集合的概念和表示方法2 教案

合集下载

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。

集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案主题:集合的含义与表示教案目标:1. 理解集合的基本含义。

2. 掌握集合的表示方法。

3. 能够用集合的表示方法描述给定的情境。

4. 能够运用集合的基本操作解决问题。

教学重点:1. 集合的含义与基本操作。

2. 集合的表示方法。

教学难点:1. 运用集合的表示方法描述实际情境。

教学准备:1. PowerPoint课件。

2. 教学板书。

教学过程:Step 1:导入新知1. 教师出示一些实物,如水果、玩具等,引导学生思考这些实物有什么相同之处。

2. 引导学生总结归纳,提出“集合”的概念,解释集合的基本含义。

Step 2:集合的含义1. 引导学生研究集合的定义:集合是由一些元素组成的整体。

2. 通过实例让学生理解集合的概念,如{1, 2, 3}表示由1、2、3三个元素组成的集合。

Step 3:集合的表示方法1. 教师出示集合的符号表示方法,如用大括号{}括起来的元素列表。

2. 通过实例让学生掌握集合的符号表示方法,如{苹果, 香蕉, 梨子}表示由苹果、香蕉、梨子三个元素组成的集合。

3. 教师引导学生讨论集合中的元素是否有顺序之分,解释集合与序列的区别。

4. 教师出示集合的文字表示方法,如用描述性的句子来表示集合。

Step 4:集合的基本操作1. 教师引导学生了解集合的基本操作:包含关系、相等关系、子集关系。

2. 通过实例让学生掌握集合的基本操作,如集合A={1, 2, 3},集合B={1, 2},则A包含B,B是A的子集。

Step 5:运用集合的表示方法描述实际情境1. 教师设计一些情境,如描述班级同学的集合、描述某个地区的居民集合等。

2. 学生进行小组讨论,用集合的表示方法描述给定情境。

3. 学生报告讨论结果,集体分享。

Step 6:拓展应用1. 教师引导学生思考集合在数学中的应用,如数集、函数等。

2. 学生进行小组讨论,分享集合的拓展应用。

3. 教师总结讨论结果,提出个人思考问题。

Step 7:小结与评价1. 教师总结集合的基本含义与表示方法,并强调集合的基本操作。

教学设计2:1.1.1集合的概念

教学设计2:1.1.1集合的概念

§1.1.1集合的概念一. 教学目标:1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的见解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。

2. 学会用列举法、描述法表示集合。

3. 能够运用集合的基本运算解决实际问题。

二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。

2. 教学难点:理解集合中元素的确定性、互异性、无序性。

三、教学准备1. 教学素材:黑板、PPT、教学卡片。

2. 教学工具:多媒体投影仪、笔记本电脑。

四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。

3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。

(2)描述法:引导学生学会用描述法表示集合。

4. 集合的基本运算:讲解并演示集合的并、交、差运算。

5. 课堂练习:布置练习题,让学生巩固所学知识。

五、课后作业1. 完成练习册上的相关题目。

2. 思考生活中的集合实例,总结集合的特点。

教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。

在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。

通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。

六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。

2. 引导学生学会利用数轴、Venn图解决集合问题。

七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。

2. 强调集合中元素的确定性、互异性、无序性。

八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。

2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。

九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。

2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

集合与集合的表示方法教案

集合与集合的表示方法教案

集合与集合的表示方法教案一、教学目标1. 理解集合的概念,掌握集合的表示方法。

2. 能够运用集合的表示方法正确表示一些具体的集合。

3. 能够理解和运用集合的基本运算。

二、教学重点与难点1. 教学重点:集合的概念,集合的表示方法,集合的基本运算。

2. 教学难点:集合的表示方法,集合的基本运算。

三、教学方法1. 采用问题导入法,引导学生思考和探索集合的概念和表示方法。

2. 通过示例讲解和练习,让学生掌握集合的表示方法和基本运算。

3. 采用小组讨论法,让学生合作解决问题,培养学生的合作能力。

四、教学准备1. 教案、PPT、黑板。

2. 练习题。

五、教学过程1. 导入:引导学生思考集合的概念,让学生举例说明集合的概念。

2. 讲解:讲解集合的表示方法,包括列举法、描述法和图像法。

3. 示例:给出一些具体的集合,让学生用不同的表示方法表示出来。

4. 练习:让学生练习用列举法和描述法表示一些给定的集合。

5. 总结:总结集合的表示方法和基本运算,让学生理解集合的概念。

6. 作业:布置练习题,让学生巩固所学知识。

六、教学反思在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了集合的表示方法和基本运算。

如果有问题,需要及时进行调整和改进。

七、教学评价通过课堂练习和课后作业的完成情况,评价学生对集合的表示方法和基本运算的掌握程度。

观察学生在课堂上的参与情况和合作能力,对学生的学习情况进行全面的评价。

八、课后作业1. 练习题:完成练习题,巩固集合的表示方法和基本运算。

2. 思考题:思考如何用集合的表示方法解决实际问题。

九、拓展与延伸1. 让学生探索集合的更多表示方法,如关系表示法。

2. 引导学生思考集合的性质和运算规律,进一步深入学习集合的知识。

十、教学时间本节课计划时间为45分钟,根据实际情况进行调整。

六、教学内容与活动1. 教学内容:集合的交集、并集、补集的概念和运算。

2. 教学活动:讲解集合的交集、并集、补集的概念和运算方法,通过示例让学生理解并掌握这些运算。

《集合的概念》参考教案

《集合的概念》参考教案

《集合的概念》参考教案一、教学目标1. 让学生理解集合的含义,掌握集合的表示方法。

2. 让学生了解集合之间的关系,包括子集、真子集、并集、交集、补集等。

3. 培养学生运用集合的概念解决实际问题的能力。

二、教学内容1. 集合的含义与表示方法2. 集合之间的关系3. 集合的运算三、教学重点与难点1. 重点:集合的含义、表示方法以及集合之间的关系。

2. 难点:集合的运算及其应用。

四、教学方法1. 采用讲授法,讲解集合的概念、表示方法以及集合之间的关系。

2. 运用案例分析法,让学生通过实际例子理解集合的运算。

3. 开展小组讨论,培养学生合作解决问题的能力。

五、教学步骤1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的含义与表示方法:讲解集合的定义,介绍常用的集合表示方法,如列举法、描述法等。

3. 讲解集合之间的关系:讲解子集、真子集、并集、交集、补集等概念,并通过图形演示集合之间的关系。

4. 练习与讲解:布置练习题,让学生巩固所学内容,并对学生的疑问进行解答。

5. 总结与展望:总结本节课的主要内容,布置课后作业,预习下一节课的内容。

六、课后作业1. 复习集合的概念与表示方法。

2. 复习集合之间的关系,包括子集、真子集、并集、交集、补集等。

3. 完成课后练习题,加深对集合概念的理解。

七、教学评价1. 课堂参与度:观察学生在课堂上的发言、提问以及小组讨论情况。

2. 课后作业:检查学生的作业完成情况,评估学生对集合概念的掌握程度。

3. 单元测试:进行单元测试,了解学生对集合知识的运用能力。

八、教学资源1. PPT课件:展示集合的图形,直观演示集合之间的关系。

2. 练习题:提供丰富的练习题,巩固所学内容。

3. 教学案例:选取生活中的实际案例,帮助学生理解集合的概念。

九、教学进度安排1. 第一课时:讲解集合的含义与表示方法。

2. 第二课时:讲解集合之间的关系。

3. 第三课时:讲解集合的运算。

集合的含义及表示教案

集合的含义及表示教案

1.1.1集合的含义及其表示(一)达高中:何汶娉教学目标:1.知识技能:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念,2.过程方法: 让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. 让学生通过观察、归纳、总结的过程,提高抽象概括能力。

3. 情感态度:使学生感受到学习集合的必要性,增强学习的积极性.教学重点:集合概念、性质;“∈”,“ ”的使用教学难点:集合概念的理解;课型:新授课教学手段:启发引导教学过程:一创设情境,引入课题1.通过预习,在初中学习中,我们接触过哪些集合?请举例说明。

2.提问:根据你对集合的理解,能在生活中举出几个集合的实例吗?生活实例如军训前学校通知:8月15日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

设计说明]顺应学生的认知规律,从他们熟悉的集合入手,消除学生学习新知识的恐惧感,同时,适时地引出,集合的含义究竟是什么呢?这就是本节课要解决的问题,恰当地引出课题——下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二研探新知,建构概念1.概念思考1:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3达高中高一7班的所有男同学;(4)平面上到定点O 的距离等于定长的所有的点.上述四例能否组成集合?并说出集合由什么组成。

板书:把研究的对象称为元素,通常用小写拉丁字母a ,b ,c ,…表示;把一些元素组成的总体叫做集合,简称集,通常用大写字母A ,B ,C ,…表示.[设计说明] 让小组讨论,代表发言,师生共同补充答案,目的是活跃课堂气氛,并轻松地概括出集合及其元素的含义。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义讲解集合的定义:集合是由明确的、相互区别的对象组成的整体。

强调集合中元素的性质:无序、互异性、确定性。

1.2 集合的表示方法讲解集合的表示方法:列举法和描述法。

示例解析:如何用列举法和描述法表示给定的集合。

1.3 集合之间的关系讲解集合之间的包含关系、不相交关系和并集等概念。

示例解析:如何表示两个集合的包含关系、不相交关系和并集。

第二章:集合的基本运算2.1 集合的交集讲解集合的交集概念:包含属于两个集合的所有元素的集合。

示例解析:如何计算两个集合的交集。

2.2 集合的并集讲解集合的并集概念:包含属于任意一个集合的所有元素的集合。

示例解析:如何计算两个集合的并集。

2.3 集合的补集讲解集合的补集概念:在全集相对于某个集合的补集中,不属于该集合的所有元素的集合。

示例解析:如何计算一个集合的补集。

第三章:集合的性质与运算规律3.1 集合的性质讲解集合的性质:确定性、互异性、无序性。

示例解析:如何判断给定的集合是否满足这些性质。

3.2 集合运算的规律讲解集合运算的规律:交换律、结合律、分配律等。

示例解析:如何应用这些运算规律解决实际问题。

3.3 集合的分类讲解集合的分类:有限集、无限集、可数集、不可数集等。

示例解析:如何判断给定的集合属于哪种分类。

第四章:数学归纳法4.1 数学归纳法的基本概念讲解数学归纳法的基本概念:数学归纳法是一种证明命题对所有自然数成立的证明方法。

示例解析:如何应用数学归纳法证明一个命题。

4.2 数学归纳法的步骤讲解数学归纳法的步骤:基础步骤、归纳步骤。

示例解析:如何按照这些步骤进行数学归纳法证明。

4.3 数学归纳法的应用讲解数学归纳法的应用:解决与自然数有关的命题。

示例解析:如何利用数学归纳法解决实际问题。

第五章:集合的应用5.1 集合在生活中的应用讲解集合在生活中的应用:例如,购物时的商品分类、朋友圈等。

示例解析:如何运用集合的概念解决生活中的实际问题。

《集合的概念》参考教案

《集合的概念》参考教案

《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合语言描述现实生活中的数学问题。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 集合的定义2. 集合的表示方法3. 集合之间的关系4. 集合的运算5. 集合在生活中的应用三、教学重点与难点1. 重点:集合的概念、表示方法及集合之间的关系和运算。

2. 难点:理解集合的表示方法,熟练运用集合语言描述问题。

四、教学方法1. 采用讲授法,讲解集合的概念、表示方法及集合之间的关系和运算。

2. 运用案例分析法,让学生在实际问题中运用集合的知识。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考集合的概念。

2. 讲解:详细讲解集合的定义、表示方法及集合之间的关系和运算。

3. 案例分析:分析实际问题,让学生运用集合的知识解决问题。

4. 小组讨论:让学生分组讨论,分享各自的想法和成果。

5. 总结:对本节课的内容进行总结,强调集合的概念及运用。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价1. 评价内容:学生对集合概念的理解、表示方法的掌握以及集合运算的应用能力。

2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。

3. 评价标准:能正确理解并运用集合语言描述问题,掌握集合的基本运算,能解决实际生活中的集合问题。

七、教学资源1. 教材:高中数学教材相关章节。

2. 辅助材料:集合相关的图片、案例、练习题等。

3. 教学工具:黑板、多媒体设备等。

八、教学进度安排1. 第1周:讲解集合的概念和表示方法。

2. 第2周:讲解集合之间的关系和运算。

3. 第3周:案例分析,运用集合知识解决实际问题。

4. 第4周:小组讨论,分享成果,巩固所学知识。

5. 第5周:总结集合的概念和运用,布置课后作业。

九、教学反思1. 反思内容:教学方法的适用性、学生的学习效果、教学目标的达成情况等。

集合的概念及其表示(二)

集合的概念及其表示(二)

1.1.2集合的概念及其表示(二)教学目标:了解有限集、元限集概念,掌握表示集合方法;了解空集的概念及其特殊性,渗透抽象、概括思想。

教学重点:集合的表示方法教学难点:正确表示一些简单集合课 型:自学辅导法教学手段:多媒体教学过程:一、创设情境复习提问集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何表示?二、活动尝试阅读教材第二部分,问题如下:(1)集合的表示方法有几种?分别是如何定义的?(2)有限集、无限集、空集的概念是什么?试各举一例。

三、师生探究1.请用列举法表示下列集合(投影a ):(1)小于5的正奇数.(2)能被3整除且大于4小于15的自然数.(3)方程x 2-9=0的解的集合.2.请用描述法表示下列集合:(4)到定点距离等于定长的点.(5)由适合x 2-x-2>0的所有解组成集合.(6)方程组⎩⎨⎧=+=+2732223y x y x 的解集 3.用描述法分别表示(投影2):(1)抛物线x 2=y 上的点.(2)抛物线x 2=y 上点的横坐标.(3)抛物线x 2=y 上点的纵坐标.四、数学理论(一)通过预习提纲师生共同归纳集合表示方法,通用的表示方法有:列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

例如,“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“young 中的字母” 构成的集合,写成{y,o,u,n,g}由“book 中的字母” 构成的集合,写成{b,o,k}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素。

描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。

格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合。

集合与集合的表示方法教案

集合与集合的表示方法教案

集合与集合的表示方法教案教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 能够运用集合的表示方法解决实际问题。

教学重点:1. 集合的概念及其表示方法。

2. 集合的运算及其性质。

教学难点:1. 理解集合的表示方法在实际问题中的应用。

教学准备:1. 教学PPT。

2. 教学素材。

教学过程:一、导入(5分钟)1. 引入集合的概念,通过实例让学生感受集合的意义。

2. 引导学生思考如何表示集合,激发学生的学习兴趣。

二、集合的表示方法(10分钟)1. 介绍集合的表示方法,包括列举法、描述法和图像法。

2. 通过实例讲解各种表示方法的运用。

3. 让学生尝试用不同的表示方法表示给定的集合,巩固所学知识。

三、集合的运算(10分钟)1. 介绍集合的运算,包括并集、交集和补集。

2. 通过实例讲解各种运算的运用。

3. 让学生尝试用集合的运算解决实际问题,提高学生的应用能力。

四、集合的性质(10分钟)1. 介绍集合的性质,包括交换律、结合律和吸收律。

2. 通过实例讲解集合性质的运用。

3. 让学生尝试用集合的性质解决实际问题,提高学生的应用能力。

五、课堂小结(5分钟)2. 布置作业,让学生巩固所学知识。

教学反思:六、集合的推理与逻辑(10分钟)1. 介绍集合推理的概念,包括集合的包含关系和不相交关系。

2. 通过实例讲解集合推理的运用。

3. 让学生尝试用集合推理解决实际问题,提高学生的逻辑思维能力。

七、集合与函数的关系(10分钟)1. 介绍函数与集合的关系,包括函数的定义和特点。

2. 通过实例讲解函数与集合的关系的运用。

3. 让学生尝试用集合的知识解决函数问题,提高学生的应用能力。

八、集合与数列的关系(10分钟)1. 介绍数列与集合的关系,包括数列的定义和特点。

2. 通过实例讲解数列与集合的关系的运用。

3. 让学生尝试用集合的知识解决数列问题,提高学生的应用能力。

九、集合与图形的关系(10分钟)1. 介绍几何图形与集合的关系,包括图形的定义和特点。

集合的表示方法教案

集合的表示方法教案

集合的表示方法教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,通过实例讲解集合的构成要素:元素和集合本身。

强调集合中元素的互异性,即集合中的元素不重复。

1.2 集合的表示方法介绍集合的表示方法,包括列举法、描述法和图像法。

讲解列举法的使用,例如用大括号{}括起来,里面写上集合中的元素。

介绍描述法的概念,例如用集合的属性来描述集合中的元素。

讲解图像法的表示方法,例如用Venn图来表示集合的交集、并集和补集。

1.3 集合的性质引导学生了解集合的几个基本性质:确定性、互异性、无序性。

通过实例讲解集合的性质,让学生能够辨别和应用。

第二章:集合的运算2.1 集合的交集讲解交集的定义,即两个集合共有的元素构成的集合。

引导学生通过列举法或描述法表示交集。

举例说明交集的运算,并让学生进行练习。

2.2 集合的并集讲解并集的定义,即两个集合中所有元素构成的集合。

引导学生通过列举法或描述法表示并集。

举例说明并集的运算,并让学生进行练习。

2.3 集合的补集讲解补集的定义,即在全集之外的所有元素构成的集合。

引导学生通过列举法或描述法表示补集。

举例说明补集的运算,并让学生进行练习。

第三章:集合的推理3.1 集合的包含关系讲解集合的包含关系的概念,即一个集合是否包含另一个集合的所有元素。

引导学生通过列举法或描述法表示包含关系。

举例说明包含关系的推理,并让学生进行练习。

3.2 集合的相等关系讲解集合的相等关系的概念,即两个集合是否包含相同的元素。

引导学生通过列举法或描述法表示相等关系。

举例说明相等关系的推理,并让学生进行练习。

3.3 集合的德摩根定律讲解德摩根定律的概念,即补集的运算法则。

引导学生通过列举法或描述法应用德摩根定律。

举例说明德摩根定律的应用,并让学生进行练习。

第四章:集合的应用4.1 集合在数学中的应用讲解集合在数学中的应用,例如解决方程组、不等式等问题。

举例说明集合在数学中的应用,并让学生进行练习。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案教学目标:1. 理解集合的含义和特点;2. 学会使用集合的表示方法;3. 能够运用集合的概念解决实际问题。

教学内容:第一章:集合的概念1.1 集合的定义1.2 集合的元素1.3 集合的特点第二章:集合的表示方法2.1 列举法2.2 描述法2.3 图像法第三章:集合之间的关系3.1 子集的概念3.2 真子集与非真子集3.3 集合的相等第四章:集合的运算4.1 并集的定义及运算4.2 交集的定义及运算4.3 补集的定义及运算第五章:集合的实际应用5.1 集合在数学中的应用5.2 集合在生活中的应用5.3 集合在其他学科中的应用教学方法:1. 采用讲授法,系统地介绍集合的概念、特点、表示方法、关系和运算;2. 利用例题和练习题,让学生巩固集合的基本知识;3. 结合生活实例,让学生了解集合在实际中的应用。

教学步骤:第一章:集合的概念1.1 集合的定义1. 引入集合的概念,讲解集合的定义;2. 通过实例让学生理解集合的元素和特点。

1.2 集合的元素1. 讲解集合元素的特点;2. 分析集合元素的属性。

1.3 集合的特点1. 总结集合的特点;2. 通过练习题让学生巩固集合的特点。

第二章:集合的表示方法2.1 列举法1. 讲解列举法的概念和用法;2. 让学生通过练习题学会使用列举法表示集合。

2.2 描述法1. 讲解描述法的概念和用法;2. 让学生通过练习题学会使用描述法表示集合。

2.3 图像法1. 讲解图像法的概念和用法;2. 让学生通过练习题学会使用图像法表示集合。

第三章:集合之间的关系3.1 子集的概念1. 讲解子集的概念;2. 让学生通过练习题学会判断子集关系。

3.2 真子集与非真子集1. 讲解真子集与非真子集的概念;2. 让学生通过练习题学会判断真子集与非真子集关系。

3.3 集合的相等1. 讲解集合的相等概念;2. 让学生通过练习题学会判断集合的相等关系。

第四章:集合的运算4.1 并集的定义及运算1. 讲解并集的定义和运算方法;2. 让学生通过练习题学会计算并集。

《集合的概念》教案设计

《集合的概念》教案设计

《集合的概念》教案设计《《集合的概念》教案设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.1.1集合的概念一、教学目标1、知识技能目标:(1)初步理解集合的概念,集合元素的三个特征,知道常用数集及其记法。

(2)初步了解“属于”关系的意义。

(3)初步了解有限集、无限集、空集的意义。

2、过程方法目标:(1) 从观察分析集合的元素入手,正确的理解集合.通过实例,初步体会元素与集合的“属于”关系。

(2)观察关于集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义。

3、情感态度目标:(1)在学习运用集合语言的过程中,增强学生认识事物的能力。

(2)培养学生实事求是、扎实严谨的科学态度。

二、知识点1、集合等有关概念及其表示方法2、集合与元素之间的关系3、集合元素的三个特征4、集合分类(注意空集 )5、常用数集的表示法三、教学重点:集合的基本概念与表示方法,集合元素的三个特征.四、教学难点:集合与元素的关系,空集的意义五、课程引入与简单回顾:从前有个渔夫对数学非常感兴趣,但是就是不理解集合,偶然碰到了一位数学家,他就问这位数学家,集合是什么?数学家让这位渔夫去撒网打渔,当网收起时,大大小小的鱼被一网打尽,数学家笑着说,这就是集合!六、新授课1、概念:(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象。

如:教室里的桌子可以称作是对象咱们的教科书可以称作为对象某某笔袋里的文具也可以看作是对象……(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

(3)元素:构成集合中每个对象叫做这个集合的元素。

例1、小于10的自然数 0,1,2,3,4,5,6,7,8,9中的各个数都分别看作对象,所有这些对象汇集在一起构成一个整体,我们说这些对象构成一个集合,该集合的元素有:0,1,2,3,4,5,6,7,8,92、书P3举几个集合的例子(1)、参加亚特兰大奥运会的所有中国代表团的成员构成的集合(2)、方程 =1的解的全体构成的集合(3)、平行四边形的全体构成的集合(4)、平面上与一定点O的距离等于r的点的全体构成的集合。

高一数学《集合的概念及其表示方法》数学思想教案

高一数学《集合的概念及其表示方法》数学思想教案

高一数学《集合的概念及其表示方法》数学思想教案教案目标:1. 理解集合的基本概念及其符号表示方法。

2. 掌握集合的运算法则。

3. 培养学生的抽象思维能力和逻辑推理能力。

教学重点:1. 集合的概念及其表示方法。

2. 集合的基本运算法则。

教学难点:1. 集合的复杂运算法则。

教学准备:教师准备:教案、黑板、彩色粉笔、PPT演示等。

学生准备:课本、笔记本等。

教学过程:一、导入(5分钟)教师可以通过一个例子引出集合的概念,如"小明班上的男生"。

教师:假设小明所在的班级有30个学生,其中有15个是男生,请问这个集合该如何表示呢?二、讲授(20分钟)1. 集合的定义及基本概念集合是由各种对象按照一定规律组成的整体,其中的对象称为元素。

用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。

集合用花括号{}括起来表示,元素之间用逗号分隔。

例如:A = {1, 2, 3, 4, 5},表示集合A由元素1、2、3、4、5组成。

2. 集合的符号表示方法a. 列举法:直接将集合中的元素一一列举出来。

如:B = {2, 4, 6},表示集合B由元素2、4、6组成。

b. 描述法:用一个条件句描述集合中的元素。

如:C = {x | x是正整数,且x < 5},表示集合C由小于5的正整数组成。

3. 集合的分类a. 空集:不包含任何元素的集合,用∅表示。

b. 单集:只包含一个元素的集合。

c. 有限集:元素个数有限的集合。

d. 无限集:元素个数无限的集合。

三、实践操作(25分钟)1. 通过示例引导学生理解集合的概念及表示方法。

例如:集合A表示所有年龄大于16岁的学生,用描述法表示为A = {x | x是学生,且x的年龄 > 16}。

集合B表示小明喜欢的水果,用列举法表示为B = {苹果, 香蕉, 草莓}。

2. 练习题演练学生通过课本提供的习题和练习题进行集合的练习,巩固概念和表示方法。

例如:1)用集合的描述法表示一个包含所有整数的集合。

集合的概念教案

集合的概念教案

精选集合的概念教案一、教学目标1. 理解集合的概念,掌握集合的表示方法。

2. 能够运用集合语言描述生活中的事物,培养学生的抽象思维能力。

3. 通过对集合概念的学习,提高学生的逻辑思维和数学素养。

二、教学重点与难点1. 教学重点:集合的概念、集合的表示方法。

2. 教学难点:理解集合的确定性、互异性、无序性。

三、教学准备1. 教学材料:教材、教案、PPT、黑板。

2. 教学工具:多媒体设备、粉笔。

四、教学过程1. 导入新课:通过生活中的实例,如“班级里的学生”、“水果店的水果”等,引导学生思考什么是集合,激发学生的兴趣。

2. 讲解概念:讲解集合的概念,强调集合的确定性、互异性、无序性。

3. 实例分析:分析生活中的一些实例,让学生理解集合的概念。

4. 集合的表示方法:讲解集合的表示方法,如列举法、描述法等。

5. 练习与讨论:布置一些练习题,让学生运用集合语言描述实例,并进行讨论。

五、课后作业1. 复习本节课的内容,掌握集合的概念和表示方法。

2. 完成课后练习题,加深对集合概念的理解。

3. 思考生活中的其他实例,尝试用集合语言描述。

教学评价:通过课堂讲解、练习和课后作业,评价学生对集合概念的理解程度,以及运用集合语言描述事物的能力。

在评价过程中,关注学生的逻辑思维和数学素养的提高。

六、教学拓展1. 集合的分类:讲解集合的分类,如数集、几何集等。

2. 集合的关系:讲解集合之间的关系,如子集、真子集、并集、交集等。

3. 集合的运算:讲解集合的运算规则,如并集、交集、补集等。

七、教学活动1. 小组讨论:让学生分组讨论集合的分类和关系,分享各自的理解和看法。

2. 案例分析:分析一些具体的集合案例,让学生运用集合的运算规则解决问题。

2. 强调集合语言在数学和生活中的重要性,激发学生继续学习的兴趣。

九、课后作业1. 复习本节课的内容,掌握集合的分类、关系和运算。

2. 完成课后练习题,加深对集合概念的理解。

3. 思考生活中的其他实例,尝试用集合语言描述。

集合的概念和表示教案

集合的概念和表示教案

集合的概念和表示教案
主题:集合的概念和表示
目标:
1. 介绍集合的定义和基本概念;
2. 解释集合的表示方法;
3. 引导学生进行相关练习。

时间:1课时
教学流程:
1. 引入(5分钟)
- 引入集合的定义:集合是由一组确定的对象组成的。

这些对象可以是任何类型,如数字、字母、单词等。

- 引发思考:我们可以用集合来表示什么样的事物?
2. 理论讲解(15分钟)
- 集合的表示方法:
- 列举法:把集合的元素逐一列举出来,用花括号{}括起来。

例如:集合A = {1, 2, 3}。

- 描述法:用一句话或一个公式来描述集合的元素的特征。

例如:集合B = {x x 是正整数}。

- 空集与全集:
- 空集:不包含任何元素的集合,用符号∅表示。

- 全集:包含所有可能元素的集合,用符号U表示。

3. 实例练习(15分钟)
- 通过实例引导学生练习集合的表示方法,如:
- 集合C = {4, 5, 6, 7},用描述法表示;
- 集合D = {x x 是偶数},用列举法表示;
- 集合E = {x x 是英文字母},用描述法表示。

4. 解答与讨论(10分钟)
- 让学生分享自己的答案,并讨论集合的表示方法是否正确。

5. 总结与评价(5分钟)
- 总结集合的定义、表示方法和表示空集与全集的符号;
- 评价学生对集合的概念和表示的理解程度。

教学资源:
- 板书或投影仪
- 课堂练习题
拓展活动:
- 让学生设计自己的集合,并用不同的表示方法表示出来;- 引导学生思考集合的运算和关系。

教案——集合的含义与表示

教案——集合的含义与表示

1.1.1集合的含义与表示一、教材分析在初中学生已经接触过一些集合,在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础。

集合论及其所反映的数学思想,在越来越广泛的领域的得到应用。

二、教学目标1.知识与技能(1)了解集合的含义,体会元素和集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、无异性、无序性;(4)会用集合语言(列举法或描述法)恰当的表示集合。

2.过程与方法(1)观察关于集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义.(2)通过实例,初步体会元素与集合的“属于”关系;(3)学会借助实例分析、探究数学问题,如集合中元素的确定性、互异性;(4)通过实例理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.三、教学重点集合的含义和表示方法。

四、教学难点恰当选择集合表示法(列举法与描述法)表示一些简单的集合。

五、教学方法讲练结合六、教学具体过程(一)引入课题同学们,军训前学校来了个通知:8月15日8点,高一年级在操场集合进行军训动员;于是我想问,这个通知的对象是全体的高一学生还是个别学生?有时候,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象。

在这里,集合是我们常用的一个词语。

因此,我们将学习一个新的概念——集合【板书】,即一些研究对象的总体。

初中的时候我们已经接触过一些集合了,比如说不等式的解法一节中提到的有关知识:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.(二)新课教学1.集合的含义那么集合到底是怎样定义的呢?请大家阅读一下课本第2页的8个例子,想一想例3到例8 能不能组成集合,如果可以的话它们的元素分别是什么?在例1中,我们把1—20以内的每个素数作为一个元素,这些元素的全体就是集合。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的概念,理解集合的含义及其在数学中的应用。

2. 学会用列举法、描述法表示集合,并能正确理解集合间的包含关系。

3. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。

二、教学内容1. 集合的概念2. 集合的表示方法:列举法、描述法3. 集合间的包含关系三、教学重点与难点1. 教学重点:集合的概念、集合的表示方法、集合间的包含关系。

2. 教学难点:集合的表示方法、集合间的包含关系的理解与应用。

四、教学方法1. 采用讲授法,讲解集合的概念、表示方法及包含关系。

2. 运用案例分析法,让学生通过实际例子理解集合的含义。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学准备1. 准备相关案例,用于讲解集合的含义。

2. 准备集合的图片或实物,帮助学生直观地理解集合。

3. 准备练习题,巩固所学知识。

【教学环节】1. 导入:通过一个实际案例,引入集合的概念,激发学生的兴趣。

2. 讲解:讲解集合的含义、表示方法及包含关系,引导学生理解并掌握相关知识。

3. 互动:开展小组讨论,让学生运用所学知识解决实际问题,巩固所学内容。

4. 练习:布置练习题,让学生自主完成,检查学习效果。

6. 作业:布置作业,让学生进一步巩固所学知识。

六、教学过程1. 导入:通过一个实际案例,引入集合的概念,激发学生的兴趣。

案例:小明有3个苹果,2个香蕉,4个橘子,请问他的水果有多少个?2. 讲解:讲解集合的含义、表示方法及包含关系,引导学生理解并掌握相关知识。

含义:集合是若干个确定的、互不相同的对象的全体。

表示方法:列举法:直接列出集合中的所有元素,如小明的水果集合可以表示为{苹果,香蕉,橘子}。

描述法:用描述的方式表示集合,如小明的水果集合可以表示为“小明所拥有的水果”。

包含关系:集合间的包含关系分为子集和真子集。

子集:如果一个集合的所有元素都是另一个集合的元素,这个集合是另一个集合的子集。

真子集:如果一个集合是另一个集合的子集,并且两个集合不相等,这个集合是另一个集合的真子集。

《集合的概念》参考教案

《集合的概念》参考教案

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合知识解决实际问题的能力。

3. 培养学生合作交流、思考创新的能力。

二、教学内容:1. 集合的概念及表示方法。

2. 集合的元素特征。

3. 集合的分类。

三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。

2. 教学难点:理解集合的元素特征,掌握集合的分类。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。

2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。

3. 采用合作交流法,培养学生团队协作能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。

3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。

4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合知识解决实际问题的能力。

3. 培养学生合作交流、思考创新的能力。

二、教学内容:1. 集合的概念及表示方法。

2. 集合的元素特征。

3. 集合的分类。

三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。

2. 教学难点:理解集合的元素特征,掌握集合的分类。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。

2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。

3. 采用合作交流法,培养学生团队协作能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。

3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。

4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时
续5 集合的表示方法
引入课题
课本4P 思考
(2)描述法
由不等式73x -<的解集 引入描述法概念
描述法...
:用集合所含元素的共同特征表示集合的方法,一般形式为{|}x I P ∈,其中x 代表元素,I 是x 的取值范围,P 是x 的共同特征.
(说明:有的书上用冒号或分号代替竖线,如{73}x x -<:或{73}x x -<;)
如:{}|10A x R x =∈<;{}|2,B x Z x k k Z =∈=∈;{}|5,C x x x Q =>-∈
例题
注意:①“代表元素”,是表示这个集合元素的一般符号,ⅰ如表示数集时,我们可选用,,,x y a L 作为代表元素;表示点集时,可选用数对(),x y 作为代表元素;ⅱ集合与它的代表元素所采用的字母无关,只与代表元素的形式有关.如{}|10x R x ∈<,也可表示为{}|10y R y ∈<,{}|10a R a ∈<.
②“取值范围”,对于代表元素的取值范围,如果从上下文的关系来看是明确的,则可以省略.如{}|10x R x ∈<可表示为{}|10x x <;
③“共同特征”,即代表元素满足的条件、具备的属性,如不等式73x -<的解都具备的条件是10x <,则其解集表示为{}|10x x <.
强调:描述法表示集合应注意集合的代表元素,如(){}2,|32x y y x x =++、{}2|32y y x x =++与{}
2|32x y x x =++有什么不同,只要不引起误解,集合的代表元素也可省略,例如:{}整数 (即{}|x x 是整数),即代表整数集Z .
辨析:这里的{
}已包含“所有”的意思,所以不必写{全体整数},这种写法{实数集},{}R 也是
错误的.
探究集合的表示方法
课本5P 思考
自然语言:自然语言描述集合比较自然、生动,它能将问题所研究的对象的含义更明确地叙述出来; 列举法:它具有直观明了的特点;突出元素,注意元素的互异性;
描述法:可以清晰地反映集合元素的特征属性.
(3)图示法
ⅰ) Venn 图法(文氏图):用平面上一条封闭曲线的内部
代表一个集合,如集合{}1,2,3A =,如图11-;
ⅱ) 也可以用利用数轴、平面直角坐标系等表示集合.
如集合{}|12x R x ∈≤≤的表示 如图12-.
6 集合的分类
⑴有限集:含有有限个元素的集合. 如: A={1~20以内所有质数}
⑵无限集:含有无限个元素的集合. 如: B={所有的直角三角形}
⑶空集:不含任何元素的集合,记作∅. 如 {}
2|1C x R x =∈=-
7课堂练习
课本5P 练习 课本课本12P 习题
补充练习:
1.下列说法正确的是( ) A .不等式253x -<的解集表示为{}4x < B .所有偶数的集合表示为{}|2x x k =
C .全体自然数的集合可表示为{}自然数
D .方程240x -=实数根的集合表示为(){}2,2-
2.用另一种形式表示下列集合:
(1){}3绝对值不大于的整数(2){}3所有被整除的数(3){}|||,5x x x x Z x =∈<且
(4)()()(){}2|35230,x x x x x Z -++=∈ (5)(){},|6,0,0,,x y x y x y x Z y Z +=>>∈∈
3.用列举法表示集合{}|510A x Z x =∈≤≤为 _______________________.
8 学习小结
①集合的三种重要表示方法(自然语言、列举法、描述法)②会用适当的方法表示集合
9 作业
课本12P 习题A 组 4 复习参考题A 组 44P 2
七 板书设计
八 课后反思
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
附录 课后作业
1. 下列四个集合中,是空集的是( )
A . }33|{=+x x
B . },,|),{(22R y x x y y x ∈-=
C . }0|{2≤x x
D .},01|{2R x x x x ∈=+-
2.已知,a b 都是非零实数,则||||||
a b ab y a b ab =++可能取的值组成的集合为___________. 3.若{}
231,3,1m m m -∈-+,则m =____________. 4.如果3x y ==+,集合{}
|,M m m a a b Q ==+∈,则有( ) A .x M M ∈∈且y B . x M M ∉∈且y C .x M M ∈∉且y D .x M M ∉∉且y
5.设集合6|2B x N N x ⎧⎫=∈∈⎨⎬+⎩⎭
. (1)试判断元素1,元素2与集合B 的关系;
(2)用列举法表示集合B .
※6.设集合{}22|,,M a a x y x y Z ==-∈ 试证明:一切奇数属于集合M ; 提示:2221(1)n n n +=+-。

相关文档
最新文档