方法,它是解一元二次方程的一
般方法
- b b2 - 4ac
一元二次方程ax²+bx+c=0的求根公式2a :x=
公式法的一般步骤
①指出方程中a,b,c的值
②求出b²-4ac的值
③若b²-4ac≥0.则用求根公式求解,若b²-4ac<0,则方程无解
4 因式分解法 一般步骤:①使方程的右边化为0 ②使方程左边化为两个一次 因式的积
【解答】A.
课前热身
4.方程(m-1)x2+mx+1=0为关于x的一元二次方程则m的值 为( ) A 任何实数 B m≠0 C m≠1 D m≠0 且m≠1 答案 C
课前热身
5.关于x的方程中一定是一元二次方程的是 ( ) A ax2+bx+c=0 B mx2+x-m2=0 C (m+1)x2=(m+1)2 D (m2+1) x2-m2=0 答案 D

2020年浙江中考数学一轮课件:08第二章 第二节一元二次方程及其应用

2020年浙江中考数学一轮课件:08第二章 第二节一元二次方程及其应用

10.(2019·温州模拟)取一张长与宽之比为2∶1的矩形纸板,剪去四个边 长为20 cm的小正方形(如图),并用它做一个无盖的长方体形状的包装 盒.要使包装盒的容积为12 000 cm3(纸板的厚度略去不计),则这张矩形 纸板的长为__________cm.
100
11.(2019·大连)某村2016年的人均收入为20 000元,2018年的人均收入 为24 200元. (1)求2016年到2018年该村人均收入的年平均增长率; (2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请 你预测2019年该村的人均收入是多少元?
解:(1)设2016年到2018年该村人均收入的年平均增长率为x. 根据题意得20 000(1+x)2=24 200, 解得x1=0.1=10%,x2=-2.1(不合题意,舍去). 答:2016年到2018年该村人均收入的年平均增长率为10%. (2)24 200×(1+10%)=26 620(元). 答:预测2019年该村的人均收入是26 620元.
=________.
-1 3
考点五 一元二次方程的解
【要点知识拓展】 熟练运用解一元二次方程的方法以及根与系数的关系进行运算. 例5 解方程:x2-2x-1=0.
【分析】首先计算Δ,然后再利用求根公式进行计算即可. 【自主解答】 ∵a=1,b=-2,c=-1, ∴Δ=b2-4ac=4+4=8>0, ∴方程有两个不相等的实数根,
【自主解答】(1)1 300×7.1%≈92(亿元). 答:2016年第一产业生产总值大约是92亿元. (2)(1 300-1 204)÷1 204×100% =96÷1 204×100%≈8%. 答:2016年比2015年的国民生产总值大约增加了8%. (3)设2016年至2018年我市国民生产总值的年平均增长率为x. 依题意得1 300(1+x)2=1 573, ∴1+x=±1.1, ∴x=10%或x=-2.1(不合题意,舍去). 答:2016年至2018年我市国民生产总值的年平均增长率约为10%.

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。

中考数学第一轮复习导学案一元二次方程及其应用

中考数学第一轮复习导学案一元二次方程及其应用

一元二次方程及其应用◆课前热身1.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .2.方程042=-x x 的解______________.3.方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.216(1)9x -=◆考点聚焦知识点:一元二次方程、解一元二次方程及其应用大纲要求:1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。

2.会用配方法、公式法、分解因式法解一元二次方程、3.能利用一元二次方程的数学模型解决实际问题。

考查重点与常见题型:考查一元二次方程、有关习题常出现在填空题和解答题。

◆备考兵法(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.◆考点链接1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)2b x b ac a-±=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.◆典例精析例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-【答案】A【解析】本题考查了一元二次方程的根。

浙江省2018届初三数学中考总复习第8讲《一元二次方程及其应用》名师讲练含答案

浙江省2018届初三数学中考总复习第8讲《一元二次方程及其应用》名师讲练含答案

第8讲一元二次方程及其应用对系数特点米用不同方法的最优化解题策略,养成先观察后动笔的基本解题习惯•一般情况下:(1)首先看能否用直接开平方法或因式分解方法法;(2)不能用以上方法时,可考虑用公式法;(3)除特别指明外,一般不用配方法.■考题体验^・1. (2015温州)若关于x的一元二次方程4x2—4x + c= 0有两个相等实数根,则c的值是()A. —1【问题】给出以下方程①3x + 1 = 0:②x2—2x = 8:③―;—= 1.x —3 3 —x(1) _________________________ 是一元二次方程的是;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗?⑶通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?【归纳】通过开放式问题,归纳、疏理一元二次方程的概念以及解法.D. 42. (2017舟山)用配方法解方程x2+ 2x — 1 = 0时,配方结果正确的是2A. (x + 2) = 2B. (x + 1)2= 2 C. (x + 2)2= 3 D. (x + 1)2= 33. (2017 丽水)解方程:(x —3)(x —1) = 3.类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a — 6)x 1 2— 8x + 6 = 0有实数根,则整数 a 的最大值是 _________ . a 2_ b 2 ⑵若x = 1是一元二次方程ax 2 + bx — 40= 0的一个解,且a *b ,贝V 的值为2a — 2b(3) ______________________________ 关于 x 的方程 a(x + m)2 + b = 0 的解是 X i = — 2, x ?= 1, (a , m , b 均为常数,a * 0), 则方程a(x + m + 2)2+ b = 0的解是 .【解后感悟】(1)切记不要忽略一元二次方程二次项系数不为零这一隐含条件; (2)注意解题中的整体代入思想;(3)注意由两个方程的特点进行简便计算.x 2+ mx + n = 0的一个根,则 m 2+ 2mn + n 2的值为类型二一元二次方程的解法例2解下列方程:(1) (3x — 1)2= (x + 1)2 ;2 1(2) 2x + x — = 0.【解后感悟】解一元二次方程要根据方程的特点选择合适的方法解题,但一般顺序为: 直接开平方法T 因式分解法T 公式法.一般没有特别要求的不用配方法.解题关键是能把解1 (1)(2016南京模拟)关于x 的一元二次方程(a 2— 1)x 2+ x —2 = 0是一元二次方程,则a满足()A . a * 1B . a *— 1C . a *± 1D .为任意实数(2)已知 x = 1是一兀二次方程元二次方程转化成解一元一次方程.2 .解方程:(1)(2x - 1)2= x(3x + 2) - 7;(2)x(x - 2) + x-2 = 0.类型三一元二次方程根的判别式例3(1)(2017潍坊)若关于x的一元二次方程kx2- 2x + 1 = 0有实数根,则k的取值范围是 .(2)(2015台州)关于x的方程mx2+ x- m+ 1= 0,有以下三个结论:①当m= 0时,方程只有一个实数解;②当m z0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是____________________________ (填序号).【解后感悟】在一元二次方程ax2+ bx + c= 0中,需要把握根的三种存在情况:b2- 4ac> 0,方程有实数根(两个相等或两个不相等);b2-4ac v 0,无实数根.3.已知命题“关于x的一元二次方程x2+ bx + 1 = 0,当b v 0时必有实数解”,能说明这个命题是假命题的一个反例是()A. b=- 1B. b= 2C. b=- 2D. b= 04 .若关于x的一元二次方程kx2+ 4x + 3 = 0有实根,则k的非负整数值是5.已知关于x的一元二次方程ax2+ bx + 1 = 0(a z 0)有两个相等的实数根,求ab2a-2) 2+ b2-4 的值.类型四与几何相关的综合问题(1)在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩 形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为 135m 2,则道路的宽为 _________ m.(2)(2016张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设 则b= ________⑶(2015广•安)一个等腰三角形的两条边长分别是方程 x 2— 7x + 10= 0的两根,则该等腰三角形的周长是 _________【解后感悟】(1)此题关键是将四个矩形以恰当的方式拼成大矩形列出等量关系. (2)此题是一个信息题目,首先根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.(3)本题关键是确定三角形的三边的长度,用的数学思想是分类讨论思想•要随时注 意三边之间满足的关系“任意两边之和大于第三边6.(1)(2016台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所 组成,其中甲、乙的面积和等于丙、丁的面积和•若丙的一股长为 2,且丁的面积比丙的面积小,则丁的一股长为何?( )13 込B.3C . 2- 3D . 4— 2.3<(2)一个直角三角形的两条边长是方程 x 2— 7x + 12= 0的两个根,则此直角三角形的面积等于 _________________ .⑶有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再 折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是___________________ cm.类型五一元二次方程在生活中的应用例5 (1)(2017济宁市任城区模拟)某种数码产品原价每只 400元,经过连续两次降价后, 现在每只售价为256元,则平均每次降价的百分率为 ____________ .(2)某单位要组织一次篮球联赛,赛制为单循环形式 (每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有 ___________ 队.⑶商场在促销活动中,将标价为200元的商品,在打 a 折的基础上再打 a 折销售,现该商品的售价为128元,则a 的值是 ___________ .⑷将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品每涨价 1元,其销量就要减少10个,为了赚8000元利润,则应进货 ____________ 个.【解后感悟】(1)若设变化前的量为 a ,变化后的量为b ,平均变化率为x ,则经过两次 变化后的数量关系为 a (1 ±)2= b ; (2)关键是准确找到描述语,根据等量关系准确地列出方 程•此题还要判断所求的解是否符合题意,舍去不合题意的解;(3)此题打a 折转化 走是解决问题的关键; ⑷解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量 关系,列出方程,再求解. 71. (1)(2017温州)我们知道方程x 2+ 2x — 3= 0的解是x i = 1, X 2=— 3,现给出另一个方 程(2x + 3)2+ 2(2x + 3) — 3 = 0,它的解是()7 (1)(2016宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其 他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为 人.(2)(2017山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第 个图形有94个小圆.。

浙教版备考2021年中考数学一轮复习专题8——一元二次方程及其应用

浙教版备考2021年中考数学一轮复习专题8——一元二次方程及其应用

浙教版备考2021年中考数学一轮复习专题8——一元二次方程及其应用一、单选题(共9题;共45分)1.下列方程中,一定是关于x的一元二次方程的是( )A. ax2+bx+c=0B. x2+3=0C. + =1D. x2+2-x(x-1)=0【答案】B【解析】【解答】A. 若a=0,则ax2+bx+c=0不是一元二次方程,故A错误;B. x2+3=0是一元二次方程,故B正确;C. + =1不是一元二次方程,故C错误;D. x2+2-x(x-1)=0整理后,得x+2=0,不是一元二次方程,故D错误,故答案为:B【分析】一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。

根据定义并结合各选项即可判断求解.2.方程5x2=4x的解是( )A. x=0B. x=C. x1=0,x2=D. x1=0,x2=【答案】C【解析】【解答】解:5x2=4x5x2-4x=0x(5x-4)=0∴x1=0,x2=故答案为:C.【分析】根据题意,利用直接开平方法,解一元二次方程即可。

3.用配方法解一元二次方程,下列变形中正确的是()A. B. C. D.【答案】B【解析】【解答】故答案为:B.【分析】由配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式”即可求解.4.如果关于的一元二次方程的两根分别为和,那么( )A. ﹣3B. 3C. ﹣7D. 7【答案】A【解析】【解答】∵关于的一元二次方程的两根分别为和,∴.故答案为:A.【分析】根据一元二次方程的根与系数的关系“x1+x2=”可求解.5.根据下表的对应值,一元二次方程ax2+bx+c=0 其中一个解的取值范围是()A. 1.0<x<1.1B. 1.1<x<1.2C. 1.2<x<1.3D. 1.3<x<1.4【答案】B【解析】【解答】解:由表中数据可知:y=0在y=-0.59与y=0.84之间,∴对应的x的值在1.1与1.2之间,∴ 1.1<x<1.2 .故答案为:B.【分析】本题考查估算一元二次方程的近似解,由表格可发现y的值-0.59和0.84最接近0,再看对应的x的值即可得.6.已知两个整数,,有,则的最大值是()A. 35B. 40C. 41D. 42【答案】B【解析】【解答】解:∵,∴,∴∴当时,ab取得最大值,为,又∵b为整数,且,∴当时,;当时,,∴的最大值为40,故答案为:B.【分析】由已知的等式把a用含b的代数式表示出来,再将a代入ab中整理并配成顶点式,根据平方的非负性可求解.7.某商场销售一批衬衣.平均每天可售出30件.每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A. 10B. 15C. 20D. 25【答案】 D【解析】【解答】解:设每件衬衫应降价x元.根据题意,得:(50-x)(30+2x)=2000整理,得x2-35x+250=0解得x1=10,x2=25.∵“扩大销售量,减少库存”,∴x1=10应略去,∴x=25.故答案为::D.【分析】设每件衬衫应降价x元.根据题中的相等关系“单个利润×每天的销售量=每天的总利润2000”可列关于x的方程,解方程即可求解.8.如图,在中,,D为边上一点,连接,,把沿直线翻折,得到,与延长线交于点E,则的长为()A. B. C. D.【答案】 D【解析】【解答】,,,由翻折的性质得:,,,设,则,,在中,,在中,,即,解得或(不符题意,舍去),即,故答案为:D.【分析】根据三角形的一个外角等于和它不相邻的两个内角之和可求得∠CDE的度数;由折叠的性质可得,AD=AD´,∠D=∠CDE,∠ACD=∠ACD´,结合图形由角的构成可求得∠BCD和∠DAE的度数,设DE=x,则AD=AD´=2x,则DE=AD+AE可用含x的代数式表示,在直角三角形CDE中,用勾股定理可将CE用含x的代数式表示,在直角三角形ACE中,用勾股定理可得关于x的方程,解方程可求解.9.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则;其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③【答案】B【解析】【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=∴故④正确.故答案为:B.【分析】按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案.二、填空题(共6题;共30分)10.当x=________时,代数式x2+4x的值与代数式2x+3的值相等.【答案】1或-3【解析】【解答】x2+4x=2x+3,整理得,x2+2x−3=0,解得,x1=1,x2=−3,∴当x=−3或1时,代数式x2+4x的值与代数式2x+3的值相等.故答案为:1或-3.【分析】根据两个代数式的值相等可得关于x的方程,解方程即可求解.11.已知x1,x2是方程x2+3x+m=0的两根,若x1=2,则x2的值为________.【答案】-5【解析】【解答】解:∵x1,x2是方程x2+3x+m=0的两根∴x1+x2=- =-3∵x1=2∴x2=-5故答案为:-5.【分析】根据一元二次方程的根与系数的关系可求解.12.以m=________为反例,可以证明“关于x的一元二次方程x2+x+m=0必有实数根”是错误的命题(写出一个m的值即可)。

2019年浙江省中考数学:第8讲《一元二次方程及其应用》名师讲练(含答案)

2019年浙江省中考数学:第8讲《一元二次方程及其应用》名师讲练(含答案)

数学精品复习资料第8讲一元二次方程及其应用1.一元二次方程的概念及解法2.一元二次方程根的判别式1.(2015·温州)若关于x 的一元二次方程4x 2-4x +c =0有两个相等实数根,则c 的值是( )A .-1B .1C .-4D .4 2.(2017·舟山)用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=3 3.(2017·丽水)解方程:(x -3)(x -1)=3.【问题】给出以下方程①3x +1=0;②x 2-2x =8;③1x -3-2x3-x=1. (1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗? (3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?【归纳】通过开放式问题,归纳、疏理一元二次方程的概念以及解法.类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________. (2)若x =1是一元二次方程ax 2+bx -40=0的一个解,且a ≠b ,则a 2-b 22a -2b的值为________.(3)关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是________.【解后感悟】(1)切记不要忽略一元二次方程二次项系数不为零这一隐含条件;(2)注意解题中的整体代入思想;(3)注意由两个方程的特点进行简便计算.1.(1)(2016·南京模拟)关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠±1D .为任意实数 (2)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为____________________.类型二 一元二次方程的解法例2 解下列方程: (1)(3x -1)2=(x +1)2; (2)2x 2+x -12=0.【解后感悟】解一元二次方程要根据方程的特点选择合适的方法解题,但一般顺序为:直接开平方法→因式分解法→公式法.一般没有特别要求的不用配方法.解题关键是能把解一元二次方程转化成解一元一次方程.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式例3(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A.b=-1 B.b=2 C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2的值.(a-2)2+b2-4类型四 与几何相关的综合问题例4(1) 在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m 2,则道路的宽为________m .(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则b =________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是________.【解后感悟】(1)此题关键是将四个矩形以恰当的方式拼成大矩形列出等量关系.(2)此题是一个信息题目,首先根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.(3)本题关键是确定三角形的三边的长度,用的数学思想是分类讨论思想.要随时注意三边之间满足的关系“任意两边之和大于第三边”.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A .12B .35C .2- 3D .4-2 3(2)一个直角三角形的两条边长是方程x 2-7x +12=0的两个根,则此直角三角形的面积等于 .(3)有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm.类型五一元二次方程在生活中的应用例5(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.【解后感悟】(1)若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;(2)关键是准确找到描述语,根据等量关系准确地列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解;(3)此题打a折转化a10是解决问题的关键;(4)解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3D.x1=-1,x2=-3(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m+m2+12017+3的值是________.【方法与对策】(1)此题主要利用了方程结构相同的整体代入的方法求一元二次方程的解;(2)此题主要利用了一元二次方程的解得到已知式,再利用整体代入的方法求值.该题型是中考命题方法之一.【忽视一元二次方程ax2+bx+c=0(a≠0)中“a≠0”】已知关于x的一元二次方程(m-1)x2+x+1=0有实数根,则m的取值范围是________.参考答案第8讲一元二次方程及其应用【考点概要】1.一 2 降次 配方 因式分解 2.b 2-4ac 有两个不相等 有两个相等 没有 【考题体验】1.B 2.B 3.x 1=0,x 2=4. 【知识引擎】【解析】(1)②; (2)x 1=4,x 2=-2(配方法),其他方法:因式分解法、公式法; (3)一元二次方程的概念以及解法.【例题精析】例1 (1)①若a =6,则方程有实数根,②若a ≠6,则Δ≥0,∴64-4×(a -6)×6≥0,整理得:a ≤263,∴a 的最大值为8;(2)∵x =1是一元二次方程ax 2+bx -40=0的一个解,∴x =1满足一元二次方程ax 2+bx -40=0,∴a +b -40=0,即a +b =40①,a 2-b 22a -2b=(a +b )(a -b )2(a -b )=a +b 2,即a 2-b 22a -2b =a +b 2②,把①代入②,得a 2-b 22a -2b =20.(3)∵关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴方程a(x +m +2)2+b =0变形为a[(x +2)+m]2+b =0,即此方程中x +2=-2或x +2=1,解得x =-4或x =-1.例2 (1)将方程(3x -1)2=(x +1)2移项得,(3x -1)2-(x +1)2=0,∴(3x -1+x +1)(3x -1-x -1)=0,∴4x(2x -2)=0,∴x(x -1)=0,解得x 1=0,x 2=1. (2)∵2x 2+x -12=0,可得,a =2,b =1,c =-12,∴x =-14±54. 例3 (1)∵关于x 的一元二次方程kx 2-2x+1=0有实数根,∴Δ=b 2-4ac ≥0,即:4-4k ≥0,解得:k ≤1,∵关于x 的一元二次方程kx 2-2x +1=0中k ≠0,故答案为:k ≤1且k ≠0.(2)当m =0时,x =-1,方程只有一个解,①正确;当m ≠0时,方程mx 2+x -m +1=0是一元二次方程,Δ=1-4m(1-m)=1-4m +4m 2=(2m -1)2≥0,方程有两个实数解,②错误;把mx 2+x -m +1=0分解为(x +1)(mx -m +1)=0,当x =-1时,m -1-m +1=0,即x =-1是方程mx 2+x -m +1=0的根,③正确;故答案为①③.例4 (1)设道路的宽为x 米.依题意得:(32-x)(20-x)=135×4,解之得x 1=2,x 2=50(不合题意舍去),∴道路宽为2m .(2)依题意得(a +b)2=b(b +a +b),而a =1,∴b 2-b -1=0,∴b =1+52.(3)∵x 2-7x +10=0,∴(x -2)(x -5)=0,x 1=2,x 2=5,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故答案:12.例5 (1)20%;(2)6;(3)200×a 10×a10=128,得a =8;(4)设销售价x 元/个,得[500-10(x-50)]·(x -40)=8000,∴x =60或x =80,∴应进货400或200个.【变式拓展】 1.(1)C (2)12. (1)x 1=2,x 2=4 (2)x 1=2,x 2=-13.A4.15. ∵ax 2+bx +1=0(a ≠0)有两个相等的实数根,∴Δ=b 2-4ac =0,即b 2-4a =0,b 2=4a.∴ab 2(a -2)2+b 2-4=ab 2a 2-4a +4+b 2-4=ab 2a 2-4a +b 2=ab 2a2.∵a ≠0,∴原式=ab 2a 2=b 2a =4aa=4. 6. (1)D (2)6或372 (3)47.(1)35 (2)9 【热点题型】【分析与解】(1)先把方程(2x +3)2+2(2x +3)-3=0看作关于2x +3的一元二次方程,利用题中的解得到2x +3=1或2x +3=-3,所以x 1=-1,x 2=-3.故选D . (2)根据一元二次方程根的定义得到m 2=2017m -1,再利用整体代入的方法得到原式=2017m -1-2018m +2017m -1+12017+3=-1-m +m +3=2.故答案是2.【错误警示】m ≤54且m ≠1,由一元二次方程有实数根,则12-4(m -1)≥0且m -1≠0.∴m ≤54且m ≠1.。

2019--2020学年浙江省九年级中考复习《二次函数》试题分类——解答题(1)

2019--2020学年浙江省九年级中考复习《二次函数》试题分类——解答题(1)

2019--2020学年浙江省九年级上册数学(浙教版)《二次函数》试题分类——解答题(1)一.解答题1.(2019秋•海曙区期末)如图1,已知抛物线yx2+4与x轴交于点A,B,与y轴交于点Q,点P为OQ 的中点,经过点A,P,B的圆的圆心为点M,点C为圆M优弧AB上的一个动点.(1)直接写出点P,A,B的坐标:P;A;B;(2)求tan∠ACB的值;(3)将抛物线yx2+4沿x轴翻折所得的抛物线交y轴与点D,若BC经过点D时,求线段AC,PC的长;(4)若BC的中点为E,AE交翻折后的抛物线于点F,直接写出AE的最大值和此时点F的坐标.2.(2019秋•海曙区期末)自2019年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2019年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线y=a(x﹣30)2+100表示.(1)a=;(2)求图1表示的售价p与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?3.(2020春•拱墅区期末)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t ﹣5t2.(1)经过多少秒后足球回到地面?(2)圆圆说足球的高度能达到21米,方方说足球的高度能达到20米.你认为圆圆和方方的说法对吗?为什么?4.(2019秋•海曙区期末)已知二次函数y=﹣x2+bx+c的图象与直线y=﹣x+3相交于x轴上的点A,y轴上的点B.顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向左平移m个单位,当抛物线与△PBA有且只有一个公共点时,求m的值.5.(2019秋•拱墅区校级期末)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax2+bx﹣2a(其中a≠0).已知当x=0时,h=2;当x=10时,h=2.(1)求h关于x的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.6.(2019秋•拱墅区校级期末)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.7.(2019秋•西湖区校级期末)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务:(1)当t=2时,抛物线E的顶点坐标是;(2)判断点A是否在抛物线E上;(3)求n的值.(4)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是.(5)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.(6)以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.8.(2019秋•柯桥区期末)我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得的利润为W(元),求利润的最大值;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)9.(2019秋•柯桥区期末)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c 经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.10.(2019秋•玉环市期末)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道根据市场调查,在文旦上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足函数(其中x为正整数);销售量n(公斤)与第x天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量n与第x天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x的值.11.(2019秋•江干区期末)已知一个二次函数y1的图象与x轴的交点为(﹣2,0),(4,0),形状与二次函数相同,且y1的图象顶点在函数y=2x+b的图象上(a,b为常数),则请用含有a的代数式表示b.12.(2019秋•江干区期末)已知,二次函数y=x2+2mx+n(m,n为常数且m≠0).(1)若n=0,请判断该函数的图象与x轴的交点个数,并说明理由;(2)若点A(n+5,n)在该函数图象上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图象上,且p<q<r,求m的取值范围.13.(2019秋•温州期末)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?14.(2019秋•诸暨市期末)如图已知直线yx与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N 点的坐标.15.(2019秋•江北区期末)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?16.(2019秋•黄岩区期末)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+10.(1)第40天,该商家获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?17.(2019秋•黄岩区期末)已知二次函数y=x2﹣2kx+2.(1)当k=2时,求函数图象与x轴的交点坐标.(2)若函数图象的对称轴与原点的距离为2,求k的值.18.(2019秋•丽水期末)已知,二次三项式﹣x2+2x+3.(1)关于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,求n的取值范围.19.(2019秋•江北区期末)已知二次函数y=x2﹣2x﹣3(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当y<0时,求x的取值范围;当y>﹣3时,求x的取值范围.20.(2019秋•温州期末)如图,在平面直角坐标系中,抛物线yx2+2x+a交x轴于点A,B,交y轴于点C,点A的横坐标为﹣2.(1)求抛物线的对称轴和函数表达式.(2)连结BC线段,BC上有一点D,过点D作x轴的平行线交抛物线于点E,F,若EF=6,求点D的坐标.2019--2020学年浙江省九年级上册数学(浙教版)《二次函数》试题分类——解答题(1)参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)对于抛物线yx2+4,令x=0,得到y=4,令y=0,得到x=±4,∴Q(0,4),A(﹣4,0),B(4,0),∴OP=PQ,∴P(0,2),故答案为(0,2),(﹣4,0),(4,0).(2)如图1中,连接MA,MB,设⊙M的半径为r.在Rt△OMB中,BM=r,OB=4,OM=r﹣2由勾股定理得到,r2=42+(r﹣2)2,解得r=5,∵MA=BM,MO⊥AB,∴∠AMO=∠BMO∠AMB,∵∠ACB∠AMB,∴∠ACB=∠OMB,∵tan∠OMB,∴tan∠ACB.(3)如图2中,连接AD,过点C作CH⊥y轴于H.∵OA=OB=OD=4,∴∠ADB=90°∴AD=BD=4,∴CD=AD•tan∠ACB=3,∴AC=5.∵∠CHD=∠BOD=90°,∠CDH=∠ODB,∴△CHD∽△BOD,∴,∴CH=3,DH=4,∴PH=9,∴PC3.(4)如图3中,连接CM,BM,EM,取BM的中点J,连接AJ,JE.∵MC=MB,CE=EB,∴ME⊥CB,∵MJ=JB,∴JEBM,∵B(4,0),M(0,﹣3),A(﹣4,0),∴J(2,),∴AJ,∵AE≤AJ+JE,∴AE,∴AE的最大值为,∵直线AJ的解析式为yx﹣1,翻折后的抛物线的解析式为yx2﹣4,由,解得或,∴F(3,).2.【答案】见试题解答内容【解答】解:(1)把(10,60)代入y=a(x﹣30)2+100,得到a,故答案为.(2)当0≤x<30时,设P=kx+b,把(0,60),(10,80)代入得到,解得,∴P=2x+60.当30≤x≤40时,设P=k′x+b′,把(30,120),(40,100)代入得到,解得,∴P=﹣2x+180.综上所述,P.(3)设利润为w.当0≤x<30时,w=2x+60﹣(x2+6x+10)x2﹣4x+50(x﹣20)2+10,∴当x=20时,w有最小值,最小值为10(元/千克).当30≤x≤40时,w=﹣2x+180﹣(x2+6x+10)x2﹣8x+170(x﹣40)2+10,∴当x=40时,最小利润w=10(元/千克),综上所述,当20天或40天,最小利润为10元/千克.3.【答案】见试题解答内容【解答】解:(1)当h=0时,20t﹣5t2=0,解得:t=0或t=4,答:经4秒后足球回到地面;(2)方方的说法对,理由:将h=21代入公式得:21=20t﹣5t25t2﹣20t+21=0,由判别式计算可知:△=(﹣20)2﹣4×5×21=﹣20<0,方程无解,将h=20代入公式得:20=20t﹣5t25t2﹣20t+20=0,解得:t=2(负值舍去),所以足球确实无法到达21米的高度,能达到20米,故方方的说法对.4.【答案】见试题解答内容【解答】解:(1)∵直线y=﹣x+3交于x轴上的点A,y轴上的点B,∴A(3,0),B(0,3),把A、B的坐标代入y=﹣x2+bx+c得,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)当抛物线经过点B时,抛物线与△PBA有且只有一个公共点,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P(1,4),将抛物线向左平移m个单位,P对应点为(1﹣m,4),∴平移后的抛物线解析式为y=﹣(x﹣1+m)2+4,把B(0,3)代入得,3═﹣(﹣1+m)2+4,解得m1=2,m2=0(舍去),把A(3,0)代入得0=﹣(2+m)2+4,解得m3=﹣4,m4=0(舍去)故m的值为2或﹣4.5.【答案】见试题解答内容【解答】解:(1)∵当x=0时,h=2;当x=10时,h=2.∴解得:∴h关于x的函数表达式为:h=﹣x2+10x+2;(2)∵h=﹣x2+10x+2=﹣(x﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.6.【答案】见试题解答内容【解答】解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x10,∴0<a≤1;当a<0时,对称轴x=12,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=11,∴a;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p),∴a=1.7.【答案】见试题解答内容【解答】解:(1)将t=2代入抛物线E中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).故答案为:(1,﹣2);(2)将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线E上.(3)将x=﹣1代入抛物线E的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.(4)将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线E必过定点(2,0)、(﹣1,6).故答案为:A(2,0)、B(﹣1,6);(5)将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.(6)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.∵∠AMB=∠BKC1,∠KBC1=∠ABM,∴△KBC1∽△MBA,∴,∵AM=3,BM=6,BN=1,∴,∴C1K,∴点C1(0,).∵BC1=AD1,∠AGD1=∠BKC1=90°,∠GAD1=∠KBC1,∴△KBC1≌△GAD1(AAS),∴AG=1,GD1,∴点D1(3,).同理△OAD2∽△GAD1,∴,∵AG=1,OA=2,GD1,∴OD2=1,∴点D2(0,﹣1).同理△TBC2≌△OD2A,∴TC2=AO=2,BT=OD2=1,∴点C2(﹣3,5).∵抛物线E总过定点A(2,0)、B(﹣1,6),∴符合条件的三点可能是A、B、C或A、B、D.当抛物线E经过A、B、C1时,将C1(0,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),解得t1;当抛物线经过A、B、D1时,将D1(3,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,当抛物线经过A、B、C2时,将C2(﹣3,5)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,当抛物线经过A、B、D2时,将D2(0,﹣1)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,∴满足条件的所有t的值为:,,,.8.【答案】见试题解答内容【解答】解:(1)设y=kx+b,把(40,600),(75,250)代入可得,解得:,∴y=﹣10x+1000,当x=50时,y=﹣10×50+1000=500(件);(2)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.当x=70时,利润的最大值为9000;(3)由题意,解得60≤x≤75,设成本为S,∴S=40(﹣10x+1000)=﹣400x+40000,∵﹣400<0,∴S随x增大而减小,∴x=75时,S有最小值=10000元,答:每月的成本最少需要10000元.9.【答案】见试题解答内容【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC 的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PAa,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.10.【答案】见试题解答内容【解答】解:(1)当1≤x≤10时,设n=kx+b,由图知可知,解得,∴n=20x+100,同理得,当10<x≤30时,n=﹣14x+440∴销售量n与第x天之间的函数关系式:n;(2)∵y=mn﹣100∴y;整理得,y;(3)当1≤x≤10时,∵y=4x2+60x+100的对称轴x,∴此时,在对称轴的右侧y随x的增大而增大∴x=10时,y取最大值,则y10=1100,当10<x<15时∵yx2+60x+780的对称轴是x∴x在x=11时,y取得最大值,此时y=1101.2,当15≤x≤30时∵yx2x+2540的对称轴为x,∴此时,在对称轴的左侧y随x的增大而减小∴x=15时,y取最大值,y的最大值是y15=1050,综上,文旦销售第11天时,日销售利润y最大,最大值是1102.2元.11.【答案】见试题解答内容【解答】解:由题意得:y1=a(x+2)(x﹣4)=a(x﹣1)2﹣9a,顶点坐标为:(1,﹣9a),将顶点坐标代入函数y=2x+b表达式得:﹣9a=2+b,故b=﹣9a﹣2.12.【答案】见试题解答内容【解答】解:(1)n=0时,△=b2﹣4ac=4m2>0,故该函数的图象与x轴的交点个数为2;(2)将点A的坐标代入抛物线表达式得:n=(n+5)2+2m(n+5)+n,解得:n=﹣5或n=﹣5﹣2m;(3)a=1>0,故抛物线开口向上,而p<q<r,即函数y随x的增大而增大,故则点(2,p),(3,q),(4,r)在函数对称轴的右侧,抛物线的对称轴为:x=﹣m,即x=﹣m<2.5,解得:m>﹣2.5且m≠0.13.【答案】见试题解答内容【解答】解:(1)由题意可得,y1=(40﹣a)(20+2a),当a=5时,y1=(40﹣5)×(20+2×5)=1050,即当a=5时,y1的值是1050;(2)由题意可得,y2=(30﹣b)(32+2b)=﹣2b2+28b+960,即y2关于b的函数表达式为y2=﹣2b2+28b+960;(3)设两家下降的价格都为x元,两家的盈利和为w元,w=(40﹣x)(20+2x)+(﹣2x2+28x+960)=﹣4x2+88x+1760=﹣4(x﹣11)2+2244,∴当x=11时,w取得最大值,此时w=2244,答:每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.14.【答案】见试题解答内容【解答】解:(1)将点B(4,m)代入yx,∴m,将点A(﹣1,0),B(4,),C(0,)代入y=ax2+bx+c,解得a,b=﹣1,c,∴函数解析式为yx2﹣x;(2)设P(n,n2﹣n),则经过点P且与直线yx垂直的直线解析式为y=﹣2xn2+n,直线yx与其垂线的交点G(n2n,n2n),∴GP(﹣n2+3n+4),当n时,GP最大,此时△PAB的面积最大,∴P(,),∵AB,PG,∴△PAB的面积;(3)∵M(1,﹣2),A(﹣1,0),D(3,0),∴AM=2,AD=4,MD=2,∴△MAD是等腰直角三角形,∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设N(t,t2﹣t)①如图1,当MQ⊥QN时,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,∵QN=MN,∠QNM=90°,∴△MNS≌△NMS(AAS)∴t﹣1t2+t,∴t=±,∴t>1,∴t,∴N(,1);③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点M作MR∥x轴,与过Q点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),∴SQ=QR=2,∴t+2=1t2﹣t,∴t=5,∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴t2﹣tt﹣1,∴t=2±,∵t>1,∴t=2,∴N(2,1);综上所述:N(3,0)或N(2,1)或N(5,6)或N(,1).15.【答案】见试题解答内容【解答】解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣30)[200+10(80﹣x)]=﹣10x2+1300x﹣30000;(2)∵y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴当销售价定为65元时,所得月利润最大,最大月利润为12250元.16.【答案】见试题解答内容【解答】解:(1)由图象可知,此时的产量为z=40+10=50,设直线BC的关系为y=kx+b,∴,∴,∴y=x+20,则第40天的利润为:(80﹣60)×50=1000元;故答案为1000;(2)①(Ⅰ)当0≤x≤20时w=(80﹣40)(x+10)=40x+400,当x=20时,w最大=1200元;(Ⅱ)当20<x≤50时,w=[80﹣x﹣20)](x+10)=﹣x2+50x+600=﹣(x﹣25)2+1225∴当x=25时,w最大值=1225;综上所述,第25天的利润最大,最大利润为1225元;②(Ⅰ)当0≤x≤20时,若w=1000,则x=15,第15天至20天的利润都不低于1000元;(Ⅱ)当20<x≤50时,令﹣(x﹣25)2+1225=1000,解得x1=40,x2=10(不合题意舍去),∴第21天至40天的利润都不低于1000元,此时,当天利润不低于1000元的天数为:26天.17.【答案】见试题解答内容【解答】解:(1)当k=2时,此函数为y=x2﹣4x+2.令x2﹣4x+2=0,解得x1=2,x2=2,所以此函数图象与x轴的交点坐标为(2,0),(2,0);(2)∵函数图象的对称轴与原点的距离为2,∴±2,解得k=2或﹣2.18.【答案】见试题解答内容【解答】解:(1)方程化为(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,∵m为整数,方程的根为有理数,∴m﹣4=±3,∴m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),∵函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,当3,n<3时,∴n≤﹣6;当3,n≥3时,∴n≥3;当3,n≤3时,n不存在;当3,n≥3时,3≤n<6;当直线与抛物线y=﹣x2+2x+3相切时,也满足条件,可得n=7,综上所述:n≤﹣6或3≤n<6或7.19.【答案】见试题解答内容【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线与x轴的交点坐标为(﹣1,0),(3,0),如图,(2)当﹣1<x<3时,y<0;当x<0或x>2时,y>﹣3.20.【答案】见试题解答内容【解答】解:(1)∵A点的横坐标为﹣2,∴A(﹣2,0),∵点A在抛物线yx2+2x+a上,∴﹣2﹣4+a=0,解得:a=6,∴函数的解析式为:yx2+2x+6,∴对称轴为x2;(2)∵A(﹣2,0),对称轴为x=2,∴点B的坐标为(6,0),∴直线BC的解析式为y=﹣x+6,∵点D在BC上,∴设点D的坐标为(m,﹣m+6),∴点E和点F的纵坐标为﹣m+6,∴yx2+2x+6=﹣m+6,解得:x=2±,∴EF=2(2)=2,∵EF=6,∴26,解得:m=2.5,∴点D的坐标为(2.5,3.5).。

年浙江省中考数学《第8讲:一元二次方程及其应用》总复习讲解

年浙江省中考数学《第8讲:一元二次方程及其应用》总复习讲解

第8讲一元二次方程及其应用1.一元二次方程的概念及解法考试内容考试要求一元二次方程的概念只含有个未知数,且未知数的最高次数是的整式方程,叫做一元二次方程.它的一般形式是ax2+bx+c=0(a≠0).a一元二次方程的解法解一元二次方程的基本思想是____________________,主要方法有:____________________法、直接开平方法、____________________法、公式法等.c2.一元二次方程根的判别式考试内容考试要求根的判别式的定义关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为____________________.b 判别式与根的关系(1)b2-4ac>0⇔一元二次方程____________________的实数根;(2)b2-4ac=0⇔一元二次方程____________________的实数根;(3)b2-4ac<0⇔一元二次方程____________________实数根.考试内容考试要求基本思想化归与转化思想,一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法,都是运用了“转化”的思想,把待解决的问题(一元二次方程),通过转化,归结为已解决的问题(一元一次方程),也就是不断地把“未知”转化为“已知”.c基本方法对系数特点采用不同方法的最优化解题策略,养成先观察后动笔的解题习惯.一般情况下:(1)首先看能否用直接开平方法或因式分解法;(2)不能用以上方法时,可考虑用公式法;(3)除特别指明外,一般不用配方法.1.(2015·温州)若关于x的一元二次方程4x2-4x+c=0有两个相等实数根,则c的值是( )A.-1 B.1 C.-4D.42.(2017·舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是()A.(x+2)2=2B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=33.(2017·丽水)解方程:(x-3)(x-1)=3.【问题】给出以下方程①3x+1=0;②x2-2x=8;③错误!-错误!=1.(1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗?(3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?【归纳】通过开放式问题,归纳、疏理一元二次方程的概念以及解法.类型一一元二次方程的有关概念例1(1)关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是________.(2)若x=1是一元二次方程ax2+bx-40=0的一个解,且a≠b,则a2-b22a-2b的值为________.(3)关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.【解后感悟】(1)切记不要忽略一元二次方程二次项系数不为零这一隐含条件;(2)注意解题中的整体代入思想;(3)注意由两个方程的特点进行简便计算.1.(1)(2016·南京模拟)关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足( )A.a≠1B.a≠-1 C.a≠±1 D.为任意实数(2)已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为____________________.类型二一元二次方程的解法错误!解下列方程:(1)(3x-1)2=(x+1)2;(2)2x2+x-错误!=0.【解后感悟】解一元二次方程要根据方程的特点选择合适的方法解题,但一般顺序为:直接开平方法→因式分解法→公式法.一般没有特别要求的不用配方法.解题关键是能把解一元二次方程转化成解一元一次方程.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式错误!(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A.b=-1B.b=2C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab22+b2-4)的值.(a-2类型四与几何相关的综合问题错误!(1)在宽为20m,长为32m的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m2,则道路的宽为________m.(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是________.【解后感悟】(1)此题关键是将四个矩形以恰当的方式拼成大矩形列出等量关系.(2)此题是一个信息题目,首先根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.(3)本题关键是确定三角形的三边的长度,用的数学思想是分类讨论思想.要随时注意三边之间满足的关系“任意两边之和大于第三边”.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.错误!B.错误!C.2-错误! D.4-2 3(2)一个直角三角形的两条边长是方程x2-7x+12=0的两个根,则此直角三角形的面积等于.(3)有一块长32cm,宽24cm的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm.类型五一元二次方程在生活中的应用错误!(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.【解后感悟】(1)若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;(2)关键是准确找到描述语,根据等量关系准确地列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解;(3)此题打a折转化a10是解决问题的关键;(4)解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3D.x1=-1,x2=-3(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m+错误!+3的值是________.【方法与对策】(1)此题主要利用了方程结构相同的整体代入的方法求一元二次方程的解;(2)此题主要利用了一元二次方程的解得到已知式,再利用整体代入的方法求值.该题型是中考命题方法之一.【忽视一元二次方程ax 2+b x+c=0(a ≠0)中“a≠0”】已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是________.参考答案第8讲 一元二次方程及其应用【考点概要】1.一 2 降次 配方 因式分解 2.b 2-4ac 有两个不相等 有两个相等 没有 【考题体验】1.B 2.B 3.x 1=0,x2=4. 【知识引擎】【解析】(1)②; (2)x 1=4,x 2=-2(配方法),其他方法:因式分解法、公式法; (3)一元二次方程的概念以及解法.【例题精析】例1 (1)①若a =6,则方程有实数根,②若a ≠6,则Δ≥0,∴64-4×(a-6)×6≥0,整理得:a ≤263,∴a 的最大值为8;(2)∵x=1是一元二次方程ax 2+bx-40=0的一个解,∴x=1满足一元二次方程ax 2+bx-40=0,∴a +b-40=0,即a +b =40①,a 2-b22a -2b=错误!=错误!,即a2-b 22a-2b =错误!②,把①代入②,得错误!=20.(3)∵关于x的方程a(x+m)2+b=0的解是x 1=-2,x2=1,(a ,m,b 均为常数,a ≠0),∴方程a(x +m +2)2+b=0变形为a [(x +2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x =-1.例2 (1)将方程(3x -1)2=(x +1)2移项得,(3x -1)2-(x+1)2=0,∴(3x-1+x +1)(3x -1-x -1)=0,∴4x(2x -2)=0,∴x(x-1)=0,解得x 1=0,x 2=1. (2)∵2x 2+x-\f(1,2)=0,可得,a =2,b=1,c=-12,∴x=-错误!±错误!. 例3 (1)∵关于x 的一元二次方程kx2-2x+1=0有实数根,∴Δ=b 2-4ac ≥0,即:4-4k ≥0,解得:k ≤1,∵关于x的一元二次方程k x2-2x +1=0中k≠0,故答案为:k ≤1且k ≠0.(2)当m =0时,x=-1,方程只有一个解,①正确;当m ≠0时,方程mx 2+x -m+1=0是一元二次方程,Δ=1-4m(1-m )=1-4m +4m 2=(2m-1)2≥0,方程有两个实数解,②错误;把mx 2+x -m +1=0分解为(x +1)(m x-m+1)=0,当x =-1时,m -1-m+1=0,即x=-1是方程mx 2+x -m +1=0的根,③正确;故答案为①③.例4 (1)设道路的宽为x 米.依题意得:(32-x)(20-x )=135×4,解之得x 1=2,x2=50(不合题意舍去),∴道路宽为2m.(2)依题意得(a+b )2=b(b +a+b),而a =1,∴b 2-b -1=0,∴b =错误!.(3)∵x2-7x+10=0,∴(x -2)(x-5)=0,x 1=2,x 2=5,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故答案:12.例5 (1)20%;(2)6;(3)200×a 10×a 10=128,得a =8;(4)设销售价x 元/个,得[500-10(x-50)]·(x-40)=8000,∴x=60或x=80,∴应进货400或200个.【变式拓展】 1.(1)C (2)12. (1)x1=2,x2=4 (2)x 1=2,x 2=-13.A 4.15. ∵ax 2+bx +1=0(a ≠0)有两个相等的实数根,∴Δ=b2-4ac=0,即b 2-4a=0,b 2=4a.∴错误!=错误!=错误!=错误!.∵a≠0,∴原式=错误!=错误!=错误!=4.6. (1)D (2)6或3\r(7)2 (3)47.(1)35 (2)9 【热点题型】【分析与解】(1)先把方程(2x +3)2+2(2x+3)-3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=-3,所以x1=-1,x 2=-3.故选D. (2)根据一元二次方程根的定义得到m 2=2017m -1,再利用整体代入的方法得到原式=2017m -1-2018m+2017m-1+12017+3=-1-m+m+3=2.故答案是2.【错误警示】m ≤错误!且m ≠1,由一元二次方程有实数根,则12-4(m -1)≥0且m-1≠0.∴m ≤错误!且m≠1.。

中考数学一轮专题复习 第8讲 一元二次方程及应用知识梳理及自主测试 浙教版

中考数学一轮专题复习 第8讲 一元二次方程及应用知识梳理及自主测试 浙教版

第8讲一元二次方程考纲要求命题趋势1.理解一元二次方程的概念.2.掌握一元二次方程的解法.3.了解一元二次方程根的判别式,会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.4.会列一元二次方程解决实际问题.结合近年中考试题分析,一元二次方程的内容考查主要有一元二次方程的有关概念,一元二次方程的解法及列一元二次方程解决实际问题,题型以选择题、填空题为主,与其他知识综合命题时常为解答题.一、一元二次方程的概念1.只含有两个个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0).二、一元二次方程的解法1.解一元二次方程的基本思想是降次,主要方法有:直接开平方法、配方法、公式法、因式分解.2.配方法:通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为2)2(abx =__________的形式,再利用直接开平方法求解.3.公式法:一元二次方程ax2+bx+c=0(a≠0)当b2-4ac≥0时,x=____________.4.用因式分解法解方程的原理是:若a·b=0,则a=0或b=0.三、一元二次方程根的判别式1.一元二次方程根的判别式是b2-4ac.2.(1)b2-4ac>0⇔一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根;(2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根;(3)b2-4ac<0⇔一元二次方程ax2+bx+c=0(a≠0)没有实数根.四、一元二次方程根与系数的关系1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式.2.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则x1+x2=__________,x1x2=__________.五、实际问题与一元二次方程列一元二次方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找等量关系;(4)列方程;(5)解方程;(6)检验;(7)写出答案.1.一元二次方程x2-2x-1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.如果2是一元二次方程x2=c的一个根,那么常数c是( )A.2 B.-2 C.4 D.-43.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( ) A.200(1+a%)2=148 B.200(1-a%)2=148C.200(1-2a%)=148 D.200(1-a2%)=1484.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=05.若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2= .6.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是.7.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或118.若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,则2+的值为()A.B.C.D.9.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程.答案1. B2. C3. B4. A5.5解:设x2+y2=m,∵(x2+y2)2﹣3(x2+y2)﹣10=0,∴m2﹣3m﹣10=0,解得:m1=﹣2,m2=5,∵x2+y2≥0,∴x2+y2=5;故答案为:5.6.a≥﹣1解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.7. D解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.8. A解:∵2a2+5a+1=0,∴+5×+2=0;又∵b2+5b+2=0,∴、b可以看成是关于x的一元二次方程x2+5x+2=0的两根;∴由韦达定理,得x1•x2=2,即•b=2,∴a=;∴2+=2+=.9.(30﹣2x)(20﹣x)=6×78。

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用复习目标 1、理解配方法2、会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 考点梳理一、一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).例1.下列是一元二次方程的有( )个.①240x =;②()200++=≠ax bx c a ;③223(1)32x x x -=+;④2120x -=. A .1 B .2 C .3 D .4【答案】B 【分析】一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.进而可以判断. 【详解】解:①240x =,是一元二次方程;②()200++=≠ax bx c a ,是一元二次方程;③223(1)32x x x -=+,整理得830x -=,是一元一次方程,不是一元一次方程; ④2120x -=,不是整式方程,不是一元二次方程;综上,是一元二次方程的是①②,共2个, 故选:B .二、一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.注意:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.例2.关于x 的一元二次方程21x =的根是( ) A .1x = B .11x =,21x =- C .1x =- D .121x x ==【答案】B 【分析】利用直接开平方法求解即可. 【详解】解:∵x 2=1, ∴x 1=1,x 2=-1, 故选:B .三、一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 注意: △≥0⇔方程有实数根.例3.一元二次方程2310x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根【答案】B 【分析】计算出一元二次方程根的判别式,根据判别式的符号即可判断根的情况. 【详解】∵a =1,b =-3,c =-1∴224(3)41(1)130b ac ∆=-=--⨯⨯-=>∴一元二次方程2310x x --=有两个不相等的实数根 故选:B.四、一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.例4.方程22x -5x +m =0没有实数根,则m 的取值范围是( ) A .m >258B .m <258C .m ≤258D .m ≥258【答案】A 【分析】利用判别式的意义得到△=(-5)2﹣4×2m <0,然后解关于m 的不等式即可. 【详解】解:∵方程22x -5x +m =0没有实数根, ∴△=(-5)2﹣4×2m <0, 解得m>258. 故选:A .1.(2022·福建省福州杨桥中学九年级开学考试)方程()50x x -=的根是( ) A .5 B .-5,5C .0,-5D .0,5【答案】D 【分析】利用因式分解法求解即可. 【详解】解:∵x (x -5)=0∴x =0或x -5=0, ∴10x =,25x =. 故选D .2.(2022·福建省福州延安中学九年级开学考试)若0x =是一元二次方程2240x b ++-=的一个根,则b 的值是( )A .2B .2-C .2±D .4【答案】A 【分析】根据一元二次方程的解的定义,把0x =代入2240x b ++-=得240b -=,然后解关于b 的方程即可. 【详解】解:把x =0代入2240x b ++-=得b 2-4=0, 解得b =±2, ∵b -1≥0, ∴b ≥1, ∴b =2. 故选:A .3.(2022·云南师范大学实验中学九年级期末)如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门.若花圃的面积刚好为240m ,设AB 长为x m ,则可列方程为( )A .()22340x x -=B .()20240x x -=C .()18340x x -=D .()20340x x -=【答案】A 【分析】设AB =x 米,则BC =(20-3x +2)米,根据围成的花圃的面积刚好为40平方米,即可得出关于x 的一元二次方程. 【详解】解:设AB =x 米,则BC =(20-3x +2)米=(22-3x )米, 依题意,得:x (22-3x )=40, 故选A .4.(2022·蒙城县第六中学九年级开学考试)国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( ) A .()5000127500x += B .()5000217500x ⨯+= C .()2500017500x +=D .()()2500050001500017500x x ++++= 【答案】C 【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程. 【详解】解:设我国2017年至2019年快递业务收入的年平均增长率为x , ∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元, 即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选:C .5.(2022·厦门海沧实验中学九年级开学考试)判断关于x 的方程()2110kx k x -++=(k 是常数,1k <)的根的情况( )A .存在一个k ,使得方程只有一个实数根B .无实数根C .一定有两个不相等的实数根D .一定有两个相等的实数根【答案】A 【分析】当k =0时,可求出方程的根;k ≠0时,利用,Δ=[-(k +1)]2-4k =(k -1)2>0即可判断原方程有实数根. 【详解】 解:∵k <1,∴当k =0时,原方程为-x +1=0, 解得:x =1;当k ≠0时,Δ=[-(k +1)]2-4k =(k -1)2>0, ∴原方程有两个不相等的实数根,故选:A.6.(2022·厦门海沧实验中学九年级开学考试)为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,某市今年第一季度进行宣传准备工作,从第二季度开始到今年年底全市全面实现垃圾分类.已知该市一共有285个社区,第二季度已有60个社区实现垃圾分类,第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则下面所列方程正确的是()A.()2x601285-=x+=B.()2601285C.()()2+++=D.()()2 601601285x x++++=60601601285x x【答案】D【分析】设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,根据年底全市共285个社区实现垃圾分类,即可得出关于x的一元二次方程,此题得解.【详解】解:设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,依题意得:60+60(1+x)+60(1+x)2=285.故选:D.7.(2022·深圳市新华中学九年级期末)已知关于x的一元二次方程230+-=x x c没有实数根,即实数c的取值范围是________.【答案】94c <- 【分析】根据题意可知,判别式∆<0,求解即可. 【详解】解:∵方程没有实数根, ∴2340c =+<,解得94c <-故答案为94c <-8.(2022·全国九年级课时练习)已知关于x 的一元二次方程2(21)20ax a x a +++-=有两个不相等的实数根,则a 的取值范围是______. 【答案】112a >-且0a ≠ 【分析】根据一元二次方程的定义,以及根的判别式确定a 的取值范围即可. 【详解】根据题意得0a ≠且2Δ(21)4(2)0a a a =+-->, 解得112a >-且0a ≠. 故答案为:112a >-且0a ≠. 9.(2022·山东省青岛第二十六中学九年级期中)解下列方程: (1)2x 2+7x +3=0(用配方法). (2)5(x +3)2=x 2﹣9.【答案】(1)12132x x =-=-,;(2)x 1=−3,x 2=−92. 【分析】(1)利用配方法求解即可; (2)利用因式分解法求解即可. 【详解】解:(1)方程整理得:27322x x +=-,配方得:22277372424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2725416x ⎛⎫+= ⎪⎝⎭,开方得:7544x +=±,解得:12132x x =-=-,; (2)∵5(x +3)2=(x +3) (x -3), ∴5(x +3)2-(x +3) (x -3)=0, ∴(x +3) [5(x +3)-(x -3)]=0, 即(x +3) (4x +18)=0, ∴x 1=−3,x 2=−92.10.(2020·沭阳县怀文中学九年级月考)某玩具商店以每件50元为成本购进一批新型玩具,以每件80元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为多少元?最多?最多盈利多少元?【答案】(1)65元;(2)每件玩具的售价定为70元时,商店每天盈利最多,最多盈利为800元【分析】(1)根据题意和题目中的数据,可以写出相应的方程,然后求解即可,注意又要使顾客得到更多的实惠,也就是售价越低越好;(2)根据题意,可以写出利润和售价之间的函数关系,然后根据二次函数的性质解答即可.【详解】解:(1)设每件玩具的售价为a元,由题意可得,(a﹣50)[20+2(80﹣a)]=750,解得a1=65,a2=75,∵要使顾客得到更多的实惠,∴a=65,答:商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为65元;(2)设每件玩具的售价定为x元,商店每天盈利为w元,由题意可得,w=(x﹣50)[20+2(80﹣x)]=﹣2(x﹣70)2+800,∵a=﹣2,∴该函数开口向下,有最大值,∴当x=70时,该函数取得最大值,此时w=800,最多盈利为800元.。

广东省珠海市中考数学一轮复习专题8——一元二次方程及其应用

广东省珠海市中考数学一轮复习专题8——一元二次方程及其应用

广东省珠海市中考数学一轮复习专题 8——一元二次方程及其应用姓名:________班级:________成绩:________一、 单选题 (共 9 题;共 45 分)1. (5 分) 一元二次方程 则 的值为( ).A. B.1 C.化成一般式后,二次项系数为 1,一次项系数为 ,D. 【考点】2. (5 分) 一元二次方程 x2=1 的解是( ) A . x=1 B . x=﹣1 C . x=±1 D . x=0 【考点】3. (5 分) (2016 九上·江津期中) 用配方法解一元二次方程 x2+8x+7=0,则方程可化为( ) A . (x+4)2=9 B . (x﹣4)2=9 C . (x+8)2=23 D . (x﹣8)2=9 【考点】4. (5 分) (2018 九上·富顺期中) 不论 x 为何值,函数 y=ax2+bx+c(a≠0)的值恒大于 0 的条件是( ) A . a>0,△>0 B . a>0,△<0 C . a<0,△<0第 1 页 共 16 页D . a<0,△>0 【考点】5.(5 分)(2018 九上·罗湖期末) 由下表估算一元二次方程 x2+12x=15 的一个根的范围,其中正确的是( )X1.0X2+12x131.1 14.411.2 15.841.3 17.29A . 1.0<x<1.1 B . 1.1<x<1.2 C . 1.2<x<1.3 D . 14.41<x<15.84 【考点】6. (5 分) (2019 八上·济宁期中) 已知 a=2018x+2018,b=2018x+2019,c=2018x+2020,则 a2+b2+ c2-ab-ac-bc 的值是( )A.0 B.1 C.2 D.3 【考点】7. (5 分) (2019 八下·长兴月考) 一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元.为了扩 大销售、增加盈利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价 每降低 1 元,平均每天可多售出 2 件若该商店每天销售利润为 1200 元,每件商品降价( )A . 10 元 B . 10 元或 20 元 C . 15 元 D . 15 元或 20 元 【考点】8. (5 分) (2016 九上·武汉期中) 如图,四边形 ABCD 中,AC,BD 是对角线,△ABC 是等边三角形.∠ADC=30°,第 2 页 共 16 页AD=3,BD=5,则 CD 的长为( )A. B.4C. D . 4.5 【考点】9. (5 分) (2019 九上·和平期中) 已知关于 x 的一元二次方程与判断错误的是( )A . 若方程有两个实数根,则方程也有两个实数根;B . 如果 m 是方程 C . 如果方程 D . 如果方程 【考点】的一个根,那么 是的一个根;与有一个根相等,那么这个根是 1;与有一个根相等,那么这个根是 1 或-1.,下列二、 填空题 (共 6 题;共 30 分)10. (5 分) (2019 九上·襄阳期末) 方程(x+3)(x+2)=x+3 的解是________. 【考点】11. (5 分) (2018 九上·西湖期中) 已知方程 x2﹣4x+3=0 的两根分别为 x1、x2 , 则 x1+x2=________. 【考点】12. (5 分) (2018 九上·武汉月考) 当 m=________时,方程 2x2-(m2-4)x+m=0 的两根互为相反数 【考点】第 3 页 共 16 页13. (5 分) 某钢铁厂今年 1 月份钢产量为 4 万吨,三月份钢产量为 4.84 万吨,每月的增长率相同,问 2、3 月份平均每月的增长率是________.【考点】14. (5 分) 若△ABC 的两边长分别为 2 和 3,第三边的长是方程 x2-8x+15=0 的根,则△ABC 的周长是 ________.【考点】15. (5 分) (2019 九上·台州开学考) 一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元, 则平均每次降价的百分率是________.【考点】三、 综合题 (共 8 题;共 75 分)16. (8 分) (2020·北京模拟) 已知关于 x 的方程.(1) 求证:方程总有两个实数根;(2) 若方程的两个根均为正整数,写出一个满足条件的 m 的值,并求此时方程的根.【考点】17. (8 分) (2019 九上·遵义月考) 解方程: (1) 4x2﹣25=0 (2) x(x+5)=2x+10 【考点】18. (8 分) (2019 九上·西岗期末) 【发现】x4﹣5x2+4=0 是一个一元四次方程. (1) 【探索】根据该方程的特点,通常用“换元法”解方程: 设 x2=y,那么 x4=y2 , 于是原方程可变为________. 解得:y1=1,y2=________. 当 y=1 时,x2=1,∴x=±1; 当 y=________时,x2=________,∴x=________;第 4 页 共 16 页原方程有 4 个根,分别是________.(2) 【应用】仿照上面的解题过程,求解方程:.【考点】19. (8 分) (2020 七下·厦门期末) 下面是小李探索 的近似值的过程:我们知道面积是 2 的正方形的边长是 ,易知 >1,因此可设 另一方面由题意知 S 正方形= ,所以,可画出如下示意图.由图中面积计算,S 正方形=略去 ,得方程,解得, ,即,仿照上述方法,探究 的近似值(画出示意图,标明数据,并写出求解过程)【考点】20. (8 分) (2020 九上·大丰月考) 阅读小明用下面的方法求出方程 2 ﹣3x=0 的解法 1:令 =t,则 x=t2原方程化为 2t﹣3t2=0解法 2:移项,得 2 解方程 2t﹣3t2=0,得 t1=0,t2= ;=3x,所以 =0 或 ,方程两边同时平方,得 4x=9x2 , 解方程 4x=9x2 , 得 x=0 或 ,将方程 =0 或 两边平方, 得 x=0 或 , 经检验,x=0 或 都是原方程的解.经检验,x=0 或 都是原方程的解. 所以,原方程的解是 x=0 或 .所以,原方程的解是 x=0 或 .第 5 页 共 16 页请仿照他的某一种方法,求出方法 x﹣=﹣1 的解.21. (10 分) (2017 九上·平顶山期中) “泥兴陶,,是钦州的一张文化名片。

2023年浙江省中考数学第一轮复习卷:二次函数(含解析)

2023年浙江省中考数学第一轮复习卷:二次函数(含解析)

2023年浙江省中考数学第一轮复习卷:8二次函数一.选择题(共14小题)1.(2022•衢州)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为( )A .12或4B .43或−12C .−43或4D .−12或4 2.(2022•宁波)点A (m ﹣1,y 1),B (m ,y 2)都在二次函数y =(x ﹣1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A .m >2B .m >32C .m <1D .32<m <2 3.(2022•湖州)将抛物线y =x 2向上平移3个单位,所得抛物线的解析式是( )A .y =x 2+3B .y =x 2﹣3C .y =(x +3)2D .y =(x ﹣3)24.(2022•宁波模拟)如图,二次函数y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标为x 1,x 2与y 轴正半轴的交点为C ,一1<x 1<0,x 2=2,则下列结论正确的是( )A .b 2﹣4ac <0.B .9a +3b +c >0C .abc >0D .a +b >05.(2022•景宁县模拟)关于二次函数y =﹣3(x ﹣2)2+5的最大值或最小值,下列说法正确的是( )A .有最大值2B .有最小值2C .有最大值5D .有最小值56.(2022•北仑区校级三模)如图,二次函数y =ax 2+bx +c (a <0)与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有( ) ①abc <0;②4ac−b 24a >0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为﹣2<x <﹣1.A.1个B.3个C.4个D.5个7.(2022•温州校级模拟)已知函数y=x2﹣2x+3,当0≤x≤m时,有最大值3,最小值2,则m的取值范围是()A.m≥1B.0≤m≤2C.1≤m≤2D.1≤m≤3 8.(2022•萧山区校级二模)已知二次函数y=﹣(x+m﹣1)(x﹣m)+1,点A(x1,y1),B (x2,y2)(x1<x2)是图象上两点,下列说法正确的是()A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>﹣1,则y1>y2D.若x1+x2<﹣1,则y1>y2 9.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④10.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,5 11.(2022•新昌县校级模拟)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C .D .12.(2022•金华模拟)已知二次函数y =ax 2+bx +c 的图象如图所示,与x 轴有个交点(﹣1,0),有以下结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(其中m ≠1).其中所有正确结论的个数是( )A .3个B .2个C .1个D .0个13.(2022•温州)已知点A (a ,2),B (b ,2),C (c ,7)都在抛物线y =(x ﹣1)2﹣2上,点A 在点B 左侧,下列选项正确的是( )A .若c <0,则a <c <bB .若c <0,则a <b <cC .若c >0,则a <c <bD .若c >0,则a <b <c14.(2022•下城区校级二模)关于x 的二次函数y =ax 2+2ax +b +1(a •b ≠0)与x 轴只有一个交点(k ,0),下列正确的是( )A .若﹣1<a <1,则k a >k bB .若k a >k b ,则0<a <1C .若﹣1<a <1,则k a <k bD .若k a <k b ,则0<a <1 二.填空题(共6小题)15.(2022•吴兴区校级二模)如图,在平面直角坐标系中,点A (2,4)在抛物线y =a (x ﹣4)2上,过点A 作x 轴的平行线,交抛物线于另一点B ,点C ,D 在线段AB 上,分别过点C,D作x轴的垂线交抛物线于F,E两点.当四边形CDEF为正方形时,线段CD 的长为.16.(2022•西湖区校级二模)已知y=﹣x2+6x+12(﹣7≤x≤5),则函数y的取值范围是.17.(2022•宁波模拟)如图,点P在x轴的负半轴上,⊙P交x轴于点A和点B(点A在点B的左边),交y轴于点C,抛物线y=a(x+1)2+2√2−a经过A,B,C三点,CP的延长线交⊙P于点D,点N是⊙P上动点,则⊙P的半径为;3NO+ND的最小值为.18.(2022•富阳区一模)已知二次函数y=(a2+1)x2﹣2022ax+1的图象经过(m,y1)、(m+1,y2)、(m+2,y3),则y1+y32y2(选择“>”“<”“=”填空).19.(2022•东阳市模拟)抛物线y=2x2﹣8向右平移1个单位,再向上平移2个单位,平移后抛物线的顶点坐标是.20.(2022•兰溪市模拟)已知抛物线y1=x2﹣2x﹣3,y2=x2﹣x﹣2a,若这两个抛物线与x 轴共有3个交点,则a的值为.三.解答题(共13小题)21.(2022•椒江区校级二模)自从某校开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点).(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;(3)问如何将课堂时间分配给精讲和当堂检测,才能使学生在这40分钟的学习收益总量最大?22.(2022•吴兴区校级二模)某公司电商平台在之前举行的商品打折促销活动中不断积累经验,经调查发现,某种进价为a元的商品周销售量y(件)关于售价x(元/件)的函数关系式是y=﹣3x+300(40≤x≤100),如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的一组对应值数据.【周销售利润=(售价﹣进价)×周销售量】x y W401803600(1)求该商品进价a;(2)该平台在获得的周销售利润额W(元)取得最大值时,决定售出的该商品每件捐出m元给当地福利院,若要保证捐款后的利润率不低于20%,求m的最大值.23.(2022•鹿城区校级模拟)如图,在平面直角坐标系中,边长为2的正方形OABC,点A 在x轴的正半轴上,点C在y轴的正半轴上,抛物线y=x2+bx+c经过点A与点C.(1)求这个二次函数的表达式,并求出抛物线的对称轴.(2)现将抛物线向左平移m(m>0)个单位,向上平移n(n>0)个单位,若平移后的抛物线恰好经过点B与点C,求m,n的值.24.(2022•婺城区模拟)4月16日,婪城区开展全域大规模核酸检测筛查.某小区上午9点开始检测,设6个采样窗口,每个窗口采样速度相同,居民陆续到采集点排队,10点半排队完毕,小明就排队采样的时间和人数进行了统计,得到下表:小明把数据在平面直角坐标系里,描成点连成线,得到如图所示函数图象,在0~90分钟,y是x的二次函数,在90~110分钟,y是x的一次函数.(1)如果B是二次函数图象的顶点,求二次函数解析式.(2)若排队人数在220人及以上,即为满负荷状态,问满负荷状态的时间持续多长?0)采样进行45分钟后,为了减少扎堆排队的时间,社区要求10点15分后,采样可以随到随采,那么至少需新增多少个采样窗口?时间x(分)0153045759095100110人数y(个)60115160195238240180120025.(2022•吴兴区校级二模)如图1,抛物线y=12x2+bx+c(c<0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,过点C作CD∥x轴,与抛物线交于另一点D,直线BC与AD相交于点M.(1)已知点C的坐标是(0,﹣4),点B的坐标是(4,0),求此抛物线的解析式;(2)若b=12c+1,求证:AD⊥BC;(3)如图2,设第(1)题中抛物线的对称轴与x轴交于点G,点P是抛物线上在对称轴右侧部分的一点,点P的横坐标为t,点Q是直线BC上一点,是否存在这样的点P,使得△PGQ是以点G为直角顶点的直角三角形,且满足∠GQP=∠OCA,若存在,请直接写出t的值;若不存在,请说明理由.26.(2022•鹿城区校级模拟)某商店决定购进A,B两种“冰墩墩”纪念品进行销售.已知每件A种纪念品比每件B种纪念品的进价高30元.用1000元购进A种纪念品的数量和用400元购进B种纪念品的数量相同.(1)求A,B两种纪念品每件的进价分别是多少元?(2)该商场通过市场调查,整理出A型纪念品的售价与数量的关系如表,售价x(元/件)50≤x≤6060<x≤80销售量(件)100400﹣5x①当x为何值时,售出A纪念品所获利润最大,最大利润为多少?②该商场购进A,B型纪念品共200件,其中A型纪念品的件数小于B型纪念品的件数,但不小于50件.若B型纪念品的售价为m(m>30)元/件时,商场将A,B型纪念品均全部售出后获得的最大利润为2800元,求m的值.27.(2022•丽水模拟)如图,抛物线y=ax2+bx+3与x轴相交于点A(1,0),B(3,0),与y轴相交于点C.(1)求抛物线的解析式.(2)点M(x1,y1),N(x2,y2)是抛物线上不同的两点.①若y1=y2,求x1,x2之间的数量关系.②若x1+x2=2(x1﹣x2),求y1﹣y2的最小值.28.(2022•义乌市模拟)如图,AB,CD是两个过江电缆的铁塔,塔高均为40米,AB的中点为P,小丽在距塔底B点西50米的地面E点恰好看到点E,P,C在一直线上,且P,D离江面的垂直高度相等.跨江电缆AC因重力自然下垂近似成抛物线形,为了保证过往船只的安全,电缆AC下垂的最低点距江面的高度不得少于30米.已知塔底B距江面的垂直高度为6米,电缆AC下垂的最低点刚好满足最低高度要求.(1)求电缆最低点与河岸EB的垂直高度h及两铁塔轴线间的距离(即直线AB和CD 之间的水平距离).(2)求电缆AC形成的抛物线的二次项系数.29.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D 点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=19时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:√3≈1.73,√5≈2.24)30.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.31.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.32.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.33.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.2023年浙江省中考数学第一轮复习卷:8二次函数参考答案与试题解析一.选择题(共14小题)1.(2022•衢州)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为( )A .12或4B .43或−12C .−43或4D .−12或4 【解答】解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,故选:D .2.(2022•宁波)点A (m ﹣1,y 1),B (m ,y 2)都在二次函数y =(x ﹣1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A .m >2B .m >32C .m <1D .32<m <2 【解答】解:∵点A (m ﹣1,y 1),B (m ,y 2)都在二次函数y =(x ﹣1)2+n 的图象上, ∴y 1=(m ﹣1﹣1)2+n =(m ﹣2)2+n ,y 2=(m ﹣1)2+n ,∵y 1<y 2,∴(m ﹣2)2+n <(m ﹣1)2+n ,∴(m ﹣2)2﹣(m ﹣1)2<0,即﹣2m +3<0,∴m >32,故选:B.3.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是()A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2【解答】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.4.(2022•宁波模拟)如图,二次函数y=ax2+bx+c(a≠0)与x轴交点的横坐标为x1,x2与y轴正半轴的交点为C,一1<x1<0,x2=2,则下列结论正确的是()A.b2﹣4ac<0.B.9a+3b+c>0C.abc>0D.a+b>0【解答】解:由图象可知,抛物线与x轴有两个交点,∴b2﹣4ac>0,故A错误,不符合题意;由图象可知当x=3时,y=9a+3b+c<0,故B错误,不符合题意;∵抛物线开口方向向下,∴a<0.∵抛物线与x轴的交点是(x1,0)和(2,0),其中﹣1<x1<0,∴对称轴x=−b2a>0,∴b>0.∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故C错误,不符合题意;∵﹣1<x1<0,x2=2,∴1<x1+x2<2,∴12<x 1+x 22<1, ∴−b 2a >12,∴b >﹣a ,即a +b >0,故D 正确,符合题意.故选:D .5.(2022•景宁县模拟)关于二次函数y =﹣3(x ﹣2)2+5的最大值或最小值,下列说法正确的是( )A .有最大值2B .有最小值2C .有最大值5D .有最小值5【解答】解:∵y =﹣3(x ﹣2)2+5,∴抛物线开口向下,x =2时,y 有最大值为y =5,故选:C .6.(2022•北仑区校级三模)如图,二次函数y =ax 2+bx +c (a <0)与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有( ) ①abc <0;②4ac−b 24a >0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为﹣2<x <﹣1.A .1个B .3个C .4个D .5个【解答】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的上方,可知c >0,又−b 2a=2,所以b =﹣4a >0, ∴abc <0,故①正确;∵二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点,∴b 2﹣4ac >0,∵a <0,∴4ac−b 24a >0,故②正确;∵16a +4b +c =16a ﹣16a +c =c >0,∴16a +4b +c >0,故③正确;当x =5时,y =25a +5b +c <0,∴25a ﹣20a +c <0,∴5a +c <0,故④错误;∵抛物线对称轴为直线x =2,其中一个交点的横坐标在4<x <5,∴方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为﹣1<x <0,故⑤错误.故选:B .7.(2022•温州校级模拟)已知函数y =x 2﹣2x +3,当0≤x ≤m 时,有最大值3,最小值2,则m 的取值范围是( )A .m ≥1B .0≤m ≤2C .1≤m ≤2D .1≤m ≤3【解答】解:如图所示,∵二次函数y =x 2﹣2x +3=(x ﹣1)2+2,∴抛物线开口向上,对称轴为x =1,当y =3时,x =0或2,∵当0≤x ≤m 时,y 最大值为3,最小值为2,∴1≤m ≤2.故选:C .8.(2022•萧山区校级二模)已知二次函数y=﹣(x+m﹣1)(x﹣m)+1,点A(x1,y1),B (x2,y2)(x1<x2)是图象上两点,下列说法正确的是()A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>﹣1,则y1>y2D.若x1+x2<﹣1,则y1>y2【解答】解:∵y=﹣(x+m﹣1)(x﹣m)+1,∴抛物线对称轴为直线x=−m+1+m2=12,开口向下,当x1+x2=1时,点A(x1,y1),B(x2,y2)关于抛物线对称轴对称,即y1=y2,∴当x1+x2>1时,点A到抛物线对称轴的距离小于点B到抛物线对称轴的距离,∴y1>y2,故选:A.9.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④【解答】解:假设抛物线的对称轴为直线x=1,则−a2=1,解得a=﹣2,∵函数的图象经过点(3,0),∴3a+b+9=0,解得b=﹣3,故抛物线的解析式为y=x2﹣2x﹣3,当y=0时,得x2﹣2x﹣3=0,解得x=3或x=﹣1,故抛物线与x轴的交点为(﹣1,0)和(3,0),函数的图象与x轴的交点位于y轴的两侧;故命题②③④都是正确,①错误,故选:A.10.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,5【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴−m2×1=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.11.(2022•新昌县校级模拟)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:A选项,根据一次函数的位置可知,a>0,抛物线应该开口向上,A选项不符合题意;B选项,根据一次函数的位置可知,a<0,抛物线开口向下,一次函数y=0时,x<0,即−ba<0,抛物线的对称轴−b2a<0,B选项符合题意;C选项,根据一次函数的位置可知,a>0,抛物线应该开口向上,一次函数y=0时,x<0,即−ba<0,抛物线的对称轴−b2a<0,C选项不符合题意;D选项,根据一次函数的位置可知,a<0,抛物线应该开口向下,一次函数y=0时,x>0,即−ba>0,抛物线的对称轴−b2a>0,D选项不符合题意;故选:B.12.(2022•金华模拟)已知二次函数y=ax2+bx+c的图象如图所示,与x轴有个交点(﹣1,0),有以下结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(其中m≠1).其中所有正确结论的个数是()A.3个B.2个C.1个D.0个【解答】解:①∵开口向下,对称轴在y轴右侧,函数图象与y轴的交点在y轴正半轴上,∴a<0,b>0,c>0,∴abc<0,故①正确,符合题意;②由图象可知,当x=﹣1时,y=0,∴a﹣b+c=0,故②错误,不符合题意;③∵函数图象的对称轴为x=1,∴x=0时和x=2时的函数值相等,∵x=0时,y>0,∴x=2时,y=4a+2b+c>0,故③正确,符合题意;④∵函数图象的对称轴为x=1,∴−b2a=1,∴b=﹣2a,∵a﹣b+c=0,∴﹣2a+2b﹣2c=0,∴b+2b﹣2c=3b﹣2c=0,故④错误,不符合题意;⑤∵函数图象的对称轴为x=1,开口向下,∴当x=1时,函数值取得最大值,∴a+b+c>m(am+b)+c,∴a+b>m(am+b),故⑤正确,符合题意,∴正确的结论有3个,故选:A.13.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是()A.若c<0,则a<c<b B.若c<0,则a<b<cC.若c>0,则a<c<b D.若c>0,则a<b<c【解答】解:∵抛物线y=(x﹣1)2﹣2,∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,∴若c<0,则c<a<b,故选项A、B均不符合题意;若c>0,则a<b<c,故选项C不符合题意,选项D符合题意;故选:D.14.(2022•下城区校级二模)关于x的二次函数y=ax2+2ax+b+1(a•b≠0)与x轴只有一个交点(k ,0),下列正确的是( )A .若﹣1<a <1,则k a >k bB .若k a >k b ,则0<a <1C .若﹣1<a <1,则k a <k bD .若k a <k b ,则0<a <1 【解答】解:∵关于x 的二次函数y =ax 2+2ax +b +1(a •b ≠0)与x 轴只有一个交点(k ,0),令y =0,∴ax 2+2ax +b +1=0,∴(2a )2﹣4a (b +1)=0,∴4a 2﹣4ab ﹣4a =0,4a (a ﹣b ﹣1)=0,∵关于x 的二次函数,∴a ≠0,∴a ﹣b ﹣1=0,∴a =b +1,∴(b +1)x 2+2(b +1)x +b +1=0,∵因为方程有两个相等的实数根,∴x +x =−2(b+1)b+1=−2, 解得x 1=x 2=﹣1,∴k =﹣1,k a −k b =−1a −1a−1=1a(a−1),A 、当﹣1<a <0时,a ﹣1<0,a (a ﹣1)>0,∴k a−k b >0, ∴k a >k b ,当0<a <1,a ﹣1<0,a (a ﹣1)<0,k a −k b <0, ∴k a<k b , ∴无法确定大小,∴A、C错误;当0<a<1,a﹣1<0,a(a﹣1)<0,k a <kb,∴B、错误;D、正确;故选:D.二.填空题(共6小题)15.(2022•吴兴区校级二模)如图,在平面直角坐标系中,点A(2,4)在抛物线y=a(x ﹣4)2上,过点A作x轴的平行线,交抛物线于另一点B,点C,D在线段AB上,分别过点C,D作x轴的垂线交抛物线于F,E两点.当四边形CDEF为正方形时,线段CD 的长为3或4.【解答】解:把A(2,4)代入y=a(x﹣4)2中得4=4a,解得a=1,∴y=(x﹣4)2,设点C横坐标为m,则CD=CF=8﹣m,∴点F坐标为(m,m﹣4),∴(m﹣4)2=m﹣4,解得m=5或m=4.∴CD=3或4.故答案为:3或4.16.(2022•西湖区校级二模)已知y=﹣x2+6x+12(﹣7≤x≤5),则函数y的取值范围是﹣79≤y≤21.【解答】解:∵y=﹣x2+6x+12=﹣(x﹣3)2+21,∴x>3时,y随x的增大而减小,x<3时,y随x的增大而增大,∵﹣7≤x≤5,∴当x =3时,取得最大值为21, 当x =﹣7时,取得最小值为﹣79,∴当﹣7≤x ≤5时,函数y 的取值范围为﹣79≤y ≤21. 故答案为:﹣79≤y ≤21.17.(2022•宁波模拟)如图,点P 在x 轴的负半轴上,⊙P 交x 轴于点A 和点B (点A 在点B 的左边),交y 轴于点C ,抛物线y =a (x +1)2+2√2−a 经过A ,B ,C 三点,CP 的延长线交⊙P 于点D ,点N 是⊙P 上动点,则⊙P 的半径为 3 ;3NO +ND 的最小值为 6√3 .【解答】解:如图1,连接AC ,BC , ∵AB 为⊙P 的直径, ∴∠ACB =90°, ∵OC ⊥AB ,∴可得:△AOC ∽△COB , ∴OA OC=OC OB,∴OC 2=OA •OB ,∵y =a (x +1)2+2√2−a =ax 2+2ax +2√2, ∴当x =0时,y =2√2, ∴OC =2√2,当y =0时,ax 2+2ax +2√2=0,∴x 1•x 2=2√2a, ∴OA •OB =−2√2a , ∴−2√2a =(2√2)2, ∴a =√24, ∴−√24x 2−√22x +2√2=0,∴x 1=﹣4,x 2=2, ∴AB =6, ∴⊙P 的半径为3, 如图2,在PB 的延长线上截取PM =9,作DQ ⊥AB 于Q , ∵PB =3,OB =2, ∴OP =1, ∴PN OP=PM PN=3,∵∠OPN =∠MPN , ∴△OPN ∽△NPM , ∴MN ON=OP PN=3,∴MN =3ON , ∴DN +3ON =DN +MN ,∴当D 、N 、M 共线时,DN +3ON 最小, ∵PQ =OP =1, ∴MQ =PM +PQ =10,在Rt △MQD 中,DQ =OC =2√2,∴DM=√DQ2+MQ2=√(2√2)2+102=6√3,故答案为:3,6√3.18.(2022•富阳区一模)已知二次函数y=(a2+1)x2﹣2022ax+1的图象经过(m,y1)、(m+1,y2)、(m+2,y3),则y1+y3>2y2(选择“>”“<”“=”填空).【解答】解:y1+y3﹣2y2=(a2+1)m2﹣2022am+1+(a2+1)(m+2)2﹣2022a(m+2)+1﹣2[(a2+1)(m+1)2﹣2022a×(m+1)+1]整理得:y1+y3﹣2y2=2a2+2=2(a2+1)>0,故答案为:>.19.(2022•东阳市模拟)抛物线y=2x2﹣8向右平移1个单位,再向上平移2个单位,平移后抛物线的顶点坐标是(1,﹣6).【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=2x2﹣8向右平移1个单位,再向上平移2个单位所得抛物线的表达式是y=2(x﹣1)2﹣8+2,即y=2(x ﹣1)2﹣6.所以平移后抛物线的顶点坐标是(1,﹣6).故答案是:(1,﹣6).20.(2022•兰溪市模拟)已知抛物线y1=x2﹣2x﹣3,y2=x2﹣x﹣2a,若这两个抛物线与x轴共有3个交点,则a的值为−18或1或3.【解答】解:令y1=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴抛物线y1=x2﹣2x﹣3与x轴的交点为(﹣1,0)和(3,0),∵两个抛物线与x轴共有3个交点,∴抛物线y2=x2﹣x﹣2a与x轴有一个交点或与抛物线y1=x2﹣2x﹣3有一个公共点,令y2=0,则x2﹣x﹣2a=0,①当抛物线y2=x2﹣x﹣2a与x轴有一个交点时,Δ=(﹣1)2﹣4×1×(﹣2a)=1+8a=0,解得:a=−1 8;②当抛物线y2=x2﹣x﹣2a与抛物线y1=x2﹣2x﹣3有一个公共点时,当(﹣1,0)是两条抛物线的公共点时,1+1﹣2a=0,解得:a=1;当(3,0)是两条抛物线的公共点时,9﹣3﹣2a=0,解得:a=3.故答案为:−18或1或3.三.解答题(共13小题)21.(2022•椒江区校级二模)自从某校开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点).(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;(3)问如何将课堂时间分配给精讲和当堂检测,才能使学生在这40分钟的学习收益总量最大?【解答】解:(1)设y=kx,把(1,2)代入,得:k=2,∴y=2x,(0≤x≤40);(2)当0≤x≤8时,设y=a(x﹣8)2+64,把(0,0)代入,得:64a+64=0,解得:a=﹣1,∴y=﹣(x﹣8)2+64=﹣x2+16x,当8<x≤15时,y=64;(3)设学生当堂检测的时间为x分钟(0≤x≤15),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40﹣x)分钟,当0≤x≤8时,W=﹣x2+16x+2(40﹣x)=﹣x2+14x+80=﹣(x﹣7)2+129,当x=7时,W max=129;当8≤x≤15时,W=64+2(40﹣x)=﹣2x+144,∵W随x的增大而减小,∴当x=8时,Wmax=128,综上,当x=7时,W取得最大值129,此时40﹣x=33,答:此“高效课堂”模式分配33分钟时间用于精讲、分配7分钟时间当堂检测,才能使这学生在40分钟的学习收益总量最大.22.(2022•吴兴区校级二模)某公司电商平台在之前举行的商品打折促销活动中不断积累经验,经调查发现,某种进价为a元的商品周销售量y(件)关于售价x(元/件)的函数关系式是y=﹣3x+300(40≤x≤100),如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的一组对应值数据.【周销售利润=(售价﹣进价)×周销售量】x y W401803600(1)求该商品进价a;(2)该平台在获得的周销售利润额W(元)取得最大值时,决定售出的该商品每件捐出m元给当地福利院,若要保证捐款后的利润率不低于20%,求m的最大值.【解答】解:(1)由题意得,(40﹣a)×180=3600,解得a=20,即该商品进价为20元;(2)∵利润=(售价﹣进价)×数量,∴W=(x﹣20)(﹣3x+300)=﹣3(x﹣60)2+4800,当x=60元时,W取得最大值为4800元,售出的该商品每件捐出m 元给当地福利院,若要保证捐款后的利润率不低于20%,由题意得,60−20−m20×100%≥20%,解得m ≤36,即m 的最大值为36元.23.(2022•鹿城区校级模拟)如图,在平面直角坐标系中,边长为2的正方形OABC ,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,抛物线y =x 2+bx +c 经过点A 与点C . (1)求这个二次函数的表达式,并求出抛物线的对称轴.(2)现将抛物线向左平移m (m >0)个单位,向上平移n (n >0)个单位,若平移后的抛物线恰好经过点B 与点C ,求m ,n 的值.【解答】解:(1)由题意,点A 、B 、C 的坐标分别为(2,0)、(2,2)、(0,2), 将(2,0)、(0,2)代入y =x 2+bx +c 中,得{c =24+2b +c =0,解得{b =−3c =2,∴二次函数的表达式为y =x 2﹣3x +2, 该抛物线的对称轴为直线x =−−32=32; (2)y =x 2−3x +2=(x −32)2−14,则平移后的抛物线的表达式为y =(x +m −32)2−14+n , ∵平移后的抛物线恰好经过点B 与点C ,BC ∥x 轴, ∴平移后的对称轴为直线x =1,则m =32−1=12, ∴y =(x −1)2−14+n ,将(0,2)代入,得12−14+n =2,解得:n =54.24.(2022•婺城区模拟)4月16日,婪城区开展全域大规模核酸检测筛查.某小区上午9点开始检测,设6个采样窗口,每个窗口采样速度相同,居民陆续到采集点排队,10点半排队完毕,小明就排队采样的时间和人数进行了统计,得到下表:小明把数据在平面直角坐标系里,描成点连成线,得到如图所示函数图象,在0~90分钟,y是x的二次函数,在90~110分钟,y是x的一次函数.(1)如果B是二次函数图象的顶点,求二次函数解析式.(2)若排队人数在220人及以上,即为满负荷状态,问满负荷状态的时间持续多长?0)采样进行45分钟后,为了减少扎堆排队的时间,社区要求10点15分后,采样可以随到随采,那么至少需新增多少个采样窗口?时间x(分)0153045759095100110人数y(个)601151601952382401801200【解答】解:(1)设二次函数解析式为:y=a(x﹣90)2+240,将A(0,60)代入得a=−1 45,∴曲线AB部分的函数解析式为:y=−145x2+4x+60;(2)设BC的解析式为:y=kx+b,将B(90,240),C(110,0)代入,解得:k=﹣12,b=1320,∴BC的解析式为:y=﹣12x+1320,将y=220代入y=−145x2+4x+60中,解得:x=60或x=120(舍去),将y=220代入y=﹣12x+1320中,解得:x =2753, ∵2753−60=953, ∴满负荷状态的时间为953分;(3)设至少需要新增m 个窗口,1个窗口1分钟采样的人数为:240÷20÷6=2, 10:15分时的排队人数为: 将x =75代入y =−145x 2+4x +60中, 解得:y =235,9:45分至10:15分之间采样的人数为: 2×30×6=360, 235+360=595,∴10点15分后,采样可以随到随采表示595人需要在30分钟内采样完毕, ∴2×(m +6)×30≥595, 解得:m ≥4712, ∵m 为整数, ∴m =4,∴至少需新增4个采样窗口.25.(2022•吴兴区校级二模)如图1,抛物线y =12x 2+bx +c(c <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C 作CD ∥x 轴,与抛物线交于另一点D ,直线BC 与AD 相交于点M .(1)已知点C 的坐标是(0,﹣4),点B 的坐标是(4,0),求此抛物线的解析式; (2)若b =12c +1,求证:AD ⊥BC ;(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线BC 上一点,是否存在这样的点P ,使得△PGQ 是以点G 为直角顶点的直角三角形,且满足∠GQP =∠OCA ,若存在,请直接写出t 的值;若不存在,请说明理由.【解答】(1)解:由题意得:{c =−412×16+4b +c =0,解得:{b =−1c =−4,故抛物线的表达式为:y =12x 2﹣x ﹣4;(2)证明:若b =12c +1,则抛物线的表达式为:y =12x 2+(12c +1)x +c ,令y =12x 2+(12c +1)x +c =0,解得:x =﹣2或﹣c ,即点A 、B 的坐标分别为(﹣2,0)、(﹣c ,0), ∵点C (0,c ),则点D (﹣c ﹣2,c ),由OC =BO =﹣c 知,直线BC 和x 轴负半轴的夹角为45°, 设直线AD 的表达式为:y =k (x +2), 将点D 的坐标代入上式得:c =k (﹣c ﹣2+2), 解得:k =﹣1,即直线AD 和x 轴正半轴的夹角为45°, ∴AD ⊥BC ;(3)解:存在,理由:在Rt △AOC 中,tan ∠ACO =OACO =24=12=tan ∠GPQ , 由点B 、C 的坐标得,直线BC 的表达式为:y =x ﹣4, 设点P (t ,12t 2﹣t ﹣4),点Q (s ,s ﹣4),当点Q 在点P 的下方时,如下图,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N , ∵∠MGQ +∠NGP =90°,∠NGP +∠PGN =90°, ∴∠MGQ =∠PGN , ∵∠QMG =∠GNP =90°, ∴△QMG ∽△GNP , ∴QMGN =GMPN =GQGP =tan∠GPQ =12,即|s−4||t−1|=|1−s||12t 2−t−4|=12,解得:t =2+√22(不合题意的值已舍去); 当点Q 在点P 的上方时,如下图,同理可得:MQ GN=GMPN =2, 即|s−1||12t 2−t−4|=|s−4||t−1|=2,解得:t =2+√13或√13(不合题意的值已舍去); 综上,t =2+√22或2+√13或√13.26.(2022•鹿城区校级模拟)某商店决定购进A,B两种“冰墩墩”纪念品进行销售.已知每件A种纪念品比每件B种纪念品的进价高30元.用1000元购进A种纪念品的数量和用400元购进B种纪念品的数量相同.(1)求A,B两种纪念品每件的进价分别是多少元?(2)该商场通过市场调查,整理出A型纪念品的售价与数量的关系如表,售价x(元/件)50≤x≤6060<x≤80销售量(件)100400﹣5x①当x为何值时,售出A纪念品所获利润最大,最大利润为多少?②该商场购进A,B型纪念品共200件,其中A型纪念品的件数小于B型纪念品的件数,但不小于50件.若B型纪念品的售价为m(m>30)元/件时,商场将A,B型纪念品均全部售出后获得的最大利润为2800元,求m的值.【解答】解:(1)设B纪念品每件的进价是x元,则A纪念品每件的进价是(x+30)元,由题意,得:1000 x+30=400x,解得:x=20,经检验:x=20是原方程的解;当x=20时:x+30=20+30=50;∴A,B两种纪念品每件的进价分别是50元和20元;(2)①设利润为w,由表格,得:当50≤x≤60时,w=(x﹣50)×100=100x﹣5000,∵k=100>0,∴w随着x的增大而增大,。

初三数学一元二次方程综合应用知识精讲浙江试题

初三数学一元二次方程综合应用知识精讲浙江试题

卜人入州八九几市潮王学校初三数学一元二次方程综合应用知识精讲一. 本周教学内容:一元二次方程综合应用二.重难点:综合应用一元二次方程的知识解决实际数学问题三.知识回忆1.复习一元二次方程根与系数的关系。

判别式与实根的分布2.复习二次函数的几何与代数性质3.复习三角函数的有关根本概念与性质例1.设x 1,x 2为关于X 的方程x 2-2mx +m 2-23m +2=0的两个实根。

〔1〕假设x 21+x 22=16,求m 的值〔2〕假设x 21:x 22=1:9,求m 的值解:(1)∵二次方程有实根, ∴△≥0,即40)223(22≥⎥⎦⎤⎢⎣⎡+--m m m ∴6m -8≥0∴m 34≥又x 21+x 22=〔x 1+x 2〕2-2x 1x 2=16∴4m 2-2(m 2-23m +2)=16,即2m 2+3m -20=0 ∴解得m =25或者-4 但m 34≥∴m =25 (2)注意到x 1x 2=m 2-23m +2=(m -43)2+1623>0∴21x x 同号∴x 1:x 2=1:3即x 1+x 2=4k =2m21x x =3k 2=m 2-23m +2 ∴4k 2=m 2 ∴解方程组⎪⎩⎪⎨⎧+-==223342222m m k m k ∴3422322=+-m m m 解得m 0862=+-m ∴由m 34≥可知,m =2或者4 此题的〔2〕关键是确定21x x 的符号,防止了讨论求解。

例2.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,一元二次方程x 2-ax +3=0的两根之差为6,二次函数y =x 1sin sin sin sin sin 2222-+++C B A Bx A 的图象与x 轴只有一个交点〔1〕求a 的值和∠C 的度数〔2〕当C =t 331t -,其中t 是方程x01836=--x 的根,求S △ABC 解:〔1〕设x 1,x 2为方程x 032=+-ax 的两实根那么x 1+x 2=a ,x 1x 2=3212212214)()(x x x x x x -+=-=a 2-12且a>0又21x x -=6 ∴122-a =6解得a =43∵抛物线与x 轴只有一个交点,∴0)]1sin sin (sin sin [sin 42222=-+-C B A B A∴sinC =1∴∠C =90(2)∵t 为x01836=--x 的根, ∴t01836=--t ∴t 3681t =-〔*〕又C =363311t t t t -=- ∴将〔*〕代入,化简得C =8Rt △ABC 中,∠C =90 ,a =43,c =8,∴b =422=-a c∴S △ABC =21ab =83 〔答题时间是:30分钟〕1.设关于x 的一元二次方程mx 2-nx +2=0的两根相等,方程x 2-4mx +3n =0的两根之比为1:3,试判断方程x 2-(n +k)x +(k -m)=0的实根的情况。

备战中考数学基础必练(浙教版)一元二次方程(含解析)

备战中考数学基础必练(浙教版)一元二次方程(含解析)

2019备战中考数学基础必练(浙教版)-一元二次方程(含解析)一、单选题1.已知x=1是一元二次方程x2+bx+1=0的解,则b的值为()A.0B.1C.﹣2D.22.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=23.将方程x2﹣2x﹣3=0化为(x﹣m)2=n的形式,指出m,n分别是()A.1和3B.﹣1和3C.1和4D.﹣1和44.下列方程中有两个相等的实数根的是()A.x2=1B.(x+1)2=0C.x2+1=0D.2(x+1)=05.汽车刹车后行驶的距离s(单位:米)与行驶的时间t(单位:秒)的函数关系式是s=15t-6t2,那么汽车刹车后几秒停下来?()A.2B.1.25C.2.5D.36.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是()A.4B. -4C.1D. -17.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a<2B.a>2C.a<2且a≠1D.a<-2二、填空题8.一元二次方程x2-4=0的解是________.9.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为________%.10.关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是________.11.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,写出一个满足条件的实数m值:m=________.12.把方程(x﹣1)2+2=2x(x﹣3)化为一般形式是________,其中二次项是________ ,一次项系数是________13.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为________14.已知x=1是关于x的一元二次方程2x2+kx﹣1=0的一个根,则实数k的值是________,另一根是________.15.方程x2﹣3x+2=0的根是________.16.设方程x2﹣3x﹣1=0的两根分别为x1,x2,则x1+x2=________.17.一元二次方程x2+3﹣2 x=0的解是________.三、计算题18.解方程:3x(x﹣2)=x﹣2.19.解下列方程:(1)x2﹣25=0(2)x2+10x+9=0(3)(x﹣2)2=3(4)x2﹣7x+10=0.四、解答题20.如图,利用一面长度为7米的墙,用20米长的篱笆能否围出一个面积为48平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.21.从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽m,竖着比城门高m,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程,并把它化为一般形式.五、综合题22.某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为200m2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.23.已知方程x2+2kx+k2﹣2k+1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x12+x22=4,求k的值.答案解析部分一、单选题1.【答案】C【考点】一元二次方程的解【解析】【解答】解:把x=1代入x2+bx+1=0得1+b+1=0,解得b=﹣2.故选C.【分析】根据一元二次方程解的定义,把x=1代入x2+bx+1=0得关于b的一次方程,然后解一次方程即可.2.【答案】A【考点】解一元二次方程-因式分解法【解析】【解答】解:方程整理得:x(x+2)=0,解得:x1=0,x2=﹣2.故选A.【分析】方程整理后,利用因式分解法求出解即可.3.【答案】C【考点】解一元二次方程-配方法【解析】【解答】解:移项得x2﹣2x=3,配方得x2﹣2x+1=4,即(x﹣1)2=4,∴m=1,n=4.故选C.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.4.【答案】B【考点】根的判别式【解析】【解答】解:A、方程整理得:x2﹣1=0,这里a=1,b=0,c=﹣1,∴∴=b2﹣4ac=4>0,∴方程有两个不相等的实数根,本选项不合题意;B、方程整理得:x2+2x+1=0,这里a=1,b=2,c=1,∴∴=b2﹣4ac=0,∴方程有两个相等的实数根,本选项符合题意;C、这里a=1,b=0,c=1,∴∴=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;D、2x+2=0为一元一次方程,只有一个解,本选项不合题意,故选B【分析】各选项中的方程整理为一般形式,找出方程中的a,b及c的值,计算出根的判别式的值,根的判别式值为0即满足题意.5.【答案】B【考点】一元二次方程的应用【解析】【解答】∴s=15t-6t2=-6(t-1.25)2+9.375,∴汽车刹车后1.25秒,行驶的距离是9.375米后停下来.故选:B.【分析】利用配方法求二次函数最值的方法解答即可6.【答案】C【考点】根与系数的关系【解析】【解答】解:∴一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1,故选C.【分析】直接根据根与系数的关系求解即可.7.【答案】C【考点】根的判别式【解析】【分析】先根据判别式求得a的取值范围,再由a-1不等于0即可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学一轮专题复习第8讲一元二次方程及应用精讲精练浙教版考点一、一元二次方程的有关概念【例1】下列方程中是关于x的一元二次方程的是( )A.x2+1x2=0 B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=0方法总结方程是一元二次方程要同时满足下列条件:①是整式方程;②只含有一个未知数;③未知数的最高次数为2;④二次项系数不等于0.容易忽略的是条件①和④.举一反三方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,则a的值是()A.0 B.1 C.2 D.3考点二、一元二次方程的解法【例2】解方程:(2x﹣1)2=x(3x+2)﹣7方法总结此类题目主要考查一元二次方程的解法及优化选择,常常涉及到配方法、公式法、因式分解法.选择解法时要根据方程的结构特点,系数(或常数)之间的关系灵活进行,解题时要讲究技巧,尽量保证准确、迅速.举一反三 1.解方程:(x2+4)(x2+1)=2x(4+x2)2.解方程组:5 x y12= +=⎪⎩3.解方程组:4.解关于x的方程:a2(x2﹣x+1)﹣a(x2﹣1)=(a2﹣1)x.考点三、一元二次方程根的判别式的应用【例3】如果关于x的方程(m+1)x2+2mx+m﹣1=0有实数根,则()A.m≠1 B.m=﹣1 C.m≠±1 D.m为全体实数方法总结由于一元二次方程有两个相等的实数根,可得根的判别式b2-4ac=0,从而得到一个关于m的方程,解方程求得m的值即可.一元二次方程根的判别式的应用主要有以下三种情况:(1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围;(3)应用判别式证明方程根的情况.举一反三 1.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.2.已知关于x的一元二次方程x2﹣2x+a(x+a)=0的两个实数根为x1,x2,若y=x1+x2+.(1)当a≥0时,求y的取值范围;(2)当a≤﹣2时,比较y与﹣a2+6a﹣4的大小,并说明理由.考点四、一元二次方程根与系数的关系【例4】已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.方法总结 解决本题的关键是把给定的代数式经过恒等变形化为含x 1+x 2,x 1x 2的形式,然后把x 1+x 2,x 1x 2的值整体代入.研究一元二次方程根与系数的关系的前提为:①a ≠0,②b 2-4ac ≥0.因此利用一元二次方程根与系数的关系求方程的系数中所含字母的值或范围时,必须要考虑这一前提条件.举一反三 1.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n= .2. 若t 是一元二次方程2ax bx c 0(a 0)++=≠的根,则判别式2b 4a c ∆=-和完全平方式M=()22at b +的大小关系是( )A.△=MB.△>MC.△<MD.大小关系不能确定 3. 已知,关于x 的一元二次方程x 2﹣(a ﹣4)x ﹣a+3=0(a <0). (1)求证:方程一定有两个不相等的实数根;(2)设方程的两个实数根分别为x 1,x 2(其中x 1<x 2),若y 是关于a 的函数,且y=,求这个函数的解析式;(3)在(2)的条件下,利用函数图象,求关于a 的方程y+a+1=0的解.考点五、用一元二次方程解实际问题【例5】汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2014年我市某种品牌汽车的年产量为6.4万辆,到2016年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2014年开始五年内保持不变,则该品牌汽车2016年的年产量为多少万辆?方法总结此题是一道典型的增长率问题,主要考查列一元二次方程解应用题的一般步骤.解应用题的关键是把握题意,找准等量关系,列出方程.最后还要注意求出的未知数的值是否符合实际意义,不符合的要舍去.举一反三受房贷收紧、对政策预期不确定等因素影响,今年前两个月,全国商品住宅市场销售出现销售量和销售价齐跌态势,数据显示,2016年前两个月,某房地产开发公司的销售面积一共8300平方米,其中2月份比1月份少销售300平方米.(1)求2016年1、2月份各销售了多少平方米;(2)该公司2月份每平方米的售价为8000元,3月份开始,决定以降价促销的方式应对当前的形势,据调查,与2月份相比较,每平方米销售单价下调a%,则销售面积将增加(a+10)%,结果3月份总销售额为3456万元,求a 的值.一、选择题1.关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D.根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种2.关于x 的方程220x px q --=(p ,q 是正整数), 若它的正根小于或等于4,则正根是整数的概率是( ) A .512 B .14 C .13D .123.如果关于x 的一元二次方程ax 2+bx+c=0有两个实数根,且其中一个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( ) A .方程x 2﹣4x+3=0是3倍根方程B .若关于x 的方程(x ﹣3)(mx+n )=0是3倍根方程,则m+n=0C .若m+n=0且m ≠0,则关于x 的方程(x ﹣3)(mx+n )=0是3倍根方程D .若3m+n=0且m ≠0,则关于x 的方程x 2+(m ﹣n )x ﹣mn=0是3倍根方程 4.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( ) A .4 B .﹣4 C .1D .﹣1二、填空题1.将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降 次法”. 已知012=--x x ,可用“降次法”求得432014x x -+值是 .2.(2014下城区一模,14)已知等腰三角形的一腰为x ,周长为20,则方程212310x x -+= 的根为 .3.(2013上城区一模,13)已知1-=x 是一元二次方程0102=-+bx ax 的一个解,且b a -≠,则ba b a 2222+-的值为 .三、解答题1.已知方程x 2﹣4x+3=0:,解决以下问题: (1)不解方程判断此方程的根的情况;(2)请按要求分别解这个方程:①配方法;②因式分解法. (3)这些方法都是将解 转化为解 ; (4)尝试解方程:x 3﹣x=02.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度; (2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.1.设a、b是方程x2+x﹣2018=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.20172.已知m、n是方程x2﹣3x﹣1=0的两根,且(2m2﹣6m+a)(3n2﹣9n﹣5)=10,则a的值为()A.7 B.﹣7 C.3 D.﹣33.已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= .4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.5.如图,在一块长为22米、宽为17米的矩形地面上,要修建一条长方形道路LMPQ及一条平行四边形道路RSTK,剩余部分种上草坪,使草坪面积为300平方米.若LM=RS=x米,则根据题意可列出方程为.6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,则mn= .7.选择适当方法解下列方程:(1)x2﹣5x+1=0(用配方法);(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0(公式法);(4)(y+2)2=(3y﹣1)2.8.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2﹣4x+5m=mx+5与x2+x+m﹣1=0互为“友好方程”,求m的值.9.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= ,= ,= ;(2)2x2﹣7x+2=0(x≠0),求的值.10.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.11.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.12.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.13.阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.答案【例1】 C举一反三 C【例2】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4举一反三 1.解:(x2+4)(x2+1)=2x(4+x2),两边同时除以x2+4得:x2+1=2x,整理得:x2﹣2x+1=0,(x﹣1)2=0,∴x1=x2=12.解:令,则等价于解方程组,解得或.继而解得或.经检验它们都是原方程组的解.3.解:由①得2x=﹣y﹣2,两边平方得:4x2=5y2+20y+20③,把③代入②,整理得7y2+10y﹣8=0,解得:y1=﹣2或y2=,代入②得x1=0或x2=﹣,故原方程组的解为或4.解:整理方程得(a2﹣a)x2﹣(2a2﹣1)x+(a2+a)=0.(1)当a2﹣a≠0,即a≠0,1时,原方程为一元二次方程,[ax﹣(a+1)][(a﹣1)x﹣a]=0,x1=,x2=;(2)当a2﹣a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2【例3】 D举一反三 1. k≥﹣6解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.2.解:(1)由x2﹣2x+a(x+a)=0得,x2+(a﹣2)x+a2=0△=(a﹣2)2﹣4××a2=﹣4a+4∵方程有两个实数根,∴﹣4a+4≥0.∴a≤1∵a≥0∴0≤a≤1∴y=x1+x 2+=﹣4a+8+a=﹣3a+8∵﹣3≤0,∴y 随a 的增大而减小当a=0时,y=8;a=1时,y=5∴5≤y≤8.(2)由(1)得a≤1,又a≤﹣2,∴a≤﹣2∴y=x1+x 2+=﹣4a+8﹣a=﹣5a+8当a=﹣2时,y=18;∵﹣3≤0∴y 随a 的增大而减小.∴当a≤﹣2时,y≥18又∵﹣a 2+6a ﹣4=﹣(a ﹣3)2+5≤5而18>5∴当a≤﹣2时,y >﹣a 2+6a ﹣4【例4】解:(1)依题意,得b 2-4ac ≥0,即[-2(k -1)]2-4k 2≥0,解得k ≤12. (2)依题意,可知x 1+x 2=2(k -1).由(1)可知k ≤12,∴2(k -1)<0,即x 1+x 2<0. ∴-2(k -1)=k 2-1,解得k 1=1,k 2=-3.∵k ≤12,∴k =-3. 举一反三 1. 8解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=82. A3.解:(1)△=(a﹣4)2+4(a﹣3)=a2﹣4a+4=(a﹣2)2∵a<0,∴(a﹣2)2>0.∴方程一定有两个不相等的实数根;(2),∴x=a﹣3或.∵a<0,x1<x2,∴x1=a﹣3,x2=﹣1,∴(a<0);(3)如图,在同一平面直角坐标系中分别画出(a<0)和y=﹣a﹣1(a<0)的图象.由图象可得当a<0时,方程y+a+1=0的解是a=﹣2.【例5】解:设该品牌汽车年产量的年平均增长率为x ,由题意,得6.4(1+x)2=10,解得x 1=0.25,x 2=-2.25.∵x 2=-2.25<0,故舍去,∴x =0.25=25%.10×(1+25%)=12.5.答:2016年的年产量为12.5万辆.举一反三 解:(1)设1月份的销售面积为xm 2,则x+(x ﹣300)=8300,解得:x=4300,∴x ﹣300=4000m 2,答:2016年度月销售4300m 2,2月份销售4000m 2.(2)由题意可得:8000(1﹣a%)×4000[1+(a+10)%]=34560000令t=a%,则整理为:50t 2+5t ﹣1=0,解得:t=0.1或t=﹣0.2故a=10或a=﹣20(不符合题意,舍去)答:a 的值为10.一、选择题1. B2. A3. B4. D二、填空题1.20162.3.5三、解答题1.解:(1)041216>=-=∆,有两个不相等的实数根(2)①配方法:1,3,01)2(212===--x x x ;② 因式分解法:3,1,0)3)(1(21===--x x x x(3)一个一元二次方程,两个一元一次方程(4)1,1,0,0)1)(1(321-====+-x x x x x x2.解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.1.D解:∵a、b是方程x2+x﹣2014=0的两个实数根,∴a+b=﹣1;又∵a2+a﹣2014=0,∴a2+a=2014,∴a2+2a+b=(a2+a)+(a+b)=2018+(﹣1)=2017即a2+2a+b的值为2017.2.B解:∵m、n是方程x2﹣3x﹣1=0的两根,∴代入方程可以分别得到m2﹣3m﹣1=0,n2﹣3n﹣1=0,∴m2﹣3m=1,n2﹣3n=1,∴2m2﹣6m=2,3n2﹣9n=3,而(2m2﹣6m+a)(3n2﹣9n﹣5)=10,∴(2+a)(3﹣5)=10,∴a=﹣7.3.﹣解:∵m≠n时,则m,n是方程3x2+6x﹣5=0的两个不相等的根,∴m+n=﹣2,mn=﹣.∴原式====﹣,4.k<且k≠05.(22﹣x)(17﹣x)=3006.﹣2解:∵x2+mx+n=0是“凤凰”方程,∴1+m+n=0,即n=﹣m﹣1.又∵方程x2+mx+n=0有两个相等的实数根,∴△=m2﹣4n=0,将n=﹣m﹣1代入,得m2﹣4(﹣m﹣1)=0,解得m=﹣2,∴n=1,∴mn=﹣2×1=﹣2.故答案为﹣2.7.解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.8.解:x2﹣4x+5m=mx+5,整理得,x2﹣(4+m)x+5(m﹣1)=0,分解因式得,(x﹣5)[x﹣(m﹣1)]=0,解得x1=5,x2=m﹣1.当x=5时,25+5+m﹣1=0,解得m=﹣24﹣5;当x=m﹣1时,(m﹣1)2+(m﹣1)+m﹣1=0,解得m=1或m=﹣.所以m的值为﹣24﹣5或1或﹣.9.解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.10.解:(1)根据题意得△=4(m+1)2﹣4(m2+5)≥0,解得m≥2,x1+x2=2(m+1),x1x2=m2+5,∵(x1﹣1)(x2﹣1)=28,即x1x2﹣(x1+x2)+1=28,∴m2+5﹣2(m+1)+1=28,整理得m2﹣2m﹣24=0,解得m1=6,m2=﹣4,而m≥2,∴m的值为6;(2)若x1=7时,把x=7代入方程得49﹣14(m+1)+m2+5=0,整理得m2﹣14m+40=0,解得m1=10,m2=4,当m=10时,x1+x2=2(m+1)=22,解得x2=15,而7+7<15,故舍去;当m=4时,x1+x2=2(m+1)=10,解得x2=3,则三角形周长为3+7+7=17;若x1=x2,则m=2,方程化为x2﹣6x+9=0,解得x1=x2=3,则3+3<7,故舍去,所以这个三角形的周长为17.11.(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△AB C的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.12.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.13.解:(1)设++…+=t,则原式=(1﹣t)×(t+)﹣(1﹣t﹣)×t=t+﹣t2﹣t﹣t+t2+t=;(2)设x2+5x+1=t,则原方程化为:t(t+6)=7,t2+6t﹣7=0,解得:t=﹣7或1,当t=1时,x2+5x+1=1,x2+5x=0,x(x+5)=0,x=0,x+5=0,x1=0,x2=﹣5;当t=﹣7时,x2+5x+1=﹣7,x2+5x+8=0,b2﹣4ac=52﹣4×1×8<0,此时方程无解;即原方程的解为:x1=0,x2=﹣5.2019-2020年中考数学一轮专题复习第9讲函数概念与平面直角坐标系知识梳理及自主测试浙教版.了解函数的有关概念和函数的表示方法,并会求函数一、平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相垂直的数轴的交点O 称为原点,水平的数轴叫x 轴,竖直的数轴叫y 轴,整个坐标平面被x 轴、y 轴分割成四个象限.2.各象限内点的坐标特征点P(x ,y)在第一象限⇔x >0,y >0; 点P(x ,y)在第二象限⇔x <0,y >0; 点P(x ,y)在第三象限⇔x <0,y <0; 点P(x ,y)在第四象限⇔x >0,y <0. 3.坐标轴上的点的坐标特征点P(x ,y)在x 轴上⇔y =0,x 为任意实数; 点P(x ,y)在y 轴上⇔x =0,y 为任意实数; 点P(x ,y)在坐标原点⇔x =0,y =0. 二、特殊点的坐标特征1.对称点的坐标特征点P(x ,y)关于x 轴的对称点P 1的坐标为(x ,-y);关于y 轴的对称点P 2的坐标为 (-x ,y);关于原点的对称点P 3的坐标为(-x ,-y). 2.与坐标轴平行的直线上点的坐标特征 平行于x 轴:横坐标不同,纵坐标相同; 平行于y 轴:横坐标相同,纵坐标不同. 3.各象限角平分线上点的坐标特征第一、三象限角平分线上的点横坐标与纵坐标相同,第二、四象限角平分线上的点横坐标与纵坐标相反.4.点的平移将点P(x ,y)向右(或向左)平移a 个单位,可以得到对应点(x +a ,y)[或(x -a ,y)];将点P(x ,y)向上(或向下)平移b 个单位,可以得到对应点(x ,y +b)[或(x ,y -b)]. 三、距离与点的坐标的关系1.点与原点、点与坐标轴的距离点P(x ,y)到x 轴和y 轴的距离分别是|y|和|x|,点P(x ,y)到坐标原点的距离为x 2+y 2. 2.两点间的距离(1)在x 轴上两点P 1(x 1,0),P 2(x 2,0)间的距离|P 1P 2|=|x 1-x 2|. (2)在y 轴上两点Q 1(0,y 1),Q 2(0,y 2)间的距离|Q 1Q 2|=|y 1-y 2|(3)在x 轴上的点P 1(x 1,0)与y 轴上的点Q 1(0,y 1)之间的距离|P 1Q 1|=x 21+y 21. (4)点P 1(x 1,y 1)与点Q 1(x 2,y 1)之间的距离|P 1Q 1|=2)21(2)21(y y x x -+-.四、函数有关的概念及图象1.函数的概念一般地,在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说y 是x 的函数,x 是自变量.2.常量和变量在某一变化过程中,保持一定数值不变的量叫做常量;可以取不同数值的量叫做变量. 3.函数的表示方法函数主要的表示方法有三种:(1)解析法;(2)列表法;(3)图象法. 4.函数图象的画法(1)列表:在自变量的取值范围内取值,求出相应的函数值;(2)描点:以x 的值为横坐标,对应y的值作为纵坐标,在坐标平面内描出相应的点;(3)连线:按自变量从小到大的顺序用光滑曲线连接所描的点.五、函数自变量取值范围的确定确定自变量取值范围的方法:1.自变量以分式形式出现,它的取值范围是使分母不为零的全体实数.2.当自变量以二次方根形式出现,它的取值范围是使被开方数为非负数.3.当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数.4.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.1.在平面直角坐标系中,点M(-2,3)在( )A.第一象限 B.第二象限 C.第三象限D.第四象限2.点M(-2,1)关于x轴对称的点的坐标是( )A.(-2,-1) B.(2,1) C.(2,-1) D.(1,-2)3.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣14.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.6.若函数,则当函数值y=8时,自变量x的值等于.7.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=a h=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积”为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.答案:1. B2. A3. A4. A5.B解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.6.4或﹣解:①当x≤2时,x2+2=8,解得:x=﹣;②当x>2时,2x=8,解得:x=4.故答案为:4或﹣.7.解:(1)由题意:“水平底”a=1﹣(﹣3)=4,当t>2时,h=t﹣1,则4(t﹣1)=12,解得t=4,故点P的坐标为(0,4);当t<1时,h=2﹣t,则4(2﹣t)=12,解得t=﹣1,故点P的坐标为(0,﹣1),所以,点P的坐标为(0,4)或(0,﹣1);(2)∵a=4,∴t=1或2时,“铅垂高”h最小为1,此时,A,B,P三点的“矩面积”的最小值为4.。

相关文档
最新文档