高三数列综合小题
高三数学数列试题答案及解析
高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。
【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。
,当,又故存在实数M,使得对一切M的最小值为2/9。
4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。
因为,,所以。
故选B。
【考点】等差数列的性质点评:在等差数列中,成等差数列。
6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。
(1)求数列的通项公式;(2)证明:。
【答案】(1);(2)证明见解析。
【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。
高三数列综合专题复习
高三数列综合专题复习 班级 姓名 探究点3 数列与函数、不等式的综合问题1.[2011·青岛一模] 数列{a n }的前n 项和为S n ,a 1=t ,点(S n ,a n +1)在直线y =2x +1上,n ∈N *.(1)当实数t 为何值时,数列{a n }是等比数列?(2)在(1)的结论下,设b n =log 3a n +1,T n 是数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,求T 2011的值.2.[2011·广州二模] 已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210.(1)求数列{a n }的通项公式;(2)设b n =a n a n +1,是否存在m 、k (k >m ≥2,k ,m ∈N *),使得b 1、b m 、b k 成等比数列?若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.3. [2011·惠州一模] 已知f (x )=log m x (m 为常数,m >0且m ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)求证:数列{a n }是等比数列;(2)若b n =a n f (a n ),记数列{b n }的前n 项和为S n ,当m =2时,求S n ;(3)若c n =a n lg a n ,问是否存在实数m ,使得{c n }中每一项恒小于它后面的项?若存在,求出实数m 的取值范围.[思路] (1)由已知可得数列{f (a n )}的通项公式,利用函数f (x )的解析式,可得{a n }的通项公式,再根据等比数列的定义可证明数列{a n }是等比数列;(2)由数列{b n }的通项公式,知符合错位相减法求和;(3)由条件得不等式c n -1<c n ,分类讨论,化归为不等式恒成立问题求解.4.已知数列{}n a 满足对任意的*n ∈N ,都有0n a >,且()23331212n n a a a a a a +++=+++. (1)求1a ,2a 的值;(2)求数列{}n a 的通项公式n a ;(3)设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,不等式()1log 13n a S a >-对任意的正整数n 恒成立,求实数a 的取值范围.5.已知曲线C :440xy x -+=,数列{}n a 的首项14a =,且当2n ≥时,点1(,)n n a a -恒在曲线C 上,数列{}n b 满足12n nb a =-.(1)试判断数列{}n b 是否是等差数列?并说明理由;(2)求数列{}n a 和{}n b 的通项公式;(3)设数列{}n c 满足21n n n a b c =,试比较数列{}n c 的前n 项和n S 与2的大小.6.已知函数)(x f 满足:对任意的0,≠∈x R x ,恒有x xf =)1(成立,数列}{}{n n b a 、满足1,111==b a ,且对任意+∈N n ,均有.1,2)()(11nn n n n n n a b b a f a f a a =-+=++ ( I )求函数)(x f 的解析式; ( II )求数列}{}{n n b a 、的通项公式;(III)对于]1,0[∈λ,是否存在+∈N k ,使得当k n ≥时,)()1(n n a f b λ-≥恒成立?若存在,试求k 的最小值;若不存在,请说明理由.探究点4 数列与导数、解析几何、不等式的综合问题1.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n 的前n 项和的公式是 .2. [2011·陕西卷] 如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.现从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.[点评] 数列与解析几何的综合问题,往往是数列的某几项或数列的通项作为曲线上的点的坐标来建立关系,或者是含数列通项的点在曲线的切线上,这样就会把导数综合在一起.因此此类问题一般是数列的递推关系问题.3.已知二次函数)(x f y =的图像经过坐标原点,其导函数为26)('-=x x f ,数列}{n a 的前n 项和为n S ,点),(n S n (n ∈N *) 均在函数)(x f y =的图像上.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设13+=n n n a a b ,n T 是数列}{n b 的前n 项和,求使得20m T n <对所有n ∈N *都成立的最小正整数m ;4.已知函数2()4f x x =-,设曲线()y f x =在点(,())n n x f x 处的切线与x 轴的交点为1(,0)n x +(*)n N ∈,其中1x 为正实数.(Ⅰ)用n x 表示1n x +; (Ⅱ)若14x =,记2lg 2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式;5.已知函数2()1f x x x =+-,α、β是方程以()0f x =的两个根(α>β),()f x '是()f x 的导数.设11()1,(1,2,3,)()n n n n f a a a a n f a +==-='.(1)求α、β的值; (2)已知对任意的正整数n 有n a α>,记ln (1,2,3,)n n n a b n a βα-==-求数列{n b }的前n 项和Sn .6.已知函数()x x x f -+=1ln )(,证明:()x x x ≤+≤+-1ln 1117.已知n 为正整数,曲线n n n n n L y x P nx y C 处的切线在其上一点),(:=总经过定点(1-,0)(1)求证点列:n P P P ,,,21 在同一直线上(2)若记 f(k)+f(k+1)+f(k+2)++ f(n)=∑=n k i i f )(,其中k, n 为正整数且k ≤n 求证:∑=++<<+n i i n y n 121)1ln(1)1ln( (n *N ∈)探究点3 数列与函数、不等式的综合问题1.[解答] (1)由题意得a n +1=2S n +1,a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2), 所以当n ≥2时,{a n }是等比数列.要使n ≥1时,{a n }是等比数列,则只需a 2a 1=2t +1t=3,从而t =1. (2)由(1)得知a n =3n -1,b n =log 3a n +1=n , 1b n ·b n +1=1(n +1)n =1n -1n +1, T 2011=1b 1b 2+1b 2b 3+…+1b 2011b 2012=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12011-12012=20112012.2.[解答] (1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d . 由已知,得⎩⎨⎧10a 1+10×92d =55,20a 1+20×192d =210, 即⎩⎪⎨⎪⎧ 2a 1+9d =11,2a 1+19d =21.解得⎩⎪⎨⎪⎧a 1=1,d =1. 所以a n =n (n ∈N *).(2)假设存在m 、k (k >m ≥2,m ,k ∈N *),使得b 1、b m 、b k 成等比数列,则b 2m =b 1b k . 因为b n =a n a n +1=n n +1,所以b 1=12,b m =m m +1,b k =k k +1. 所以⎝⎛⎭⎫m m +12=12×k k +1.整理,得k =2m 2-m 2+2m +1. 以下给出求m ,k 的三种方法:方法一:因为k >0,所以-m 2+2m +1>0. 解得1-2<m <1+ 2.因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2,k =8,使得b 1、b m 、b k 成等比数列.方法二:因为k >m ,所以k =2m 2-m 2+2m +1>m .即2m m 2-2m -1+1<0,即m 2-1m 2-2m -1<0. 解得-1<m <1-2或1<m <1+ 2.因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2,k =8,使得b 1、b m 、b k 成等比数列.方法三:因为k >m ≥2,所以k =2m 2-m 2+2m +1>2. 即m 2m 2-2m -1+1<0,即2m 2-2m -1m 2-2m -1<0. 解得1-2<m <1-32或1+32<m <1+2, 因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2、k =8,使得b 1、b m 、b k 成等比数列.3.[解答] (1)由题意知f (a n )=4+2(n -1)=2n +2,即log m a n =2n +2,∴a n =m 2n +2. ∴a n +1a n =m 2(n +1)+2m2n +2=m 2. ∵m >0且m ≠1,∴m 2为非零常数,∴数列{a n }是以m 4为首项,m 2为公比的等比数列.(2)由题意b n =a n f (a n )=m 2n +2log m m 2n +2=(2n +2)·m 2n +2, 当m =2时,b n =(2n +2)·2n +1=(n +1)·2n +2. ∴S n =2·23+3·24+4·25+…+(n +1)·2n +2,① ①式乘以2,得2S n =2·24+3·25+4·26+…+n ·2n +2+(n +1)·2n +3.② ②-①并整理,得S n =-2·23-24-25-26-…-2n +2+(n +1)·2n +3 =-23-[23+24+25+…+2n +2]+(n +1)·2n +3 =-23-23[1-2n ]1-2+(n +1)·2n +3 =-23+23(1-2n )+(n +1)·2n +3 =n ·2n +3. (3)由题意c n =a n lg a n =(2n +2)·m 2n +2lg m , 要使c n -1<c n 对一切n ≥2成立,即n lg m <(n +1)·m 2·lg m 对一切n ≥2成立,①当m >1时,有lg m >0,则n <(n +1)m 2对n ≥2成立; ②当0<m <1时,有lg m <0,则n >(n +1)m 2, ∴n >m 21-m 2对一切n ≥2成立,只需2>m 21-m 2,解得-63<m <63,考虑到0<m <1,∴0<m <63. 综上,当0<m <63或m >1时,数列{c n }中每一项恒小于它后面的项. 4.(1)解:当1n =时,有3211a a =,由于0n a >,所以11a =.当2n =时,有()2331212a a a a +=+,将11a =代入上式,由于0n a >,所以22a =. (2)解:由于()23331212n n a a a a a a +++=+++, ①则有()23333121121n n n n a a a a a a a a ++++++=++++. ②②-①,得()()223112112n n n n a a a a a a a a ++=++++-+++,由于0n a >,所以()211212n n n a a a a a ++=++++. ③同样有()21212n n n a a a a a -=++++()2n ≥, ④③-④,得2211n n n n a a a a ++-=+. 所以11n n a a +-=.由于211a a -=,即当n ≥1时都有11n n a a +-=,所以数列{}n a 是首项为1,公差为1的等差数列.故n a n =.(3)解:由(2)知n a n =,则()211111222n n a a n n n n +⎛⎫==- ⎪++⎝⎭.所以13243511211111n n n n n S a a a a a a a a a a -++=+++++1111111111111112322423521122n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭.∵()()11013n n S S n n +-=>++,∴数列{}n S 单调递增.所以()1min 13n S S ==. 要使不等式()1log 13n a S a >-对任意正整数n 恒成立,只要()11log 133a a >-.∵10a ->,∴01a <<.∴1a a ->,即102a <<.所以,实数a 的取值范围是10,2⎛⎫⎪⎝⎭.5.解:(1)∵当2n ≥时,点1(,)n n a a -恒在曲线C 上∴11440n n n a a a ---+=-----------------------------------------------1分 由12n nb a =-得当2n ≥时,111122n n n n b b a a ---=---111422n n n n n n a a a a a a ----=--+11142244n n n n n a a a a a ----=--+-111222n n n n a a a a ---==--+----5分∴数列{}n b 是公差为12-的等差数列.-------------------------------------------------------6分 (2)∵1a =4,∴111122b a ==-- ∴111(1)()222n b n n =-+-⨯-=------------------------------------8分由12n n b a =-得1222n n a b n=-=+-----------------------------------------------10分 (3)∵21n n n a b c = ∴212(1)n n n c a b n n ==+=112()1n n -+----------------------12分 ∴12n n S c c c =+++111112[(1)()()]2231n n =-+-++-+12(1)21n =-<+-----14分 6.解:( I )由x x f =)1(易得)0(,1)(≠=x x x f ----------------------------------------------2分( II )由2)()(1+=+n n n n a f a f a a 得21)(2111+=+=+nn n n n a a f a a a ,所以2111=-+n n a a .所以数列}1{na 是以1为首项,2为公差的等差数列所以12)1(211-=-+=n n a n ,得+∈-=N n n a n ,121.---5分因为.1211-==-+n a b b nn n 所以 113)52()32()()()(112211+++⋅⋅⋅+-+-=+-+⋅⋅⋅+-+-=---n n b b b b b b b b n n n n n 2212)22)(1(2+-=+--=n n n n .- (III)对于]1,0[∈λ时,)()1(n n a f b λ-≥恒成立,等价于]1,0[∈λ时,⋅-≥+-)1(222λn n)12(-n 恒成立,等价于]1,0[∈λ时,034)12(2≥+-+⋅-n n n λ恒成立,设034)12()(2≥+-+-=n n n g λλ,对于]1,0[∈λ,034)12(2≥+-+⋅-n n n λ恒成立, 10分则有⎩⎨⎧≥≥,0)1(,0)0(g g 解得3≥n 或1≤n --------------------------------------13分由此可见存在+∈N k 使得当k n ≥时,)()1(n n a f b λ-≥恒成立,其最小值为3. 14分探究点4 数列与导数、解析几何、不等式的综合问题2.[解答] (1)设P k -1(x k -1,0),由y ′=e x 得Q k -1(x k -1,e x k -1)点处切线方程为y -e x k -1=e x k-1(x -x k -1),由y =0得x k =x k -1-1(2≤k ≤n ).(2)由x 1=0,x k -x k -1=-1,得x k =-(k -1), 所以|P k Q k |=e xk =e-(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e-(n -1)=1-e -n 1-e -1=e -e 1-n e -1.3.(Ⅰ)依题设)0()(2≠+=a bx ax x f ,由b ax x f +=2)('又由26)('-=x x f 得3=a ,2-=b ,∴xx x f 23)(2-=,所以nn S n 232-=,当2≥n 时=-=-1n n n S S a56)]1(2)1(3[)23(22-=-----n n n n n ,当1=n 时,51611213211-⨯==⨯-⨯==S a 也符合,∴)(56*N n n a n ∈-=. (Ⅱ)由(Ⅰ)得)161561(21]5)1(6)[56(331+--=-+-==+n n n n a a b n n n , ∴)1611(21)]161561()13171()711[(211+-=+--++-+-==∑=n n n b T ni i n , ∴要使)(20)1611(21*N n m n ∈<+-恒成立,只要20)]1611(21[max mn <+-, 又∵21)1611(21<+-n ,∴只要2021m ≤,即10≥m ,∴m 的最小整数为10. 4.(Ⅰ)由题可得'()2f x x =.所以曲线()y f x =在点(,())n n x f x 处的切线方程是:()'()()n n n y f x f x x x -=-.即2(4)2()n n n y x x x x --=-.令0y =,得21(4)2()n n n n x x x x +--=-. 即2142n n n x x x ++=.显然0n x ≠,∴122n n nx x x +=+. (Ⅱ)由122n n n x x x +=+,知21(2)22222n n n n n x x x x x +++=++=,同理21(2)22n n nx x x +--=. 故21122()22n n n n x x x x ++++=--.从而1122lg 2lg 22n n n n x x x x ++++=--,即12n n a a +=.所以,数列{}n a 成等比数列.故111111222lg 2lg32n n n n x a a x ---+===-.即12lg 2lg32n n n x x -+=-.从而12232n n n x x -+=-所以11222(31)31n n n x --+=- 5.解:(1) 由 210x x +-=得x =α∴β= (2) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+=-=++(22221111n n n n n nn n n a a a a a a a a ββαα+++⎛+ ⎛⎫--=== ⎪--⎝⎭∴ 12n n b b += 又111l na b a βα-===- ∴数列{}n b 是一个首项为 公比为2的等比数列;∴)()12242112n n n S -==--7.解:(1)设切线L n 的斜率为k n ,由切线过点)0,1(-得切线方程为y=k n (x+1)则方程组⎩⎨⎧≥=+=)0()1(2y nx y x k y n 有解⎩⎨⎧==n ny y x x , ……1分由方程组用代入法消去y 化简得 0)2(2222=+-+n n n k x n k x k (*)有4044)2(2222222nk n nk k k n k n n n n n =∴=+-=⋅--=∆ ………2分 代入方程(*),得01204)42(422=+-=+-⋅+x x nx n n x n 即 n nx y x x n n n ====∴,11即有即n P P P ,,,21 在同一直线x=1上 …………………4分(2) 解:由(1)可知 iy i f n y in 11)( 2==∴=………5分 设函数 F(x)=0)0(),,1(),1ln(=+∞-∈+-F x x x 有分时有有最小值即恒成立时有即当时有当恒成立时有即当时有当上为增函数在上是减函数在时当时当.8.......... .)0()(0),0()( )1ln(010)0()(01 . )1ln(100)0()(10),0()0,1()(0)('0;0)(',011111111)('F x F x F x F x x x F x F x x x x F x F x ,x F x ,F x x F x x x x x x x F >≠+><<-=><<-+><<=><<∴+∞-∴>><<<-∴+=+-+=+-=∴分即有取.....11).1ln(]ln )1[ln()2ln 3(ln 2ln 121111)(ln )1ln(1)(,,2ln 3ln )211ln(21)2(,2ln 11)1(ln )1ln()11ln(1)(),,,3,2,1(1)11+=-+++-+>+++==∴-+>=-=+>=>=-+=+>===∑∑==n n n n i i f nn nn f f f i i ii i f n i i x i ni n i1)1ln(1ln )]1ln([ln )2ln 3(ln )1ln 2(ln 1121111)( )1ln(ln 1)(,,2ln 3ln 31)3(,1ln 2ln 21)2(,111)1()1ln(ln 1ln )1ln()11ln(1),,,3,2(1)11++<+=--++-+-+≤+++==∴--<=-<=-<===--<∴--=->-=-=∑∑==n n n n n ii f n n nn f f f f i i i i i i i n i i x ii ni n i 即有有再取综合上述有∑=++<<+nin yn 121)1ln(1)1ln( …………………14分。
数列综合题-2023届高三数学一轮复习
数列综合题一.选择题(共5小题)1已知数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1(n∈N*),在等差数列{b n}中,b2=5,且公差d=2.使得a1b1+a2b2+…+a n b n>60n成立的最小正整数n为()A.2 B.3 C.4 D.52.已知定义在[1,+∞)上的函数f(x)=,则关于x的方程2n f(x)﹣1=0(n∈N*)的所有解的和为()A.3n2+3n B.3×2n+2+9 C.3n+2+6 D.9×2n+1﹣33已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A. B.C.2015 D.4.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④5.设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=()A.0 B. C.D.二.填空题(共5小题)6.设{a n}是一个公差为d(d>0)的等差数列.若,且其前6项的和S6=21,则a n= .7.已知整数数列a0,a1,a2,…,a2014中,满足关系式a0=0,|a1|=|a0+1|,|a2|=|a1+1|,…,|a2014|=|a2013+1|,则|a1+a2+a3+…+a2014|的最小值为.8.已知数列{a n}满足a1=a,a n+1=1+,若对任意的自然数n≥4,恒有<a n<2,则a 的取值范围为.9.定义数列{x n}:x1=1,x n+1=3x n3+2x n2+x n;数列{y n}:y n=;数列{z n}:z n=;若{y n}的前n项的积为P,{z n}的前n项的和为Q,那么P+Q= .10.如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n= .三.解答题(共11小题)11.已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).12.在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.13.已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.14.数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.15.已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.16.已知{a n},{b n},{c n}都是各项不为零的数列,且满足a1b1+a2b2+…+a n b n=c n S n,n∈N*,其中S n是数列{a n}的前n项和,{c n}是公差为d(d≠0)的等差数列.(1)若数列{a n}是常数列,d=2,c2=3,求数列{b n}的通项公式;(2)若a n=λn(λ是不为零的常数),求证:数列{b n}是等差数列;(3)若a1=c1=d=k(k为常数,k∈N*),b n=c n+k(n≥2,n∈N*),求证:对任意的n≥2,n∈N*,数列单调递减.17.已知数列{a n}的前n项和为S n,a1=0,a1+a2+a3+…+a n+n=a n+1,n∈N*.(Ⅰ)求证:数列{a n+1}是等比数列;(Ⅱ)设数列{b n}的前n项和为T n,b1=1,点(T n+1,T n)在直线上,若不等式对于n∈N*恒成立,求实数m的最大值.18.数列{a n}的前n项和为S n,已知若a1=,S n=n2a n﹣n(n﹣1)(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)求数列{a n}的通项;(Ⅲ)设b n=,数列{b n}的前n项的和为T n,证明:T n<(n∈N*)19.在数列 {a n}中,已知 a1=a2=1,a n+a n+2=λ+2a n+1,n∈N*,λ为常数.(1)证明:a1,a4,a5成等差数列;(2)设 c n=,求数列的前n项和 S n;(3)当λ≠0时,数列 {a n﹣1}中是否存在三项 a s+1﹣1,a t+1﹣1,a p+1﹣1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.20.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=19,S10=100;数列{b n}对任意n∈N*,总有b1•b2•b3…b n﹣1•b n=a n+2成立.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=(﹣1)n,求数列{c n}的前n项和T n.21.在公差不为0的等差数列{a n}中,a2,a4,a8成公比为a2的等比数列.(I)求数列{a n}的通项公式;(II)设数列{b n}满足b n=.①求数列{b n}的前n项和为T n;②令c2n﹣1=(n∈N+),求使得c2n﹣1>10成立的所有n的值.。
(浙江专用)高考数学一轮复习 专题6 数列 第43练 数列小题综合练练习(含解析)-人教版高三全册数
第43练 数列小题综合练[基础保分练]1.(2019·某某十校联考)已知数列{a n }是等比数列,其公比为q ,则“q >1”是“数列{a n }为单调递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2019·某某某某二中模拟)已知数列{a n }是各项为正数的等比数列,点M (2,log 2a 2),N (5,log 2a 5)都在直线y =x -1上,则数列{a n }的前n 项和为( ) A.2n-2B.2n +1-2 C.2n -1D.2n +1-13.已知等比数列{a n }中,a n >0,a 1,a 99为方程x 2-10x +16=0的两根,则a 20·a 50·a 80等于( ) A.32B.64C.256D.±64.设函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递增,若数列{a n }是等差数列,且a 3>0,则f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)的值( ) A.恒为正数B.恒为负数 C.恒为0D.可正可负5.(2018·某某柯桥区调研)已知等比数列{a n }中有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9等于( )A.2B.4C.8D.166.(2019·某某模拟)数列{a n }的前n 项的和满足S n =32a n -n ,n ∈N *,则下列为等比数列的是( )A.{a n +1}B.{a n -1}C.{S n +1}D.{S n -1}7.两个等差数列{a n }和{b n },其前n 项和分别为S n ,T n ,且S n T n =7n +2n +3,则a 2+a 20b 7+b 15等于( )A.94B.378C.7914D.149248.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 8=36,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A.1n +1B.n n +1C.n -1n D.n -1n +19.(2018·某某高级中学模拟)已知等差数列{a n }中,a 1+a 3=7,设其前n 项和为S n ,且S 4=S 6,则其公差d =______,其前n 项和S n 取得最大值时n =________.10.(2019·某某模拟)等差数列{a n }中,a 3+a 4=12,S 7=49.若记[x ]表示不超过x 的最大整数,(如[0.9]=0,[2.6]=2).令b n =[lg a n ],则数列{b n }的前2000项和为________.[能力提升练]1.(2019·某某某某一中模拟)已知函数y =f (x )为定义域R 上的奇函数,且在R 上是单调递增函数,函数g (x )=f (x -5)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=45,则a 1+a 2+…+a 9等于( ) A.45B.15C.10D.02.设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为( ) A.2B.3C.4D.53.已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81等于 ( ) A.641B.640C.639D.6384.若三个非零且互不相等的实数x 1,x 2,x 3成等差数列且满足1x 1+1x 2=2x 3,则称x 1,x 2,x 3成一个“β等差数列”.已知集合M ={x ||x |≤100,x ∈Z },则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( ) A.25B.50C.51D.1005.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的取值X 围是________.6.(2019·某某某某一中模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且S 1,S 22,S 44成等比数列,则S n =________,a n =________.答案精析基础保分练1.D2.C3.B4.A5.C6.A7.D8.B9.-1 5解析 由S 4=S 6,知a 5+a 6=0, 则有⎩⎪⎨⎪⎧a 1+a 1+2d =7,a 1+4d +a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=92,d =-1,所以a n =92+(n -1)×(-1)=112-n .由112-n ≥0,得n ≤112,又n ∈N *,所以当n =5时,S n取得最大值. 10.5445解析 设等差数列{a n }的公差为d ,∵a 3+a 4=12,S 7=49,∴2a 1+5d =12,7a 1+7×62d =49,解得a 1=1,d =2.∴a n =1+2(n -1)=2n -1,b n =[lg a n ]=[lg(2n -1)],n =1,2,3,4,5时,b n =0. 6≤n ≤50时,b n =1;51≤n ≤500时,b n =2; 501≤n ≤2000时,b n =3.∴数列{b n }的前2000项和为45+450×2+1500×3=5445. 能力提升练1.A [函数y =f (x )为定义域R 上的奇函数, 则f (-x )=-f (x ),关于点(0,0)中心对称, 那么y =f (x -5)关于点(-5,0)中心对称, 由等差中项的性质和对称性可知:a 1-5+a 9-52=a 5-5,故f (a 1-5)+f (a 9-5)=0,由此f (a 2-5)+f (a 8-5)=f (a 3-5)+f (a 7-5)=f (a 4-5)+f (a 6-5)=2f (a 5-5)=0, 又g (x )=f (x -5)+x ,若g (a 1)+g (a 2)+…+g (a 9)=f (a 1-5)+f (a 2-5)+…+f (a 9-5)+a 1+a 2+…+a 9=45,则a 1+a 2+…+a 9=45,故选A.]2.C [因为S 4=2(a 2+a 3),所以a 2+a 3≥5,又S 5=5a 3,所以a 3≤3,而a 4=3a 3-(a 2+a 3),故a 4≤4,当a 2=2,a 3=3时等号成立,所以a 4的最大值为4.]3.B [因为S n S n -1-S n -1S n =2S n S n -1,所以S n -S n -1=2,即{S n }为等差数列,首项为1,公差为2, 所以S n =1+2(n -1)=2n -1,所以S n =(2n -1)2,因此a 81=S 81-S 80=1612-1592=640,故选B.]4.B [由三个非零且互不相等的实数x 1,x 2,x 3成等差数列且满足1x 1+1x 2=2x 3,知⎩⎪⎨⎪⎧2x 2=x 1+x 3,1x 1+1x 2=2x 3消去x 2,并整理得(2x 1+x 3)(x 1-x 3)=0. 所以x 1=x 3(舍去),x 3=-2x 1, 于是有x 2=-12x 1.在集合M ={x ||x |≤100,x ∈Z }中,三个元素组成的所有数列必为整数列, 所以x 1必为2的倍数,且x 1∈[-50,50],x 1≠0,故这样的数组共50组.]5.⎣⎢⎡⎦⎥⎤73,125 解析 由题意,H n =a 1+2a 2+…+2n -1a n n=2n +1,则a 1+2a 2+…+2n -1a n =n 2n +1.n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n ,两式相减,则2n -1a n =n 2n +1-(n -1)2n =(n +1)2n ,则a n =2(n +1),对a 1也成立, 故a n =2(n +1),∴a n -kn =(2-k )n +2,记b n =a n -kn ,则数列{b n }为等差数列,故S n ≤S 5对任意的n 恒成立化为b 5≥0,b 6≤0,即⎩⎪⎨⎪⎧52-k +2≥0,62-k +2≤0,解得73≤k ≤125,则实数k 的取值X 围是⎣⎢⎡⎦⎥⎤73,125.6.2n 24n -2解析 由题意知S 224=S 1×S 44,设数列{a n }的公差为d ,则2a 1+d24=a 1·4a 1+6d4,又a 1=2,d ≠0,解得d =4,所以a n =a 1+(n -1)d =4n -2,S n =n a 1+a n 2=2n 2.。
高考数学二轮复习考点十二《数列综合练习》课件
数列,当 n 为偶数时,bn+2=bn+1,数列为以 1 为公差的等差数列,∴S23
1-212
11×(11-1)
=(b1+b3+…+b23)+(b2+b4+…+b22)= 1-2 +11×4+
2
×1=212-1+44+55=4194.
2.等差数列{an}中,a1+a2=152,a2+a5=4,设 bn=[an],[x]表示不超 过 x 的最大整数,[0.8]=0,[2.1]=2,则数列{bn}的前 8 项和 S8=( )
A.12<a2<1
B.{an}是递增数列
C.12<a3<34
D.34<a2022<1
答案 ABD
解析 由 an+1=an+ln (2-an),0<a1<12,设 f(x)=x+ln (2-x),则 f′(x) =1-2-1 x=12- -xx,所以当 0<x<1 时,f′(x)>0,即 f(x)在(0,1)上单调递增, 所以 f(0)<f(x)<f(1),即12=ln e<ln 2<f(x)<1+ln 1=1,所以12<f(x)<1,即12 <an<1(n≥2),故 A 正确;因为 f(x)在(0,1)上单调递增,0<an<1(n∈N*),所 以 an+1-an=ln (2-an)>ln (2-1)=0,所以{an}是递增数列,故 B项中,只有一项符合题目要求) 1.已知数列{bn}满足 b1=1,b2=4,bn+2=1+sin2n2πbn+cos2n2π,则该 数列的前 23 项和为( ) A.4194 B.4195 C.2046 D.2047
答案 A
解析 由题意,得当 n 为奇数时,bn+2=2bn,数列为以 2 为公比的等比
专题3 数列专题压轴小题(原卷版)
专题3 数列专题压轴小题一、单选题1.(2022·全国·模拟预测(理))数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法错误的是( ) A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦2.(2022·浙江·杭州高级中学模拟预测)已知数列{}n a 中,11a =,若()*112,N n n n na a n n n a --=≥∈+,则下列结论中错误的是( ) A .41225a =B .11112n n a a +-≤ C .ln(1)1n a n ⋅+<D .21112n n a a -≤ 3.(2022·浙江·高三开学考试)已知数列{}n a 满足递推关系1e 1e nn a an a +-=,且10a >,若存在等比数列{}n b 满足1+≤≤n n n b a b ,则{}n b 公比q 为( )A .12B .1eC .13D .1π4.(2022·浙江·模拟预测)已知数列{}n a 满足()()112,1ln n n a a a b b n *+=-=+-∈N .若{}n a 有无穷多个项,则( ) A .0b ≥B .1b ≥-C .1b ≥D .2b ≥-5.(2022·全国·高三专题练习)已知等差数列{}n a (公差不为零)和等差数列{}n b 的前n 项和分别为n S ,n T ,如果关于x 的实系数方程22021202120210x S x T -+=有实数解,那么以下2021个方程()201,2,3,,2021i i x a x b i -+==⋅⋅⋅中,无实数解的方程最多有( )A .1008个B .1009个C .1010个D .1011个6.(2022·全国·高三专题练习)己知数列{}n a 满足:12a =,)()1123n n a a n *+=∈N .记数列{}n a 的前n 项和为n S ,则( ) A .101214S << B .101416S << C .101618S <<D .101820S <<7.(2022·浙江·慈溪中学模拟预测)已知数列{}n a 满足:112a =-,且()1ln 1sin +=+-n n n a a a ,则下列关于数列{}n a 的叙述正确的是( ) A .1n n a a +>B .1124-≤<-n aC .212nn n a a a +>-+D .2124n n a -≤-8.(2022·浙江省江山中学高三期中)已知数列{}n a 满足13a =,121n n na a a +=+-,记数列{}2n a -的前n项和为n S ,设集合12624535,,,5251712M ⎧⎫=⎨⎬⎩⎭,{nN M Sλλ=∈>对*n ∈N 恒成立},则集合N 的元素个数是( ) A .1B .2C .3D .49.(2022·浙江省嘉善中学高三阶段练习)已知数列{}n a 满足11a =,()*14,2n n a a n N n -⎫=+∈≥,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则( ) A .20227833S << B .2022723S <<C .2022523S << D .2022513S <<10.(2022·全国·高三专题练习)已知数列{}{}{}n n n a b c 、、满足()*111112233411111112334n n n n n n n n n n n b a b c c a a c c n S n T n b b b b a a a n+++====-=⋅∈=+++≥=+++≥---N ,,,(),(),则下列有可能成立的是( )A .若{}n a 为等比数列,则220222022a b > B .若{}n c 为递增的等差数列,则20222022S T <C .若{}n a 为等比数列,则220222022a b < D .若{}n c 为递增的等差数列,则20222022S T >11.(2022·浙江·模拟预测)已知各项均为正数的数列{}n a 满足11a =,()1*111n n n n n a a n N a +++=-∈,则数列{}n a ( )A .无最小项,无最大项B .无最小项,有最大项C .有最小项,无最大项D .有最小项,有最大项12.(2022·浙江浙江·二模)已知{}n a 为非常数数列且0n a ≠,1a μ=,()()*1sin 2,,n n n a a a n λμλ+=++∈∈R N ,下列命题正确的是( )A .对任意的λ,μ,数列{}n a 为单调递增数列B .对任意的正数ε,存在λ,μ,()*00n n ∈N ,当0n n >时,1n a ε-<C .存在λ,μ,使得数列{}n a 的周期为2D .存在λ,μ,使得2122n n n a a a +++->13.(2022·浙江温州·二模)对于数列{}n x ,若存在正数M ,使得对一切正整数n ,恒有n x M ≤,则称数列{}n x 有界;若这样的正数M 不存在,则称数列{}n x 无界,已知数列{}n a 满足:11a =,()()1ln 10n n a a λλ+=+>,记数列{}n a 的前n 项和为n S ,数列{}2na 的前n 项和为nT ,则下列结论正确的是( ) A .当1λ=时,数列{}n S 有界 B .当1λ=时,数列{}n T 有界 C .当2λ=时,数列{}n S 有界D .当2λ=时,数列{}n T 有界14.(2022·北京市育英学校高三开学考试)[]x 为不超过x 的最大整数,设n a 为函数()[]f x x x ⎡⎤=⎣⎦,[)0,x n ∈的值域中所有元素的个数.若数列12n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,则2022S =( )A .10121013B .12C .20214040D .1011101215.(2022·浙江浙江·高三阶段练习)已知数列{}n a 满足11a =,且12n n T a a a =,若*12,1n nn n a T T n N a ++∈=,则( ) A .5011,1211a ⎛⎫∈⎪⎝⎭B .5011,1110a ⎛⎫∈⎪⎝⎭C .1011,87a ⎛⎫∈ ⎪⎝⎭D .1011,65a ⎛⎫∈ ⎪⎝⎭16.(2022·浙江·高三专题练习)已知数列{}n a 满足()*111,1ln 2n n a a a n N +==+∈,记n T 表示数列{}n a 的前n 项乘积.则( ) A .911,3026T ⎛⎫∈⎪⎝⎭ B .911,2622T ⎛⎫∈⎪⎝⎭ C .911,2218T ⎛⎫∈⎪⎝⎭ D .911,1814T ⎛⎫∈⎪⎝⎭ 17.(2022·浙江·湖州中学高三阶段练习)已知各项均为正数的数列{}n a 满足11a =,()11e cos n a n n a a n +*+=-∈Ν,其前n 项和为n S ,则下列关于数列{}n a 的叙述错误的是( ) A .()1n n a a n *+>∈Ν B .()211n n n a a a n *++<+∈ΝC.)n a n *∈ΝD.)n S n *<∈Ν18.(2022·浙江·镇海中学高三期末)已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( )A .存在1t >, 使得20111a a =B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =19.(2022·浙江杭州·高三期末)若数列{}n a 满足1n n a a +<,则下列说法错误的是( ) A .存在数列{}n a 使得对任意正整数p ,q 都满足p pq q a a a =+ B .存在数列{}n a 使得对任意正整数p ,q 都满足pq q p a pa qa =+ C .存在数列{}n a 使得对任意正整数p ,q 都满足p q q p a pa qa +=+ D .存在数列{}n a 使得对任意正整数p ,q 部满足p q p q a a a +=20.(2022·全国·高三专题练习)已知{}n a 是各项均为正整数的数列,且13a =,78a =,对*k N ∀∈,11k k a a +=+与1212k k a a ++=有且仅有一个成立,则127a a a ++⋅⋅⋅+的最小值为( ) A .18 B .20C .21D .2221.(2022·浙江·海亮高级中学模拟预测)已知数列{},n a n N *∈,212,n n n a a a m m R +=-+∈,下列说法正确的是( )A .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 是递增数列;B .对任意的95(,)42m ∈,存在1[1,2]a ∈,使数列{}n a 不单调;C .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 具有周期性;D .对任意的(0,1)m ∈,当1[1,2]a ∈时,存在3n a >.22.(2022·全国·高三专题练习)已知{}n a 是等差数列,()sin n n b a =,存在正整数()8t t ≤,使得n t n b b +=,*n N ∈.若集合{}*,n S x x b n N==∈中只含有4个元素,则t 的可能取值有( )个A .2B .3C .4D .523.(2022·上海民办南模中学高三阶段练习)已知数列{}n a 满足:当0n a ≠时,2112+-=n n na a a ;当0n a =时,10n a +=;对于任意实数1a ,则集合{}0,1,2,3,nn an ≤=的元素个数为( )A .0个B .有限个C .无数个D .不能确定,与1a 的取值有关24.(2022·全国·高三专题练习)已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a aa ++⋅⋅⋅+=,则下列成立的是( ) A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能25.(2022·全国·高三专题练习)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n ne a ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;①若2k =,则数列{}n a 单调递增;①若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①① B .①① C .①① D .①①①二、多选题26.(2022·全国·清华附中朝阳学校模拟预测)数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是( )A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦27.(2022·福建省福州第一中学高三开学考试)已知数列{}n a 满足101a <<,()()11ln 2N*n n n a a a n ++=-∈,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论正确的是( ) A .()12n n n S +>B .202212022a >C .01n a <<D .若113a =,则1132n n a -≥⋅28.(2022·江苏·高三开学考试) 已知n S 是数列{}n a 的前n 项和,21n n S S n +=-+,则( )A . 121(2)n n a a n n ++=-≥B . 22n n a a +-=C . 当10a =时,501225S =D . 当数列{}n a 单调递增时,1a 的取值范围是11,44⎛⎫- ⎪⎝⎭29.(2022·湖北武汉·高三开学考试)已知数列{}n a 满足:11a =,(()11322n n a a n -=≥,下列说法正确的是( )A .N n *∀∈,12,,n n n a a a ++成等差数列B .()1132n n n a a a n +-=-≥C .()11*23N n n n a n --≤≤∈D .*N n ∀∈,12,,n n n a a a ++一定不成等比数列30.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +≤+,则下列结论可能成立的是( ) A .n mmn a a a m n+= B .m n m n na ma a ++= C .2m n mn a a a ++=D .2m n m n a a a +⋅=31.(2022·全国·模拟预测)已知数列{}n a 满足328a =,()()1122nn n a n a n --⎡⎤=+≥⎢⎥⎣⎦,*n ∈N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +-+=⋅-⋅,则下列说法正确的是( ) A .4221a a = B .1216a a ⋅=C .数列212n n a a -⎧⎫⎨⎬⎩⎭为单调递增的等差数列D .满足不等式50n S ->的正整数n 的最小值为6332.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a=,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=33.(2022·全国·长郡中学模拟预测)已知数列{}n a 的前n 项和为n S ,且1n n S a +=对于*n N ∀∈恒成立,若定义(1)n n S S =,()()(1)12nk k ni i S S k -==≥∑,则以下说法正确的是( )A .{}n a 是等差数列B .()232122nn n n S -+=-C .()()()121A 1!k k k n k nn S S k +++--=+D .存在n 使得()202120222022!nn S =34.(2022·全国·高三专题练习)我们常用的数是十进制数,如32101079110010710910⨯⨯+⨯⨯=++,表示十进制的数要用10个数码.0,1,2,3,4,5,6,7,8,9;而电子计算机用的数是二进制数,只需两个数码0和1,如四位二进制的数()3212110112120212⨯⨯⨯++⨯=+,等于十进制的数13.把m 位n 进制中的最大数记为(),M m n ,其中m ,*,2n n ∈≥N ,(),M m n 为十进制的数,则下列结论中正确的是( )A .()5,231M =B .()()4,22,4M M =C .()()2,11,2M n n M n n ++<++D .()()2,11,2M n n M n n ++>++35.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+B .2211n nn a a a +-≤+ C .若2n ≥,则131141ni i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤-∑36.(2022·海南·嘉积中学高三阶段练习)“0,1数列”在通信技术中有着重要应用,它是指各项的值都等于0或1的数列.设A 是一个有限“0,1数列”,()f A 表示把A 中每个0都变为1,0,每个1都变为0,1,所得到的新的“0,1数列”,例如()0,1,1,0A,则()()1,0,0,1,0,1,1,0f A =.设1A 是一个有限“0,1数列”,定义()1k k A f A +=,1k =、2、3、⋅⋅⋅.则下列说法正确的是( )A .若()31,0,0,1,1,0,0,1A =,则()10,0A =B .对任意有限“0,1数列”1A ,则()2,n A n n ≥∈N 中0和1的个数总相等C .1n A +中的0,0数对的个数总与n A 中的0,1数对的个数相等D .若()10,0A =,则2021A中0,0数对的个数为10101413-() 37.(2022·全国·高三专题练习(理))设数列{}n a 满足10a =,3128,N n na ca c n *+=+-∈其中c 为实数,数列{}2n a 的前n 项和是n S ,下列说法不正确的是( ) A .当1c >时,{}n a 一定是递减数列 B .当0c <时,不存在c 使{}n a 是周期数列 C .当10,4c ⎡⎤∈⎢⎥⎣⎦时,[]0,2n a ∈D .当17c =时,52n S n >- 三、填空题38.(2022·全国·高三专题练习)对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.39.(2022·全国·高三专题练习(文))已知函数()2()log 41xf x x =+-,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =__________.40.(2022·全国·高三专题练习)数列{}n a 满足:2110n n n a a a a c +==-++,.若数列{}n a 单调递减,则c的取值范围是________;若数列{}n a 单调递增,则c 的取值范围是__________.41.(2022·全国·高三专题练习(理))黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++⋅⋅⋅∑,我们经常从无穷级数的部分和1111123s s s s n +++⋅⋅⋅+入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则122021111S S S ⎡⎤++⋅⋅⋅=⎢⎥⎣⎦______.(其中[]x 表示不超过x 的最大整数) 42.(2022·上海·华东师范大学附属东昌中学高三阶段练习)已知函数2()(2),2x f x f x x ≤<=-≥⎪⎩,若对于正数(*)n k n N ∈,直线n y k x =与函数()f x 的图像恰好有21n 个不同的交点,则22212n k k k ++⋯+=___________.43.(2022·全国·高三专题练习)设①A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.44.(2022·上海·高三专题练习)若数列{}n a 满足()**120,n n n n k a a a a n N k N +++++++=∈∈,则称数列{}n a 为“k 阶相消数列”.已知“2阶相消数列”{}n b 的通项公式为2cos n b n ω=,记12n n T b b b =,12021n ≤≤,*n N ∈,则当n =___________时,n T 取得最小值45.(2022·上海·高三专题练习)若数列{}n a 满足()*4411414242434141032n n n n n n n n a a a a a a a n N a a +-----=-=-===∈,,,且对任意*n N ∈都有n a m <,则m 的最小值为________.46.(2022·全国·高三开学考试(理))用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.47.(2022·江苏苏州·模拟预测)设函数()21f x x =,()()222f x x x =-,()31sin 23f x x π=,取2019i it =,0,1,2,,2019i =,()()()()()()102120192018k k k k k k k S f t f t f t f t f t f t +-++=--,1,2,3k =,则1S ,2S ,3S 的大小关系为________.(用“<”连接)四、双空题48.(2022·浙江·模拟预测)已知数列{}n a 对任意的n *∈N ,都有n a *∈N ,且131,,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数.①当18a =时,2022a =_________.①若存在m *∈N ,当n m >且n a 为奇数时,n a 恒为常数P ,则P =_________.49.(2022·全国·高三专题练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程若第1个图中的三角形的周长为1,则第n 个图形的周长为___________;若第1个图中的三角形的面积为1,则第n 个图形的面积为___________.50.(2022·全国·高三专题练习)对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n nx x x ++++=的实根,记12nnax⎡⎤=⎢⎥⎣⎦,其中[]x表示不超过x的最大整数,则1a=______;若πsin2n nnb a=⋅,nS为{}n b的前n项和,则2022S=______.。
(整理)高三数学等比数列与数列求和综合题
高三数学等比数列与数列求和综合题1.设S n是等比数列{a n}的前n项和,S4=5S2,则的值为(C)A.﹣2或﹣1 B.1或2 C.±2或﹣1 D.±1或22.已知x,y,z∈R,若﹣1,x,y,z,﹣4成等比数列,则xyz的值为(C)A.﹣4 B.±4 C.﹣8 D.±83.设等比数列{a n}的前n项积P n=a1•a2•a3•…•a n,若P12=32P7,则a10等于()A.16 B.8 C.4 D.2由题意,∵P12=32P7,∴a1•a2•a3•…•a12=32a1•a2•a3•…•a7,∴a8•a9•…•a12=32,∴(a10)5=32,∴a10=2.4.设数列{a n}的首项为m,公比为q(q≠1)的等比数列,S n是它的前n项的和,对任意的n∈N*,点(a n,)在直线(B)上.A.qx+my﹣q=0 B.qx﹣my+m=0 C.mx+qy﹣q=0 D.qx+my+m=0解:∵数列{a n}的首项为m,公比为q(q≠1)的等比数列,∴a n=mq n﹣1,S n=,∴=1+q n,∴q•=mq n﹣1﹣m(1+q n)+m=0,∴点(a n,)在直线qx﹣my+m=0上.5.各项都是正数的等比数列{a n}的公比q≠1且a3、a5、a6成等差数列,则=(D)A.B.C.D.6.已知正项等比数列{a n}满足a2014=a2013+2a20124a1,则6(1m+1n)的最小值为( )A.23B.2 C.4 D.67.已知等比数列{a n}的前n项和为S n,且a1+a3=,则=(C)A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣1解:设等比数列{a n}的公比为q,∴q==,∴a 1+a 3=a 1(1+q 2)=a 1(1+)=,解得a 1=2, ∴a n =2×=,S n =,∴==2n﹣18.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则(a 5+a 7+a 9)的值是( A ) A .﹣5 B .C .5D .解:∵log 3a n +1=log 3a n+1 ∴a n+1=3a n∴数列{a n }是以3为公比的等比数列,∴a 2+a 4+a 6=a 2(1+q 2+q 4)=9∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=9×33=359.等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+…+a 2n ﹣1),a 1a 2a 3=27,则a 6=( C ) A .27 B .81 C .243 D .729解:利用等比数列的性质可得,a 1a 2a 3=a 23=27 即a 2=3 因为S 2n =4(a 1+a 3+…+a 2n ﹣1)所以n=1时有,S 2=a 1+a 2=4a 1从而可得a 1=1,q=3所以,a 6=1×35=24310.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则等于( D )A .78B .84C .124D .12611.现有数列{}n a 满足:11a =,且对任意的m ,n ∈N *都有:m n m n a a a mn +=++,则12320141111a a a a ++++=( )A.20142015 B.20121007 C.20132014 D.4028201512.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=( B )A .0 B .100- C .100 D .1020013.已知数列{}n a 的通项公式是221sin()2n n a n π+=, 1232014a a a a ++++=则( )A .201320132⨯ B .20131007⨯ C .20141007⨯ D .20151007⨯化简可得:2221sin()sin()22n n a n n n πππ+==+,当n=2k-1时,221(21)k a k -=--,当n=2k 时,222(2)4k a k k ==,∴22212(21)441k k a a k k k -+=--+=-,所以1232014123220132014()()()(411)(421)+(410071)a a a a a a a a a a ++++=+++++=⋅-+⋅-+⋅-…1+1007=41007-1007=100720152⋅⋅⋅. 14.正项等比数列{}n a 满足142=a a ,133=S ,n n a b 3log =,则数列{}n b 的前10项和是 。
高三综合数学试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 02. 若复数z满足|z-1| = |z+1|,则复数z的几何意义是()A. z在复平面上的实部为0B. z在复平面上的虚部为0C. z在复平面上的轨迹为y轴D. z在复平面上的轨迹为直线x=03. 在等差数列{an}中,若a1 + a3 = 10,a2 + a4 = 18,则该数列的公差d是()A. 2B. 3C. 4D. 54. 已知函数f(x) = x^2 - 4x + 4,若函数g(x) = |x| - 2,则f(x)与g(x)的图象交点的个数是()A. 2B. 3C. 4D. 55. 若等比数列{bn}的首项b1 = 2,公比q = 3,则该数列的前5项和S5是()A. 62B. 72C. 82D. 926. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. 1/√27. 若函数y = ax^2 + bx + c的图象开口向上,且a > 0,b < 0,则该函数的对称轴是()A. x = -b/2aB. x = b/2aC. x = -b/aD. x = b/a8. 在直角坐标系中,点P(2,3)关于直线y=x的对称点P'的坐标是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)9. 若等差数列{cn}的前n项和为Sn,公差为d,则Sn^2 - (n^2 - 1)Sn + 2(n^2 - 1) = 0的解为()A. n = 1B. n = 2C. n = 3D. n = 410. 已知函数f(x) = |x-1| + |x+1|,若x∈[-1,1],则f(x)的最大值是()A. 0B. 2C. 4D. 6二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10 = ________。
高三数学专题训练《数列》解析版
一、选择题(每小题5分,共60分)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10可得d =3,a 1=-4,所以S 10=-4×10+10×92×3=95.答案:C2.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:设{a n }的公差为d ,则d =1,设c n =a 2n -1+2a 2n ,则c n +1=a 2n +1+2a 2n +2,c n +1-c n =a 2n +1+2a 2n +2-a 2n -1-2a 2n =6d =6,选择C.答案:C3.在等差数列{a n }中,已知a 1=13,a 1+a 2+a 3+a 4+a 5=20,那么a 3等于( )A .4B .5C .6D .7解析:a 1+a 2+a 3+a 4+a 5=5a 3=20,a 3=4.答案:A4.等差数列{a n }的公差d ≠0,a 1≠d ,若这个数列的前40项和是20m ,则m 等于( )A .a 1+a 20B .a 5+a 17C .a 27+a 35D .a 15+a 26解析:S 40=40(a 1+a 40)2=20(a 1+a 40)=20m ,m =a 1+a 40=a 15+a 26.答案:D5.在等比数列{a n }中,若a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是( )A.b aB.b 2a2C.b 2aD.ba2解析:记等比数列{a n }的公比为q ,依题意得a 15+a 16=a 5q 10+a 6q 10=(a 5+a 6)q 10,q 10=a 15+a 16a 5+a 6=b a,a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)q 20=a ×(b a)2=b 2a,选C. 答案:C6.在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=( )A.53B.35 C .-53D .-35解析:依题意,设公比为q ,则q ≠1,因此⎩⎪⎨⎪⎧a 1(1-q 4)1-q =158①a 21q 3=-98 ②,又1a 1,1a 2,1a 3,1a 4构成以1a 1为首项,以1q 为公比的等比数列,所以1a 1+1a 2+1a 3+1a 4=1a 1[1-(1q)4]1-1q=(1-q 4)a 1q 3(1-q ),①÷②得(1-q 4)a 1q 3(1-q )=-53,即1a 1+1a 2+1a 3+1a 4=-53,选择C.答案:C7.(2010·江西九校联考)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101=( )A .200B .2C .-2D .0解析:设等比数列{a n }的公比为q ,因为对任意正整数,有a n +2a n +1+a n+2=0,a n +2a nq +a n q 2=0,因为a n ≠0,所以1+2q +q 2=0,q =-1,S 101=2×(1+1)1+1=2,选择B.答案:B8.(2010·西安八校二联)已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( )A .a 9S 8>a 8S 9B .a 9S 8<a 8S 9C .a 9S 8=a 8S 9D .a 9S 8与a 8S 9的大小关系与a 1的值有关 解析:依题意得,a 9S 8-a 8S 9=a 1q 8·a 1(1-q 8)1-q-a 1q 7·a 1(1-q 9)1-q=-a 21q 7>0,因此a 9S 8>a 8S 9,选A.答案:A9.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .134解析:∵{a n }是各项不为0的正项等比数列, ∴b n =ln a n 是等差数列.又∵b 3=18,b 6=12,∴b 1=22,d =-2, ∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,∴(S n )max =-112+23×11=132. 答案:C10.(2009·安徽蚌埠测验)数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项等于( )A .42B .45C .48D .51解析:将数列分段,第1段1个数,第2段2个数,…,第n 段n 个数,设a 1000=k ,则a 1000在第k 个数段,由于第k 个数段共有k 个数,则由题意k 应满足1+2+…+(k -1)<1000≤1+2+…+k ,解得k =45.答案:B11.(2010·湖北八校联考)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0②等差数列一定是等差比数列 ③等比数列一定是等差比数列 ④等差比数列中可以有无数项为0 其中正确的判断是( )A .①②B .②③C .③④D .①④解析:依题意,∵a n +2-a n +1a n +1-a n=k (n ∈N *),∴k ≠0,①正确,排除B ,C 选项,又由于公差是0的等差数列不是等差比数列,②错误,排除A ,选择D.答案:D12.(2009·湖北高考)设x ∈R ,记不超过x 的最大整数为[x ],令{x }=x -[x ],则{5+12},[5+12],5+12( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列 解析:由题意,记a 1={5+12}=5+12-[5+12]=5+12-1=5-12,a 2=[5+12]=1,a 3=5+12,若为等差数列,则2a 2=a 1+a 3,不满足;若为等比数列,则(a 2)2=a 1a 3,有12=5-12×5+12,∴是等比数列但非等差数列,选B.答案:B二、填空题(每小题4分,共16分)13.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =__________.解析:由a 4+a 6=6,得a 5=3,又S 5=5(a 1+a 5)2=10,∴a 1=1.∴4d =a 5-a 1=2,d =12.答案:1214.(2009·重庆一诊)已知数列{a n }是等比数列,且a 4·a 5·a 6·a 7·a 8·a 9·a 10=128,则a 15·a 2a 10=__________.解析:设等比数列{a n }的公比为q ,则依题意得a 71·q 42=128,a 1·q 6=2,a 7=2,a 15·a 2a 10=a 2·q 5=a 7=2.答案:215.把100个面包分给5个人,使每人所得的面包数成等差数列,且使较多的三份之和的13等于较少的两份之和,则最少的一份面包个数是__________.解析:设构成等差数列的五个数为a -2d ,a -d ,a ,a +d ,a +2d ,则⎩⎨⎧5a =1003(a +d )=3(2a -3d )解得⎩⎨⎧a =20d =5,则最少的一份为a -2d =10.答案:1016.数列{a n }中,a 1=3,a n -a n a n +1=1(n =1,2,…),A n 表示数列{a n }的前n 项之积,则A 2005=__________.解析:可求出a 1=3,a 2=23,a 3=-12,a 4=3,a 5=23,a 6=-12,…,数列{a n }每3项重复一次,可以理解为周期数列,由2005=668×3+1且a 1×a 2×a 3=-1,则A 2005=(a 1×a 2×a 3)…(a 2002×a 2003×a 2004)×a 2005=(a 1×a 2×a 3)668a 1=3. 答案:3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)S n 是无穷等比数列{a n }的前n 项和,公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项. (1)求S 2和S 3的值; (2)求此数列的通项公式; (3)求此数列的各项和S . 解:(1)由题意知⎩⎨⎧12S 2+13S 3=22S 2·3S 3=36,解得S 2=2,S 3=3.(2)⎩⎨⎧a 1+a 1q =2a 1+a 1q +a 1q 2=3,解得⎩⎨⎧a 1=4q =-12或⎩⎨⎧a 1=1q =1(舍去).∴a n =4·(-12)n -1.(3)∵|q |=|-12|=12<1.∴S =41-(-12)=83.18.(12分)已知函数f (x )=x3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *).(1)求证:数列{1a n}是等差数列;(2)记S n (x )=x a 1+x 2a 2+…+eq \f(x n ,a n ),求S n (x ).(1)证明:∵a n +1=f (a n ),∴a n +1=a n3a n +1.∴1a n +1=1a n +3,即1a n +1-1a n=3.∴{1a n}是以1a 1=1为首项,3为公差的等差数列.∴1a n=1+3(n -1)=3n -2.(2)解:S n (x )=x +4x 2+7x 3+…+(3n -2)x n ,① 当x =1时,S n (x )=1+4+7+…+(3n -2)=n (1+3n -2)2=n (3n -1)2.当x ≠1时,xS n (x )=x 2+4x 3+…+(3n -5)x n +(3n -2)x n +1,②①-②,得(1-x )S n (x )=x +3x 2+3x 3+…+3x n -(3n -2)x n +1=3(x +x 2+…+x n )-2x -(3n -2)x n +1=3x (1-x n )1-x-2x -(3n -2)x n +1,S n (x )=3x -3x n +1(1-x )2-2x +(3n -2)x n +11-x.19.(12分)(2010·东城一模)已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =log 2a n +1,S n 是数列{b n }的前n 项和,求使S n >42+4n 成立的n 的最小值.解:(1)设等比数列{a n }的公比为q ,依题意有2(a 3+2)=a 2+a 4,① 又a 2+a 3+a 4=28,将①代入得a 3=8.所以a 2+a 4=20.于是有⎩⎨⎧a 1q +a 1q3=20,a 1q 2=8,解得⎩⎨⎧a 1=2,q =2,或⎩⎨⎧a 1=32,q =12.又{a n }是递增的,故a 1=2,q =2. 所以a n =2n .(2)b n =log 22n +1=n +1,S n =n 2+3n2.故由题意可得n 2+3n2>42+4n ,解得n >12或n <-7.又n ∈N *,所以满足条件的n 的最小值为13.20.(12分)商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部在年底还建行贷款.(1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元?(精确到元)(参考数据:lg1.7343=0.2391,lg1.05=0.0212,1.058=1.4774)解:依题意,公寓2002年底建成,2003年开始使用.(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×800元=800000元=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1. 化简得62(1.05n -1)≥25×1.05n +1, ∴1.05n ≥1.7343.两边取对数整理得n ≥lg1.7343lg1.05=0.23910.0212=11.28,∴取n =12(年).∴到2014年底可全部还清贷款. (2)设每生每年的最低收费标准为x 元, ∵到2010年底公寓共使用了8年,依题意有(1000x10000-18)[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)1.058-11.05-1≥500×1.059.∴x ≥10(18+25×1.0591.058-1)=10(18+25×1.05×1.47741.4774-1)=10×(18+81.2)=992(元)故每生每年的最低收费标准为992元.21.(12分)若公比为c 的等比数列{a n }的首项a 1=1,且a n =a n -1+a n -22(n=3,4,…).(1)求c 的值.(2)求数列{na n }的前n 项和S n .解:(1)由题设,当n ≥3时,a n =c 2a n -2, a n -1=ca n -2,a n =a n -1+a n -22=1+c 2a n -2, ∴c 2=1+c 2. 解得c =1或c =-12. (2)当c =1时{a n }是一个常数数列,a n =1.此时S n =1+2+3+…+n =n (n +1)2.当c =-12时,a n =(-12)n -1(n ∈N *). 此时S n =1+2(-12)+3(-12)2+…+n (-12)n -1.① -12S n =-12+2(-12)2+3(-12)3+…+(n -1)(-12)n -1+n (-12)n .② ①-②,得(1+12)S n =1+(-12)+(-12)2+…+(-12)n -1-n (-12)n =1-(-12)n 1+12-n (-12)n .∴S n =19[4-(-1)n 3n +22n -1]. 22.(14分)(2009·陕西高考)(理)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.(1)猜想数列{x 2n }的单调性,并证明你的结论;(2)证明:|x n +1-x n |≤16(25)n -1. (文)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.解:(理)(1)由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想,数列{x 2n }是递减数列.下面用数学归纳法证明:①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2,易知x n >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0,即x 2(k +1)>x 2(k +1)+2, 也就是说,当n =k +1时命题也成立.结合①和②知,命题成立.(2)当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立; 当n ≥2时,易知0<x n -1<1,∴1+x n -1<2,x n =11+x n -1>12, ∴(1+x n )(1+x n -1)=(1+11+x n -1)(1+x n -1) =2+x n -1≥52, ∴|x n +1-x n |=|11+x n -11+x n -1|=|x n -x n -1|(1+x n )(1+x n -1)≤25|x n -x n -1|≤(25)2|x n -1-x n -2|≤…≤(25)n -1|x 2-x 1|=16(25)n -1. (文)(1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)由(1)知b n =a n +1-a n =(-12)n -1, 当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+(-12)+…+(-12)n -2 =1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).。
高三复习单元检测题:数列
高三复习单元检测题:数列一、选择题(每小题5分,共60分)1.设数列{a n }的前n 项和S n =n 2,则a 8的值为A .15B .16C .49D .64 2.在等差数列{a n }中,a 2+a 3=12,2a 6-a 5=15,则a 4等于A .7B .9C .11D .13 3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于A .11B .5C .-8D .-114.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为A .3B .-1C .2D .3或-1 5.等比数列{a n }的公比为q ,则“q>1”是“对任意n (n ∈N *)都有a n +1>a n ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5等于A .35B .33C .31D .29 7.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为A .4B .6C .8D .10 8.已知等比数列{a n }中a 2=1,则其前3项和S 3的取值范围是A .(-∞,-1]B .(-∞,0)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞) 9.如果数列{a n }满足a 1=2,a 2=1,且11++-n n n a a a =a n -a n +1a n +1(n ≥2),则这个数列的第10项等于A.1210B.129C.110D.1510.在函数y =f (x )的图象上有点列{x n ,y n },若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为A .f (x )=(34)x B .f (x )=log 3xC .f (x )=4x 2D .f (x )=2x +111.(密码改编)若数列1,2cos θ,22cos 2θ,23cos 3θ,…,2k cos k θ,…前2 012项之和为0,则θ的值为A .2k π±π3,k ∈ZB .2k π±2π3,k ∈ZC .k π±π3,k ∈Z D .不确定12.一房地产开发商将他新建的20层商品房的房价按下列方法定价,先定一个基价a 元/m 2,再根据楼层的不同上下浮动.一层的价格为(a -d )元/m 2,二层的价格为a 元/m 2,三层的价格为(a +d )元/m 2,第i 层(i ≥4)的价格为[a +d (23)i -3]元/m 2,其中a >0,d >0,则该商品房的各层房价的平均价格是A .a 元/m 2B .a +110[1-(23)18]d 元/m 2C .a +[1-(23)17]d 元/m 2D .a +110[1-(23)17]d 元/m 2二、填空题(每小题4分,共16分)13.已知数列{a n }满足a 1=1,11+a n +1-11+a n=1,则a n =______.14.已知各项为正数的等比数列{a n }中,a 2=1,且过点P 1(3,a 3),P 2(4,a 4)的直线斜率为2,则S 4=______.15.设{a n }是正项数列,其前n 项和S n 满足:4S n =(a n -1)·(a n +3),则数列{a n }的通项公式a n =________.16.已知数列{a n }满足a 1=36,a n +1-a n =2n ,则a nn的最小值为______.三、解答题(74分)17.(12分)记等差数列{a n }的前n 项和为S n ,设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .18.(12分)已知数列{a n }满足:a 1=14,a 2=34,a n +1=2a n -a n -1(n ≥2,n ∈N *),数列{b n }满足b 1<0,3b n -b n -1=n (n ≥2,b ∈N *).(1)求数列{a n }的通项a n ;(2)求证:数列{b n -a n }为等比数列.19.(12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .20.(12分)已知数列{a n }的各项为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .21.(12分)某鱼塘养鱼,由于改进饲养技术,预计第一年的增长率为200%,以后每年的增长率是前一年的一半,设原有产量为a .(1)写出改进饲养技术后的第一年、第二年、第三年的产量,并写出第n 年与第n -1年(n ≥2,n ∈N *)的产量之间的关系式;(2)由于存在环境污染等问题,估计每年将损失年产量的10%,照这样下去,以后每年的产量是否始终是逐步提高的?若是,请给予证明;若不是,请说明从第几年起,产量将不如上一年.22.(14分)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2,n ∈N *),且当λ=2,或λ=-3时,数列{a n +1+λa n }是等比数列.(1)求数列{a n }的通项公式;(2)设3n b n =n (3n -a n ),且|b 1|+|b 2|+…+|b n |<m 对于n ∈N *恒成立,求m 的取值范围.参考答案及其详细解析一、选择题(每小题5分,共60分) 1.解析:a 8=S 8-S 7=64-49=15.答案:A2.解析:设公差为d ,则⎩⎪⎨⎪⎧ 2a 1+3d =12a 1+6d =15,∴⎩⎪⎨⎪⎧a 1=3d =2,∴a 4=a 1+3d =9. 答案:B3.解析:设公比为q ,则8a 1q +a 1q 4=0,∵a 1,q 都不为0,∴q =-2. ∴S 5S 2=a 1(1-q 5)1-q a 1(1-q 2)1-q =1-q 51-q 2=33-3=-11. 答案:D4.解析:x 2-2x -3<0解得-1<x<3,∴整数解为0,1,2,如果{a n }为0,1,2,…,则第四项为3;如果{a n }为2,1,0,…,则第四项为-1.答案:D5.解析:当a 1<0,q >1时,a n +1<a n ,∴充分性不成立,当a 1<0,0<q <1,数列a n +1>a n 成立.∴必要性不成立.答案:D6.解析:∵a 2a 3=a 1q ·a 1q 2=2a 1⇒a 4=2,∴a 4+2a 4q 3=52,∴q =12,∴a 1=a 4q 3=2(12)3=16,∴S 5=16(1-125)1-12=31.答案:C7.解析:由a 2+a 4+a 6+a 8+a 10=80,得a 6=16,a 7-12a 8=(a 6+d )-12(a 6+2d )=12a 6=8.答案:C8.解析:∵{a n }为等比数列,∴a 1a 3=a 22=1,且a 1,a 3同号,当a 1>0,a 3>0时,S 3=a 1+a 2+a 3=1+(a 1+a 3)≥1+2a 1a 3=3.当a 1<0,a 3<0时,S 3=a 1+a 2+a 3=1-[(-a 1)+(-a 3)]≤1-2(-a 1)(-a 3)=-1. ∴S 3≤-1或S 3≥3. 答案:D9.解析:当n ≥2时,由已知得1-a n a n -1=a n a n +1-1,∴2=a n a n -1+a n a n +1,∴2a n =1a n -1+1a n +1,∴数列{1a n }是等差数列,又∵a 1=2,a 2=1,∴1a 1=12,1a 2=1,d =1a 2-1a 1=12,∴1a n =n2,∴a n=2n ,∴a 10=210=15. 答案:D10.解析:结合选项,对于函数f (x )=(34)x 上的点列{x n ,y n },有y n =(34)x n .由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n =(34)x n +1(34)x n =(34)x n +1-x n =(34)d ,这是一个与n 无关的常数,故{y n }是等比数列.答案:A11.解析:显然当2cos θ=1时不合题意.∴1×[1-(2cos θ)2 012]1-2cos θ=0.∴2cos θ=-1,∴θ=2k π±2π3,k ∈Z .答案:B12.解析:由已知各层房价的总和为(a -d )+a +(a +d )+(a +23d )+[a +(23)2d ]+[a +(23)3d ]+…+[a +(23)17d ]=20a +d [23+(23)2+(23)3+…+(23)17]=20a +d ×23[1-(23)17]1-23=20a +2d [1-(23)17],∴各层房的平均价格为a +110[1-(23)17]d . 答案:D二、填空题(每小题4分,共16分) 13.解析:由已知得11+a n +1-11+a n =1,∴数列{1a n +1}为公差是1的等差数列.又∵a 1=1,∴1a 1+1=12,∴1a n +1=2n -12.∴a n +1=22n -1,a n =3-2n 2n -1.答案:3-2n2n -114.解析:设公比为q ,且q >0,∴⎩⎪⎨⎪⎧a 1q =1a 4-a 34-3=a 1q 3-a 1q 2=2,解得⎩⎪⎨⎪⎧q =2a 1=12或⎩⎪⎨⎪⎧q =-1a 1=-1(舍去), ∴S 4=12(1-24)1-2=12(24-1)=152.答案:15215.解析:由4S n =a 2n +2a n -3①当n ≥2时,4S n -1=a 2n -1+2a n -1-3②①-②得,4a n =a 2n -a 2n -1+2a n -2a n -1,∴(a n +a n -1)(a n -a n -1-2)=0. ∵{a n }为正项数列,∴a n -a n -1=2. ∴数列{a n }是公差为2的等差数列. 又∵a 1=3,∴a n =2n +1. 答案:2n +116.解析:∵a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=36+2[1+2+3+…+(n -1)]=36+n 2-n . ∴a n n =36n +n -1≥236-1=11. 当且仅当n =6时取等号. 答案:11 三、解答题(74分) 17.(12分)解:设数列{a n }的公差为d .依题设有⎩⎪⎨⎪⎧2a 1(a 3+1)=a 22a 1+a 2+a 3=12, 即⎩⎪⎨⎪⎧a 21+2a 1d -d 2+2a 1=0a 1+d =4, 解得a 1=1,d =3或a 1=8,d =-4. 因此S n =12n (3n -1)或S n =2n (5-n ).18.(12分)解:(1)∵2a n =a n +1+a n -1(n ≥2,n ∈N *), ∴{a n }是等差数列. 又∵a 1=14,a 2=34,n 424(2)证明:∵b n =13b n -1+n 3(n ≥2,n ∈N *),∴b n +1-a n +1=13b n +n +13-2n +14=13b n -2n -112=13(b n -2n -14)=13(b n -a n ).又∵b 1-a 1=b 1-14≠0,∴{b n -a n }是以b 1-14为首项,以13为公比的等比数列. 19.(12分)解:(1)设公比为q ,则a n =a 1q n -1.由已知有⎩⎨⎧a 1+a 1q =2(1a 1+1a 1q )a 1q 2+a 1q 3+a 1q 4=64(1a 1q 2+1a 1q 3+1a 1q4).化简得⎩⎪⎨⎪⎧a 21q =2a 21q 6=64.又a 1>0,故q =2,a 1=1. 所以a n =2n -1.(2)由(1)知b n =(a n +1a n )2=a 2n +1a 2n +2=4n -1+14n -1+2.因此T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =4n-14-1+1-14n1-14+2n =13(4n -41-n )+2n +1. 20.(12分)解:(1)证明:S n =a n (a n +1)2,n ∈N *,n =1时,S 1=a 1(a 1+1)2,∴a 1=1.⎩⎪⎨⎪⎧2S n =a 2n +a n 2S n -1=a 2n -1+a n -1⇒2a n =2(S n -S n -1)=a 2n -a 2n -1+a n -a n -1, ∴(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0, ∴a n -a n -1=1,n ≥2,所以数列{a n }是等差数列. (2)由(1)知a n =n ,S n =n (n +1)2,∴b n =12S n =1n (n +1),∴T n =b 1+b 2+…+b n =11·2+12·3+…+1n (n +1)223n n +1=1-1n +1=n n +1.21.(12分)解:(1)第一年增长率为2,第二年增长率为1,第三年增长率为12,…,第n 年增长率为22-n ,∴a 1=3a ,a 2=6a ,a 3=a 2(1+12)=9a ,∴a n =a n -1(1+22-n )(n ≥2).(2)设第n 年实际产量为b n ,则 b 1=a (1+2)(1-110)=3·910a =2710a ,b 2=b 1(1+1)·910,b 3=b 2(1+12)·910,…,b n =b n -1(1+22-n )·910.∴b n b n -1=910(1+42n ),显然产量不可能逐年提高.设第n 年不如上一年,则b nb n -1<1, ∴910(1+42n )<1.∴2n >36, ∴n ≥6,∴从第6年起不如上一年产量. 22.(14分)解:(1)当λ=2时,可得{a n +1+2a n }为首项是a 2+2a 1=15,公比为3的等比数列,则a n +1+2a n =15·3n -1.①当λ=-3时,{a n +1-3a n }为首项是a 2-3a 1=-10,公比为-2的等比数列,∴a n +1-3a n =-10(-2)n -1.②①-②得a n =3n -(-2)n .(2)∵3n b n =n (3n -a n )=n [3n -3n +(-2)n ]=n (-2)n , ∴b n =n (-23)n .令S n =|b 1|+|b 2|+…+|b n | =23+2(23)2+3(23)3+…+n (23)n .③ ∴23S n =(23)2+2(23)3+…+(n -1)(23)n +n (23)n +1.④∴③-④可得13S n =23+(23)2+(23)3+…+(23)n -n (23)n +1 =23[1-(23)n ]1-23-n (23)n +1=2[1-(23)n ]-n (23)n +1.∴S n =6[1-(23)n ]-3n (23)n +1<6.要使得|b 1|+|b 2|+…+|b 2|<m 对于n ∈N *恒成立,只须m ≥6, ∴m 的取值范围是[6,+∞)。
高三数学练习题及答案:数列
高三数学练习题及答案:数列一、选择题:本大题共12小题,每小题5分,共60分.1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为()A.6B.7C.8D.9解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.答案:A2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是()A.12B.1C.2D.3解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.答案:C3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011等于()A.1B.-4C.4D.5解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,。
故{an}是以6为周期的数列,∴a2011=a6×335+1=a1=1.答案:A4.设{an}是等差数列,Sn是其前n项和,且S5A.d0B.a7=0C.S9S5D.S6与S7均为Sn的值解析:∵S5又S7S8,∴a80.假设S9S5,则a6+a7+a8+a90,即2(a7+a8)0.∵a7=0,a80,∴a7+a80.假设不成立,故S9答案:C5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q 的值为()A.-12B.12C.1或-12D.-2或12[解析:设首项为a1,公比为q,则当q=1时,S3=3a1=3a3,适合题意.当q≠1时,a1(1-q3)1-q=3?a1q2,∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,解得q=1(舍去),或q=-12.综上,q=1,或q=-12.答案:C6.若数列{an}的通项公式an=5?252n-2-4?25n-1,数列{an}的项为第x 项,最小项为第y项,则x+y等于()A.3B.4C.5D.6解析:an=5?252n-2-4?25n-1=5?25n-1-252-45,∴n=2时,an最小;n=1时,an.此时x=1,y=2,∴x+y=3.答案:A7.数列{an}中,a1=15,3an+1=3an-2(n∈N*),则该数列中相邻两项的乘积是负数的是()A.a21a22B.a22a23C.a23a24D.a24a25解析:∵3an+1=3an-2,∴an+1-an=-23,即公差d=-23.∴an=a1+(n-1)?d=15-23(n-1).令an0,即15-23(n-1)0,解得n23.5.又n∈N*,∴n≤23,∴a230,而a240,∴a23a240.答案:C8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为()A.1.14aB.1.15aC.11×(1.15-1)aD.10×(1.16-1)a解析:由已知,得每年产值构成等比数列a1=a,wan=a(1+10%)n-1(1≤n≤6).∴总产值为S6-a1=11×(1.15-1)a.答案:C9.已知正数组成的等差数列{an}的前20项的和为100,那么a7?a14的值为()A.25B.50C.100D.不存在解析:由S20=100,得a1+a20=10.∴a7+a14=10.又a70,a140,∴a7?a14≤a7+a1422=25.答案:A10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn()A.在直线mx+qy-q=0上B.在直线q__my+m=0上C.在直线qx+my-q=0上D.不一定在一条直线上解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,②由②得qn=y-1,代入①得x=mq(y-1),即q__my+m=0.答案:B11.将以2为首项的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),。
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.已知数列{an }的前n项和为Sn,f(x)=,an=log2,则S2 013=________.【答案】log2+1【解析】an =log2f(n+1)-log2f(n),∴S2 013=a1+a2+…+a2 013=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(2 014)-log2f(2 013)]=log2f(2 014)-log2f(1)=log2-log2=log2+1.2.各项均为正数的数列,满足:,,,那么()A.B.C.D.【答案】C【解析】取,,则,依次得到数列的各项为1,2,5,11,27…,取,,则,依次得到数列的各项为1,2,4,8,16…,由上可知存在,使得,…则由,∴数列为递增数列,由,而,…,累加得:,,即.【考点】1.递推公式;2.数列的单调性.3.已知数列满足:当()时,,是数列的前项和,定义集合是的整数倍,,且,表示集合中元素的个数,则,.【答案】9, 1022【解析】由于()时,,可知数列满足:,其前n项和满足:当时,是奇数,则是的整数倍;所以当时,的奇数项共有9项,故9;所以当时,的奇数项共有1022项,故1022;【考点】1.集合的表示法;2.数列通项与前n项和的关系;3.数学归纳法.4.在数列中,,则 .【答案】-1【解析】由此可知,所以.【考点】递推数列5.设数列满足 ,且对任意,函数满足,若,则数列的前项和为( )A.B.C.D.【答案】C【解析】.因为,所以:,所以是一个等差数列. ,又,,所以 .【考点】1、等差数列等比数列的通项及前项和;2、导数.6.若数列的前项和,则数列的通项公式()A.B.C.D.【答案】D【解析】对任意,有,当时有,解得;当且时,由,可得,两式相减得,整理得,故数列是以为首项,以为公比的等比数列,,故选D.【考点】数列通项的求解7.已知数列的通项公式为,数列的前项和为,且满足.(1)求的通项公式;(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.【答案】(1)数列的通项公式为;(2)存在,如,是的第5项.【解析】(1)首先令求出的值,当时,两式相减得:,即:,从而为首项和公比均为的等比数列,最后利用等比数列的通项公式可求得数列的通项公式;(2)先假设存在,即中第项满足题意,亦即,故,因此只要取,就能使得是数列中的第项.试题解析:(1)当时,.(2分)当时,两式相减得:,即:.(6分)故为首项和公比均为的等比数列,.(8分)(2)设中第项满足题意,即,即,所以,取,则(其它形如的数均可).(14分)【考点】1.数列通项公式的求法;2.数列探究型问题的解法.8.已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.【答案】(1),;(2),.【解析】(1)首先设出公差和公比,根据已知条件及等比数列和等差数列的性质,列方程组解方程组,求得公差和公比,写出各自的通项公式;(2)因为取偶数和奇数时,数列的项数会有变化,所以对分取偶数和奇数两种情况进行讨论,根据等差数列和等比数列的前项和公式,求出的表达式,根据前后两项的变化确定的单调性,求得每种情况下的最小值,比较一下,取两个最小值中的较小者.试题解析:(1)设数列的公差是,的公比为,由已知得,解得,所以; 2分又,解得或(舍去),所以; .4分(2)当为偶数时,,当为奇数时. .10分当为偶数时,,所以先减后增,当时,,所以;当时,,所以;所以当为偶数时,最小值是. 12分当为奇数时,,所以先减后增,当时,,所以,当时,,所以,所以当为奇数时,最小值是.比较一下这两种情况下的的最小值,可知的最小值是. .14分【考点】1、等差数列与等比数列的前项和公式;2、数列与函数单调性的综合应用;3、数列与求函数最值的综合运用;4、数列的函数特性.9.设数列{an }的前n项和为Sn,且,n=1,2,3(1)求a1,a2;(2)求Sn 与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•S3S2011•S2012的值.【答案】(1),;(2)Sn Sn﹣1﹣2S n+1=0;(3).【解析】(1)直接利用与的关系式求的值;(2)当时,把代入已知关系式可得与的关系式,再由此关系式,去凑出和,可得所求数列是等差数列,进而得通项的表达式,从而得的表达式;(3)由(2)中的表达式易求S1•S2•S3S2011•S2012的值.试题解析:(1)解:当n=1时,由已知得,解得,同理,可解得.(4分)(2)证明:由题设,当n≥2时,an =Sn﹣Sn﹣1,代入上式,得S n S n﹣1﹣2S n+1=0,∴,(7分)∴=﹣1+,∴{}是首项为=﹣2,公差为﹣1的等差数列,(10分)∴=﹣2+(n﹣1)•(﹣1)=﹣n﹣1,∴Sn=.(12分)(3)解:S1•S2•S3S2011•S2012=••••=.(14分)【考点】1、等差数列;2、数列的前n项和与通项的综合应用.10.设数列{an }是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an }和{bn}的通项公式:(Ⅱ)设Tn 为数列{Sn}的前n项和,求Tn.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用求,再结合条件求;(Ⅱ)利用等比数列的求和公式求解.试题解析:(Ⅰ)由,,,即,又,故.,,公差,. (6分)(Ⅱ),所以数列其前项和,. (12分)【考点】等差数列、等比数列的性质,等比数列的求和公式.11.设等差数列的前项和,且,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1).(2),.【解析】(1)确定等差数列的通项公式,往往利用已知条件,建立相关元素的方程组,如本题,设等差数列的公差为,结合已知,可建立的方程组,,解得得到.(2)首先应确定。
高三数学数列试题答案及解析
高三数学数列试题答案及解析1. 已知数列{a n }满足a n a n +1a n +2·a n +3=24,且a 1=1,a 2=2,a 3=3,则a 1+a 2+a 3+…+a 2 013=________. 【答案】5031【解析】由a n a n +1a n +2a n +3=24,可知a n +1a n +2a n +3a n +4=24,得a n +4=a n ,所以数列{a n }是周期为4的数列,再令n =1,求得a 4=4,每四个一组可得(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+a 2 013=10×503+1=5 031.2. 已知数列{a n }的前n 项和为S n ,且满足S n =n 2,数列{b n }满足b n =,T n 为数列{b n }的前n项和.(1)求数列{a n }的通项公式a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +(-1)n 恒成立,求实数λ的取值范围. 【答案】(1)(2)(-∞,0)【解析】(1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,验证当n =1时,也成立;所以a n =2n -1. b n ==,所以T n =.(2)由(1)得λ<,当n 为奇数时,λ<=2n --1恒成立,因为当n 为奇数时,2n --1单调递增, 所以当n =1时,2n --1取得最小值为0, 此时,λ<0. 当n 为偶数时,λ<=2n ++3恒成立,因为当n 为偶数时,2n ++3单调递增, 所以当n =2时,2n ++3取得最小值为.此时,λ<.综上所述,对于任意的正整数n ,原不等式恒成立,λ的取值范围是(-∞,0)3. 如图是见证魔术师“论证”64=65飞神奇.对这个乍看起来颇为神秘的现象,我们运用数学知识不难发现其中的谬误.另外,我们可以更换图中的数据,就能构造出许多更加直观与“令人信服”的“论证”.请你用数列知识归纳:(1)这些图中的数所构成的数列:________;(2)写出与这个魔术关联的一个数列递推关系式:________.【答案】(1)a n +2=a n +1+a n ,a 1=1,a 2=1(2)a n +2·a n -=(-1)n -1和≈0.618.【解析】利用推理知识求解.由图形可知,图中的数构成裴波纳契数列,所以(1)a n +2=a n +1+a n ,a 1=1,a 2=1;(2)题右图中间实质上有一个面积是1的平行四边形,有时空着,有时重合,所以与魔术有关的数列递推关系式可能是a n +2·a n -=(-1)n -1和≈0.618.4. 已知数列{a n }的通项公式是a n =-n 2+12n -32,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n -S m 的最大值是( ). A .-21 B .4 C .8 D .10【答案】D【解析】由于a n =-(n -4)(n -8),故当n <4时,a n <0,S n 随n 的增加而减小,S 3=S 4,当4<n <8时,a n >0,S n 随n 的增加而增大,S 7=S 8,当n >8时,a n <0,S n 随n 的增加而减小,故S n -S m ≤S 8-S 4=a 5+a 6+a 7+a 8=a 5+a 6+a 7=10.5. (本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分. 已知,且,,数列、满足,,,.(1) 求证数列是等比数列; (2) (理科)求数列的通项公式; (3) (理科)若满足,,,试用数学归纳法证明:.【答案】证明(1)∵, ∴,. ∵,, ∴. 又, ∴数列是公比为3,首项为的等比数列. 解(2)(理科)依据(1)可以,得. 于是,有,即.因此,数列是首项为,公差为1的等差数列.故. 所以数列的通项公式是.(3)(理科)用数学归纳法证明:(i)当时,左边,右边,即左边=右边,所以当时结论成立. (ii)假设当时,结论成立,即.当时,左边,右边.即左边=右边,因此,当时,结论也成立.根据(i)、(ii)可以断定,对的正整数都成立.【解析】略6.已知数列的前项和为,且是与2的等差中项,数列中,,点在直线上。
高中数学2020届高三专题复习版块七.数列综合1(无答案)
【例1】 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式;⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.【例2】 已知数列{}n a 的首项为13a =,通项n a 与前n 项和n S 之间满足12(2)≥n n n a S S n -=⋅.⑴求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列,并求公差;⑵求数列{}n a 的通项公式.【例3】 已知数列{}n a 的前n 项和为n S ,且22(1,2,3)n n S a n =-=L ,数列{}n b 中,11b =,点1()n n P b b +,在直线2y x =+上. ⑴求数列{}{}n n a b ,的通项公式n a 和n b ; ⑵设n n n c a b =⋅,求数列{}n c 的前n 项和n T , 并求满足167n T <的最大正整数n .【例4】 已知等比数列{}n a 满足1611a a +=,且34329a a =. ⑴求数列{}n a 的通项n a ;⑵如果至少存在一个自然数m ,恰使123m a -,2()m a ,149m a ++这三个数依次成等差数列,问这样的等比数列{}n a 是否存在?若存在,求出通项公式;若不存在,请说明理由.【例5】 已知等差数列{}n a ,公差为d ,求3521123n n n S a x a x a x a x -=+++L (1)x ≠【例6】 已知数列{}n a 是等差数列,且12a =,12312a a a ++=.(2003北京-文-16)⑴求数列{}n a 的通项公式;⑵令3n n n b a =⋅,求数列{}n b 前n 项和的公式.【例7】 在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+L , ⑴求数列{}n a 的通项公式;⑵记(0)n a n n b a p p =>,求数列{}n b 的前n 项和n T 。
(完整版)高三数列专题练习30道带答案
数列,首项
(1)求an和bn通项公式;
(2)
27.在数列{an}中,a1=1,a4=7,an+2—2an+计an=0(n€N)
(1)求数列an的通项公式;
(2)若h—-)(n€N+),求数列{bn}的前n项和S.
nO a
28
a b
令
知
(1)求数列{an},bn的通项公式;
a
(1)求数列{an}、{bn}的通项公式;
(2)令Cn2(ann),求数列{Cn}的前n项和Tn.
n(b
1
8•已知an是各项均为正数的等比数列,且a1a22(— —),
a?
(1)求an的通项公式;
12
(2)设bn(an—)2,求数列bn的前n项和「.
9
(I)求证:数列{an1}为等比数列;
(n)令bnnan,求数列{bn}的前n项和Tn.
23.(本小题满分14分)等比数列{an}的前n项和Sn2n6a,数列{bn}满足bn'log;1log22log2n)(n N*).
n
(1)求a的值及{an}的通项公式;
1
(2)求数列的前n项和;
bnbn1
a
(3)求数列 -的最小项的值.
bn
24.数列{an}的通项an是关于x的不等式X2x nx的解集中正整数的个数,
(2)设cnbnlog3an,求数列cn的前n项和£.
参考答案
a12
解得d 1
an2n11 n 1
S3n3n 23n 3n 119nn 1
bn992111
2%2 9n n 1 n n 1 n n 1
1
1
1 ,
专题3 数列专题压轴小题(原卷版)
专题3数列专题压轴小题一、单选题 1.(2021·湖北·高三期中)2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,这个政策就是我们所说的“双减”政策,“双减”政策极大缓解了教育的“内卷”现象,而“内卷”作为高强度的竞争使人精疲力竭.数学中的螺旋线可以形象的展示“内卷”这个词,螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD 的边长为4,取正方形ABCD 各边的四等分点E ,F ,G ,H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的四等分点M ,N ,P ,Q ,作第3个正方形MNPQ ,依此方法一直继续下去,就可以得到阴影部分的图案.设正方形ABCD 边长为1a ,后续各正方形边长依次为2a ,3a ,…,n a ,…;如图(2)阴影部分,设直角三角形AEH 面积为1b ,后续各直角三角形面积依次为2b ,3b ,…,n b ,….下列说法错误..的是( )A .从正方形ABCD 开始,连续3个正方形的面积之和为1294B.14n n a -=⨯⎝⎭C .使得不等式12n b >成立的n 的最大值为4 D .数列{}n b 的前n 项和4n S <2.(2021·云南·峨山彝族自治县第一中学高三月考(理))已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a a a ++⋅⋅⋅+=,则下列成立的是( )A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能3.(2021·浙江·高三月考)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n nea ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;②若2k =,则数列{}n a 单调递增;③若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①② B .②③ C .①③ D .①②③4.(2021·上海市大同中学三模)已知数列{}n a 满足120a a ≠,若2121nn n na a a a +++=+,则“数列{}n a 为无穷数列”是“数列{}n a 单调”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2021·浙江·模拟预测)已知正项数列{}n a 中,11a =,21112n n n a a a ++-=,若存在实数t ,使得()221,n n t a a -∈对任意的*N n ∈恒成立,则t =( ) AB.3C.2D6.(2021·江苏·海安高级中学高三期中)已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(4)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为( )A .2B .3C .4D .57.(2021·安徽合肥·一模(文))将方程2sin cos x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A.B.C.D.8.(2021·江苏苏州·高三期中)设数列{}()m a m *∈N ,若存在公比为q 的等比数列{}()1m b m *+∈N ,使得1k k k b a b +<<,其中1,2,,k m =,则称数列{}1m b +为数列{}m a 的“等比分割数列”,则下列说法错误的是( )A .数列{}5b ;2,4,8,16,32是数列{}4a :3,7,12,24的一个“等比分割数列”B .若数列{}n a 存在“等比分割数列”{}1n b +,则有11k k n a a a a -<<<<<和111k k n n b b b b b -+<<<<<<成立,其中2,k n k *≤≤∈NC .数列{}3a :3-,1-,2存在“等比分割数列”{}4bD .数列{}10a 的通项公式为2(1,2,,10)nn a n ==,若数列{}10a 的“等比分割数列”{}11b 的首项为1,则公比1092,2q ⎛⎫∈ ⎪⎝⎭9.(2021·新疆·莎车县第一中学高三期中)已知数列{a n }满足3a 1=1,n 2a n +1﹣a n 2=n 2a n (n ∈N *),则下列选项正确的是( ) A .{a n }是递减数列B .{a n }是递增数列,且存在n ∈N *使得a n >1C .1132n a +> D .202120214043a <10.(2021·安徽·淮南第一中学高三月考(理))已知数列{}n a 满足14a =,*1144(2,N )n n n a a n n a ---=≥∈,若124(6)na n nb na -=⋅-,且存在*N n ∈,使得2460n b m m +-≥成立,则实数m的取值范围是( )A.⎣⎦B.1⎡⎣C .10,6⎡⎤⎢⎥⎣⎦D .11,32⎡⎤-⎢⎥⎣⎦11.(2021·浙江金华·高三月考)已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T >D .当3a =时,202210111012T <12.(2021·河北石家庄·高三月考)已知数列{}n a 满足225a =,对任意的n ∈+N 有1(1)280n n n a na +--+=,设数列{}n b 满足12n n n n b a a a ++=⋅⋅,n ∈+N ,则当{}n b 的前n 项和n T 取到最大值时n 的值为( ) A .9B .10C .11D .1213.(2021·辽宁实验中学高三期中)数列{}n a 中,11a =,*1*15,3,3n n n n a a n a +-⎧+∉⎪⎪=⎨⎪∈⎪⎩N N ,使2021n a ≤对任意的n k≤(*k ∈N )恒成立的最大k 值为( ) A .1209B .1211C .1213D .121514.(2021·黑龙江·高三期中(理))设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则选项不正确的是( ) A .数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B .2445d -<<- C .50a > D .0n S >时,n 的最大值为515.(2021·浙江·模拟预测)已知数列{}n a 满足2*112,4,N n n a a n a a n -+==∈,给出以下结论,正确的个数是( )①1n a >;②1n n a a +>;③存在无穷多个*N k ∈,使322k k a -=;④121111na a a +++< A .4B .3C .2D .116.(2021·浙江·模拟预测)已知数列{}n a 满足111,ln 2(*)2nn n a a a a n N +==-+∈,记数列{}n a 的前n 项和为n S ,则正确的是( ) A .存在0*n N ∈,使得02n a > B .存在0*n N ∈,使得001n n a a +> C .存在0*n N ∈,使得00+1+4n n a a > D .存在0*n N ∈,使得012n S >17.(2021·浙江·模拟预测)已知数列{}n a 满足13a =,246a =,2n a +=(π≈3.14)则此数列项数最多为( ) A .2019项 B .2020项 C .2021项D .2022项18.(2021·北京房山·高三开学考试)已知集合*{|21,}A x x k k N ==- ∈,*{|27,}B x x k k N ==+ ∈,从集合A 中取出m 个不同元素,其和记为S :从集合B 中取出n 个不同元素,其和记为T . 若562S T +≤,则m n +的最大值为( ) A .17B .26C .30D .3419.(2021·浙江·乐清市知临中学高三月考)设数列{}n a 满足112a =,2*1(N )2021nn n a a a n +=+∈,记12(1)(1)(1)n n T a a a =---,则使0n T <成立的最小正整数n 是( )A .2020B .2021C .2022D .202320.(2021·甘肃·嘉峪关市第一中学模拟预测(理))若数列{}n a 满足:A ∃,B R ∈,0AB ≠,使得对于*n N ∀∈,都有21n n n a Aa Ba ++=+,则称{}n a 具有“三项相关性”下列说法正确的有( ) ①若数列{}n a 是等差数列,则{}n a 具有“三项相关性” ②若数列{}n a 是等比数列,则{}n a 具有“三项相关性” ③若数列{}n a 是周期数列,则{}n a 具有“三项相关性”④若数列{}n a 具有正项“三项相关性”,且正数A ,B 满足1A B +=,12a a B +=,数列{}n b 的通项公式为n n b B =,{}n a 与{}n b 的前n 项和分别为n S ,n T ,则对*n N ∀∈,n n S T <恒成立.A .③④B .①②④C .①②③④D .①②21.(2021·上海·格致中学高三月考)正数数列{}n a 的前n 项和为n S ,()112n n n S a n N a +⎛⎫=+∈ ⎪⎝⎭,则下列选项中正确的是( ) A.2021a ≥B.2021a ≤-C .202120221a a ⋅>D .202020211a a ⋅<22.(2021·浙江·高三月考)已知数列{}n a 满足113a =,()2*12N nn n a a a n n+=+∈,则下列选项正确的是( )A .20212020a a <B .2021202114043a << C .2021202104043a << D .20211a >二、多选题23.(2021·广东·模拟预测)已知数列{}n a 中,()111131,3n n n n n n a a a a a n a a *+++->=∈-N ,且12121110a a a a +++=,设2221222212111,n n n nS a a a T a a a =+++=+++,则下列结论正确的是( ) A .12a =B .数列{}n a 单调递增C .()2591232nn n S T n +=-- D .若()12nn S T +为偶数,则正整数n 的最小值为8 24.(2021·重庆南开中学高三月考)已知数列{}n a 满足11a =,()1n a n *+=∈⎢⎥⎢⎥⎣⎦N ,其中[]x 表示不超过实数[]x 的最大整数,则下列说法正确的是( ) A .存在n *∈N ,使得132n n a -≤B .12n a ⎧⎫-⎨⎬⎩⎭是等比数列C .2020a 的个位数是5D .2021a 的个位数是125.(2021·江苏·金陵中学高三开学考试)已知数列{}n a 满足:111 ,1n n n a a a a +=+=,设(n )l n n b a n N *=∈,数列{}n b 的前n 项和为n S ,则下列选项正确的是ln 20. 693 ,ln3(9)1.09≈≈( ) A .数列{}21n a -单调递增,数列{}2n a 单调递减 B .+1ln 3n n b b +≤C .2020693S >D .212n n b b ->26.(2021·湖北武汉·高三期中)已知数列{}n a 满足10a =,()11n nn aa a e e n ++*=+∈N ,前n 项和为n S ,则下列选项中正确的是( )(参考数据:ln 20.693≈,ln3 1.099≈) A .1ln 2n n a a ++≥B .2020666S <C .()3lnln 222n a n ≤≤≥ D .{}21n a -是单调递增数列,{}2n a 是单调递减数列27.(2021·湖北·高三月考)将数列{}21n -中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列:(1),(3,5),(7,9,11,13).(15,17,19,21,23,25,27,29),…,则以下结论中正确的是( ) A .第10个括号内的第一个数为1023 B .2021在第11个括号内C .前10个括号内一共有1023个数D .第10个括号内的数字之和()19202,2S ∈28.(2021·湖北黄石·高三开学考试)在平面直角坐标系中,O 是坐标原点,,n n M N 是圆222:O x y n +=上两个不同的动点,n P 是n n M N 的中点,且满足()220n n n OM ON OP n *⋅+=∈N .设,n n M N 到直线20l y n n +++=的距离之和的最大值为n a ,则下列说法中正确的是( ) A .向量n OM 与向量n ON 所成角为120︒ B .n OP n = C .22n a n n =+D .若2n n a b n =+,则数列12{}(21)(21)n nn b b b +--的前n 项和为11121n +-- 29.(2021·湖北武汉·高三开学考试)数列{}n a 依次为:1,13,13,13,15,15,15,15,15,17,17,17,17,17,17,17,19,19,…,其中第一项为11,接下来三项均为13,再接下来五项均为15,依此类推.记{}n a 的前n 项和为n S ,则( ) A .100119a =B .存在正整数k ,使得k a >C .n SD .数列n S n ⎧⎫⎨⎬⎩⎭是递减数列30.(2021·福建省福州第一中学模拟预测)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为{}n a ,121a a ==,()123n n n a a a n --=+≥,边长为斐波那契数n a 的正方形所对应扇形面积记为()*n b n ∈N ,则( )A .()2233n n n a a a n -+=+≥B .123201920211a a a a a +++⋅⋅⋅+=+C .()2020201920182021π4b b a a -=⋅ D .123202*********π4b b b b a a +++⋅⋅⋅+=⋅ 31.(2021·江苏·模拟预测)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( ) A .{}n a 是递增数列 B .{}10n a +是等比数列 C .122n n n a a a ++>+D .(3)2n n n S +<32.(2021·全国·高三专题练习(文))已知数列{}n a 满足:1n a n =,n S 是数列{}n a 的前n 项和,()ln 1n n na b a +=,下列命题正确的是( ) A .11ln n n n a a n ++⎛⎫<< ⎪⎝⎭B .数列{}n b 是递增数列C .202120201ln 2021S S ->>D .ln 2ln 3n b ≤<33.(2021·江苏泰州·模拟预测)已知()()()232012(21)212121nn n x x x x aa x a x a x ++++=++++下列说法正确的是( )A .设1n b a =,则数列{}n b 的前n 项的和为2224n n S n +=--B .2a 22228233n n ++=--C .1n a -=222n n n +-(*n N ∈)D .()*11n n a n N a -⎧⎫-∈⎨⎬⎩⎭为等比数列34.(2021·全国·模拟预测)斐波那契数列,又称黄金分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的“数学之美”,在数学上斐波那契数列{}n a 一般以递推的方式被定义:121a a ==,21++=+n n n a a a ,则( ) A .1055a =B .2211n n n a a a ++-=C.1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是等比数列 D .设1n n na b a +=,则112n n n n b b b b +++-<-三、双空题 35.(2021·山东济宁·高三期中)十九世纪法国数学家卢卡斯提出数列{}n L :2,1,3,4,7,…,称之为卢卡斯数列,且满足12L =,21L =,()112n n n L L L n +-=+≥,则12L =________;记n S 为数列{}n L 的前n 项和,若2023L t =,则2021S =__________.36.(2021·江苏如皋·高三月考)已知数列{}n a 对任意的*n N ∈,都有n a N *∈,且131,,2n n n n na a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数,①当18a =时,2021a =___________.②若存在*m N ∈,当n m >且n a 为奇数时,n a 恒为常数P ,则P =___________.37.(2021·广东·高三月考)将正三角形(1)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(2);将图(2)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(3);如此类推,将图(n )的每条边三等分,并以中间的那一条线段为底边向外作三角形,然后去掉底边,得到图()1n +.上述作图过程不断的进行下去,得到的曲线就是美丽的雪花曲线.若图(1)中正三角形的边长为1,则图(n )的周长为__________,图(n )的面积为___________.38.(2021·北京二中高三月考)定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,1,12,()3,23,x x f x x x -≤≤⎧=⎨-<<⎩②(3)3()f x f x =. (i )(6)f = _____;(ii )若函数()()F x f x a =-的零点从小到大依次记为12,,,,n x x x ,则当(1,3)a ∈时,12212n n x x x x -++++=_______.39.(2021·福建·三明一中模拟预测)黎曼猜想由数学家波恩哈德∙黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++∑,我们经常从无穷级数的部分和1111123s s ssn ++++入手.已知正项数列{}n a 的前n 项和为n S ﹐且满足11()2n n na S a +=,则n S =__________,12100111S S S ⎡⎤++=⎢⎥⎣⎦__________.(其中[]x 表示不超过x 的最大整数) 40.(2021·山东日照·高三月考)牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法,具体步骤如下:设r 是函数()y f x =的一个零点,任意选取0x 作为r 的初始近似值,过点()()00,x f x 作曲线()y f x =的切线1l ,设1l 与x 轴交点的横坐标为1x ,并称1x 为r 的1次近似值;过点()()11,x f x 作曲线()y f x =的切线2l ,设2l 与x 轴交点的横坐标为2x ,称2x 为r 的2次近似值,过点()()(),nnx f x n *∈N 作曲线()y f x =的切线1n l+,记1n l +与x 轴交点的横坐标为1n x +,并称1n x +为r 的1n +次近似值,设()()3220f x x x x =+-≥的零点为r ,取00x =,则r 的2次近似值为______:设()333222n n n n x x a n x *+=∈+N ,数列{}n a 的前n 项积为n T .若任意的n *∈N ,n T λ<恒成立,则整数λ的最小值为______.41.(2021·浙江浙江·模拟预测)已知等差数列{}n a 的公差大于32,且满足311πsin 2a a ⎛⎫⋅= ⎪⎝⎭,322ππ1cos 0233a a ⎛⎫⎛⎫⋅++-= ⎪ ⎪⎝⎭⎝⎭,则数列{}n a 的公差d =___________,前n 项和n S =___________.42.(2021·山西太原·一模(理))已知数列{}n a 满足1232a a ==,()*223n n n a a n +=+⨯∈N ,且()*1n n n b a a n +=+∈N .则数列{}n b 的通项公式为________.若()()*24(1)341n n n b c n n +=∈-N ,则数列{}n c 的前n 项和为________.43.(2021·浙江温州·二模)有一种病毒在人群中传播,使人群成为三种类型:没感染病毒但可能会感染病毒的S 型;感染病毒尚未康复的I 型;感染病毒后康复的R 型(所有康复者都对病毒免疫).根据统计数据:每隔一周,S 型人群中有95%仍为S 型,5%成为I 型;I 型人群中有65%仍为I 型,35%成为R 型;R 型人群都仍为R 型.若人口数为A 的人群在病毒爆发前全部是S 型,记病毒爆发n 周后的S 型人数为,n S I 型人数为n I ,则n S =_________;n I =__________.(用A 和n 表示,其中*n ∈N )四、填空题 44.(2021·上海·模拟预测)设整数数列1a ,2a ,…,10a 满足1013a a =,2852a a a +=,且{}11,2i i i a a a +∈++,1,2,,9i =⋅⋅⋅,则这样的数列的个数为___________.45.(2021·福建省福州格致中学高三月考)已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩有下列结论:①函数()f x 在()6,5--上单调递增;②函数()f x 的图象与直线y x =有且仅有2个不同的交点;③若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8;④记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 其中所有正确结论的编号是___________.46.(2021·全国·高三月考(理))已知首项为1的数列{}n a 的前n 项和为n S ,若2121n n n n n S S S S S λλ++++=+,且数列1a ,2a ,…,(3)k a k >成各项均不相等的等差数列,则k 的最大值为__________.47.(2021·上海市吴淞中学高三期中)已知数列{}n a 满足:121,()a a x x N *==∈,21n n n a a a ++=-,若前2010项中恰好含有666项为0,则x 的值为___________.48.(2021·上海市晋元高级中学高三期中)如果数列{}n a 满足:120211,2017a a ==,且对于任意*n N ∈,存在实数a 使得1n n a a +、是方程()22210x a x a a -+++=的两个根,则100a 的所有可能值构成的集合是____________.49.(2021·黑龙江·佳木斯一中高三月考(文))已知数列{}n a :2223333333441123123456712,,,,,,,,,,,,2222222222222的前n 项和为n S ,则120S =___________.50.(2021·全国·高三专题练习)将杨辉三角中的每一个数rn C 都换成分数1(1)r nn C +,就得到一个如图所示的分数三角形,称为莱布尼茨三角形,从莱布尼茨三角形可以看出:11111(1)(1)r r rn n n n C n C nC +-+=++,令2211111113123060(1)n n na nC n C -=+++++++,n S 是{}n a 的前n 项和,则n S =______.51.(2021·湖南师大附中高三月考)已知函数|1||1|e sin(1)()e x x xf x ----=,若()22(2019)(2018)(2021)20201f f f a b -+-+⋅⋅⋅+=++,a ,b ∈R .则|a b -+的最大值为___________.52.(2021·全国·高三专题练习)已知数列{}n a 的通项公式为12(1)3n n n a ⎡⎤=--⎣⎦,1n n n b a a +=,设n S 是数列{}n a 的前n 项和,若0n n b S λ->对任意*n ∈N 都成立,则实数λ的取值范围是__________.53.(2021·全国·高三月考)已知等差数列{}n a ,对任意n N +∈都有01211231C C C C 2n n n n n n n a a a a n ++++++=⋅成立,则数列121n n a a ++⎧⎫⎨⎬⎩⎭的前n 项和n T =__________. 54.(2021·河北·正定中学高三开学考试)意大利数学家斐波那契(1175年1250-年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项之和,即21(*)n n n a a a n N ++=+∈,故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为]n n n a =-.设n是不等式(1]211n n n ->+的正整数解,则n 的最小值为______.55.(2021·辽宁·高三月考)对于任意实数序列()()123123,,,,,,,,,,,n n A a a a a B b b b b =⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅,定义()112233*,,,,,n n A B a b a b a b a b =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅已知数列{}{},n n a b 满足33,n n n a b a n +==,若*A B 中前n 项的和112233n n n S a b a b a b a b m =⋅+⋅+⋅+⋅⋅⋅+⋅<恒成立,则整数m 的最小值为______. 56.(2021·山东济南·高三月考)数列{}n a 共12项,且11a =,42a =,关于x 的函数()()322113n n n x f a x a x x =-+-+,n ∈+N ,若()1111n x a n +=≤≤是函数的极值点,且曲线的()4y f x =在点()()12412,a f a 处的切线的斜率为3,则满足条件的数列{}n a 的个数为__________.57.(2021·云南师大附中高三月考(理))数列{}n a 中,12a =,()*,p q p q a a a p q +=∈N ,记m b 为{}n a 中在区间(]0,m ()*m ∈N 中的项的个数,则数列{}m b 的前150项和150S =________.。
高三数学数列专项练习题及答案
高三数学数列专项练习题及答案一、选择题1.已知数列{an}的通项公式为an = 3n + 2,则数列的首项是:A. 1B. 2C. 3D. 4答案:B2.有一个等差数列的第1项是3,公差是4,求该数列的第10项:A. 23B. 27C. 30D. 33答案:C3.已知数列{an}的前n项和Sn = n^2 + 2n,求该数列的通项公式。
A. an = n^2B. an = n^2 + 2n + 1C. an = n^2 + nD. an = n^2 + 2n答案:D4.已知等差数列{an}的前n项和Sn = 2n^2 + 3n,求该数列的第10项。
A. 183B. 193C. 203D. 213答案:C5.已知等差数列{an}的前5项之和为10,其中首项为a1,公差为d,求a5的值。
A. 4B. 5C. 6D. 7答案:D二、填空题1.已知等差数列{an}的前n项和Sn = 2n^2 + 5n,求a1的值。
答案:22.已知数列{an}的通项公式为an = 2^n,其中n为自然数,求该数列的前5项之和。
答案:623.已知等差数列{an}的前n项和Sn = n^2 + 3n,求a1的值。
答案:14.已知等差数列{an}的前n项和Sn = 4n - n^2,求该数列的第7项。
答案:115.已知等差数列{an}的首项为3,公差为-2,求该数列的第8项。
答案:-5三、解答题1.已知数列{an}的通项公式为an = 3n + 2,求该数列的前10项。
解答:将n分别代入1到10,得到该数列的前10项为:5, 8, 11, 14, 17, 20, 23, 26, 29, 32。
2.已知等差数列{an}的首项是5,公差是3,求该数列的前10项之和。
解答:根据等差数列的图像性质可知,首项和末项之和等于前n项和的两倍。
所以,末项为a10 = 5 + 3 × (10 - 1) = 32。
故前10项之和为(5 + 32) × 10 ÷ 2 = 185。