专题34 数列中的奇偶性问题(解析版)
高中数学核心考点:数列 难点3 数列中的奇偶项问题 - 解析
微专题2:数列中的奇偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征如:等差、等比数列或其他特征求解原数列.题型一:等差等比数列的奇偶项特性例1-1:已知等差数列{an}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( ) A. 10 B. 20 C. 30 D. 40【解析】 设项数为2n ,则由S 偶-S 奇=nd 得25-15=2n ,解得n =5,故这个数列的项数为10.例1-2:已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.【解析】 由题意得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.规律方法:若等差数列{a n }的项数为偶数2n ,则:①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1.若等差数列{a n }的项数为奇数2n +1,则:①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .若等比数列{a n }中,公比为q .当项数是偶数时,S 偶=S 奇·q ;当项数是奇数时,S 奇=a 1+S 偶·q .若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q1+q(q ≠1且q ≠-1).1. 在等差数列{a n }中,前2m (m 为正整数)项的和为155,其中奇数项的和为70,且 a 2m -a 1=27,则该数列的通项公式为_____________.【解析】 由题得⎩⎪⎨⎪⎧S 偶-S 奇=md =85-70=15,a 2m -a 1=(2m -1)d =27,解得d =3,m =5.又S 2m =S 10=(a 1+a 10)×102=155,解得a 1=2,从而a n =a 1+(n -1)d =2+3n -3=3n -1.2. 在等比数列{a n }中,已知a 3,a 7是方程x 2-6x +1=0的两根,则a 5等于( )A. 1B. -1C. ±1D. 3【解析】 在等比数列{a n }中,因为a 3,a 7是方程x 2-6x +1=0的两个根,所以a 3+a 7=6>0,a 3·a 7=1>0,所以a 3>0,a 7>0,a 5>0.因为a 3·a 7=a 25=1,所以a 5=1.题型二:奇偶分析求通项例2:设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈求n a 的通项式∵1(1)2nn n n S a =--∴当2n ≥时,11111(1)2n n n n S a ----=--两式相减得111111(1)(1)22n n n n n n n n S S a a -----=----+,即111(1)(1)2n n n n n n a a a --=---+ 当n 是偶数时,112n n n n a a a -=++,所以112n n a -=-,即n 是奇数时,112n n a +=-; 当n 是奇数时,1122n n n a a -=-+,1111222n n n n a a --=-+=,即当n 是偶数时,12nna =.1.,32,122,1n n a a a a ===+,求n a 的通项式2.,52,311+=+=+n a a a n n 求n a 的通项式题型三:奇偶分析求和例3:在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并写出其通项公式;(2)求数列{a n }的通项公式;(3)求S n . 解 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n=⎝⎛⎭⎫12n , 所以a n =11221,212n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩为奇数,偶,为数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n =21233,2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩为偶数,为奇数.,规律方法:对于通项公式分奇、偶不同的数列{a n }求S n 时,我们可以分别求出奇数项的和与偶数项的和,也可以把a 2k -1+a 2k 看作一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .1. 数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3) =4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.2.设数列{}n a 满足123411,1,4,4a a a a ====,数列{}n a 前n 项和是n S ,对任意的*n N ∈,()()242122cos x n n n n n n n a af x x a a a x e a a +++++=++--,若()00f '=,当n 是偶数时,n S 的表达式是___________.【解析】()()242122sin x n n n n n n n a af x a a a x e a a +++++'=-+--, 因为()00f '=,所以2420n n n n a a a a +++-=,即242n n n n a aa a +++=,所以数列{}n a 中所有的奇数项成等比数列,所有的偶数项成等比数列,所以当n 是偶数时,n S 的表达式是22111114424111433214nn n n⎡⎤⎛⎫⎛⎫⎢⎥⋅- ⎪⋅- ⎪⎢⎥⎝⎭⎝⎭⎣⎦+=-+-⨯-. 3. 已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式; (2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0,即a 2n +1-a 2n -1=2, 又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列,所以b n =1+(n -1)×2=2n -1,n ∈N *. (2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0, 当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0, 即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以 T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=⎣⎡⎦⎤n ×1+12n (n -1)×2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n 2+1-12n ,n ∈N *.题型四:由奇偶项分类讨论求参数例4:已知数列{a n }的前n 项和S n =(-1)n ·n ,若对任意的正整数n ,使得(a n +1-p )·(a n -p )<0恒成立,则实数p 的取值范围是________. 解析 当n =1时,a 1=S 1=-1;当n ≥2时,a n =S n -S n -1=(-1)n n -(-1)n -1(n -1)=(-1)n (2n -1). 因为对任意的正整数n ,(a n +1-p )(a n -p )<0恒成立, 所以[(-1)n +1(2n +1)-p ][(-1)n (2n -1)-p ]<0.①当n 是正奇数时,化为[p -(2n +1)][p +(2n -1)]<0,解得1-2n <p <2n +1, 因为对任意的正奇数n 都成立,取n =1时,可得-1<p <3.②当n 是正偶数时,化为[p -(2n -1)][p +(1+2n )]<0,解得-1-2n <p <2n -1,因为对任意的正偶数n 都成立,取n =2时,可得-5<p <3.联立⎩⎪⎨⎪⎧-1<p <3,-5<p <3,解得-1<p <3.所以实数p 的取值范围是(-1,3).已知数列{}n a 的前n 项和为n S ,对任意N n +∈,1(1)32nn n nS a n =-++-且 1()()0n n t a t a +--<恒成立,则实数t 的取值范围是 .【解析】当1n时,134a 当2n时,11111(1)42n n n n S a n ----=-++-,所以11(1)(1)12n n n n n na a a -=-+--+ 当n 为偶数时,1112n n a -=-; 当n 为奇数时,11212n n n a a -=--+,即1112122n n n a --=--+,1232n n a -=-. 所以113,211,2nn n n a n +⎧-⎪⎪=⎨⎪-⎪⎩为偶数为奇数.当n 为偶数时,1113,324n n a ⎡⎫=-∈⎪⎢⎣⎭,当n 为奇数时,11311,24n n a +⎛⎤=-∈--⎥⎝⎦又因为1()()0n n t a t a +--<恒成立,1n n a t a +<<,所以31144t.。
2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)
则 ,
所以 .
故选:C.
【点睛】本题考查函数奇偶性与对称性,周期性,解题关键是由奇函数的性质和对称性得出函数为周期函数.
12.奇函数 的定义域为R,若 为偶函数,且 ,则 =( )
A.﹣2B.﹣1C.0D.1
【答案】B
【解析】
【分析】根据题意和函数的奇偶性,得到函数 是周期为4的周期函数,进而利用函数的周期性,求得 的值,即可得到答案.
∴1=2- ,∴a=2.
(2)由(1)知f(x)=x- ,
定义域为(-∞,0)∪(0,+∞)关于原点对称.
f(-x)=-x- =-x+ =-(x- )=-f(x),
∴函数f(x)为奇函数.
【点睛】本题考查函数解析式中参数的求解,利用奇偶性的定义判断函数奇偶性,属综合基础题.
高频考点二:函数奇偶性的应用
对于选项 ,令 ,则 .
在 中,将 换为 ,得 ,
【点睛】本题考查利用函数周期性求函数值,涉及函数奇偶性的应用,属综合基础题.
14.已知定义在 上的奇函数 满足 ,当 时, ,则 ()
A.2019B.1C.0D.-1
【答案】C
【解析】
【分析】根据题意推导出函数 的对称性和周期性,可得出该函数的周期为 ,于是得出
可得出答案.
【详解】 函数 是 上的奇函数,则 ,
对于D选项,令 ,则 , , 且 ,
所以,函数 为非奇非偶函数.
故选:B.
【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.
【知识拓展】
(1)奇、偶函数定义域的特点.
由于f(x)和f(-x)须同时有意义,所以奇、偶函数的定义域关于原点对称.这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
高中数学数列中的奇偶项问题(经典题型归纳)
数列中的奇偶项问题题型一、等差等比奇偶项问题(1)已知数列{}n a 为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为32/27,则这个数列公差为________(2)等比数列{}n a 的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为_______(3)已知等差数列{}n a 的项数为奇数,且奇数项和为44,偶数项和为33,则数列的中间项为_________;项数为_____________题型二、数列中连续两项和或积的问题(()1n n a a f n ++=或()1n n a a f n +⋅=)1.定义“等和数列”:在一个数列中,如每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作数列的公和.已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为________,这个数列的前n 项和n S 的计算公式为___________________2.若数列{}n a 满足:11a =,14n n a a n ++=,则数列{}21n a -的前n 项和是_____________3.若数列{}n a 满足:11a =,14n n n a a +=,则{}n a 的前2n 项和是___________4.已知数列{}n a 中,11a =,11()2n n n a a +⋅=,记n S 为{}n a 的前n 项的和,221n n n b a a -=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)判断数列{}n b 是否为等比数列,并求出n b ; (Ⅲ)求n S .5.(2017年9月苏州高三暑假开学调研,19) 已知数列{}n a 满足()*143n n a a n n N ++=-∈.(1)若数列{}n a 是等差数列,求1a 的值; (2)当12a =时,求数列{}n a 的前n 项和n S ;6.(2015江苏无锡高三上学期期末,19)在数列{}n a ,{}n b 中,已知10a =,21a =,11b =,212b =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且满足21n n S S n ++=,2123n n n T T T ++=-,其中n 为正整数.(1)求数列{}n a 、{}n b 的通项公式; (2)问是否存在正整数m ,n ,使121n m n T mb T m++->+-成立?若存在,求出所有符合条件的有序实数对(),m n ,若不存在,请说明理由.题型三、含有()1n-类型1.已知()1123456..........1n n S n -=-+-+-+-,则173350S S S ++=_____________2.数列{}n a 满足1(1)21nn n a a n ++-=-,则的前60项和为________3.数列{}n a 前n 项和为n S ,11a =,22a =,()211nn n a a +-=+-,*n ∈N ,则100S =______ 4.已知数列{}n a 的前n 项和为n S ,()112nn n n S a =--,*n N ∈,则123100..........S S S S +++=____5.已知数列}{n a 满足11a =-,21a =,且*22(1)()2n n n a a n N ++-=∈.(1)求65a a +的值;(2)设n S 为数列}{n a 的前n 项的和,求n S ;题型四、含有{}2n a 、{}21n a-类型1.(2017.5盐城三模11).设数列{}n a 的首项11a =,且满足21212n n a a +-=与2211n n a a -=+,则20S = .2.(镇江市2017届高三上学期期末)已知*∈N n ,数列{}n a 的各项均为正数,前n 项和为n S ,且2121==a a ,,设n n n a a b 212+=-. (1)若数列{}n b 是公比为3的等比数列,求n S 2;(2)若)(1232-=nn S ,数列{}1+n n a a 也为等比数列,求数列的{}n a 通项公式.3.【2016年第二次全国大联考(江苏卷)】已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前n 项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值;4.(苏州市2018届高三第一学期期中质检,20)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,{}221n n a pa ++成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.题型五、已知条件明确奇偶项问题1.(无锡市2018届高三第一学期期中质检,19)已知数列{}n a 满足1133,1,1,n n n a n n a a a n n ++ ⎧⎪==⎨---⎪⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,*2,n n b a n =∈N . (1)求证:数列{}n b 为等比数列,并求其通项n b ; (2)求n S ;(3)问是否存正整数n ,使得212n n n S b S +>>成立?说明理由.2.已知数列{}n a 中,11a =,))1n a +=,设232n n b a -=(1)证明数列{}n b 是等比数列(2)若n S 是数列{}n a 的前n 项的和,求2n S (3)探求满足0n S >的所有正整数n3.(2015江苏省连云港、徐州、宿迁三模19).设正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,*n N ∈n ∈N *.正项等比数列{}n b 满足:22b a =,46b a =,(1)求数列{}n a ,{}n b 的通项公式;(2)设()*,21,2n n na n k cb n k k N =-⎧⎪=⎨=∈⎪⎩,数列{}nc 的前n 项和为n T ,求所有正整数m 的值,使得221nn T T -恰好为数列{}n c 中的项.。
数列的奇偶项问题教学
数列的奇偶项问题教学同学们,今天咱们来唠唠数列里一个特别有趣的事儿——奇偶项问题。
这就好比数列这个大家族里,突然分成了两个小帮派,一个是奇数项组成的帮派,一个是偶数项组成的帮派。
一、为啥要研究奇偶项呢?你们想啊,数列有时候就像一个调皮的小怪兽,它的规律不是那么一目了然的。
有时候整个数列看起来乱乱的,但是当我们把它的奇数项和偶数项单独拎出来看的时候,哇塞,就像给这个小怪兽打了一针镇定剂,规律一下子就清晰了。
比如说,有些数列的奇数项可能是一个等差数列,而偶数项可能是一个等比数列呢。
这就像是这个数列在玩一种特别的游戏,奇数项和偶数项有各自的玩法。
二、怎么识别奇偶项问题呢?这就像是侦探找线索一样。
当你看到数列的通项公式或者递推公式里,有那种和项数的奇偶性有关的东西,那你就得小心喽,这很可能就是奇偶项问题在向你招手呢。
比如说,递推公式里有类似“当n为奇数时,an + 1 = f(an)”,“当n为偶数时,an + 1 = g(an)”这样的描述,或者通项公式里有根据n是奇数还是偶数而有不同表达式的情况,这就像是数列在给你发送信号:“我这里有奇偶项的秘密哦!”三、具体例子来一波1. 通项公式的奇偶项咱们来看个例子哈,an = {n, n为奇数;2n, n为偶数}。
这个数列就很直白地告诉我们它的奇偶项规律了。
奇数项就是n,那就是1、3、5、7……这样的数;偶数项呢,就是2n,那就是2×2 = 4,2×4 = 8,2×6 = 12……这样的数。
你看,奇数项和偶数项就像两条不同轨道上的小火车,各自按照自己的速度和方向行驶。
2. 递推公式的奇偶项再看这个递推公式:当n为奇数时,an + 1 = an + 2;当n为偶数时,an + 1 = 2an。
咱们从第一项a1 = 1开始。
因为1是奇数,所以a2 = a1 + 2 = 1+ 2 = 3。
现在2是偶数了,那么a3 = 2a2 = 2×3 = 6。
数列中的奇偶项问题课件-2025届高三数学一轮复习
(1)若数列{an}是等差数列,求数列{bn}的前100项和S100;
【解析】(1)因为{an}为等差数列,且a1=1,a2=2,
所以公差d=1,所以an=n.
+1 − = 1, 为奇数,
1, 为奇数,
所以bn=
即bn=
+1 + = 2 + 1, 为偶数,
2 + 1, 为偶数,
=3- ,
1 +
1
2
1−2
1−2
3 1
4
又2−1 =2 -2 =3- - =3- ,
2 2
2
3
3−
所以Sn=
3−
22
, 为偶数,
4
+1
2 2
, 为奇数.
谢谢观赏!!
所以2−1 =1,所以2 =4n-2,
1, 为奇数,
综上所述,an=
2 − 2, 为偶数.
视角二
已知条件明确的奇偶项问题
, 为奇数,
[例2]已知数列{an}的前n项和为Sn,an=
1
( ) 2 , 为偶数,
2
求Sn.
【解析】方法一:当n为偶数时,Sn=a1+a2+…+an=(a1+a3+…+−1 )+(a2+a4+…+an)
4
2
4
2
−1
(+1)2
1
+ 1 − ( ) 2 , 为奇数,
4
2
综上,Sn=
2
1
+ 1 − ( ) 2 , 为偶数.
4
2
2
数列中的奇、偶项问题
(-1+2-5) (14+4+6)
32 +7
2
2
=[-1+3+…+(2n-5)]+[14+22+…+(4n+6)]=
+
=
.
2
当
2
时,Tn-Sn=
-(n +4n)=
2
2
综上可知,当 n>5 时,Tn>Sn.
− 2 -4,即+1
=(an+2)2,n≥2.
因为{an}的各项均为正数,所以 an+1=an+2,即 an+1-an=2,n≥2.
因为 a3=5,所以32 =4(a1+a2)+9,22 =4a1+5,解得 a2=3,a1=1.则 a2-a1=2,满足
an+1-an=2,
所以数列{an}是公差为 2 的等差数列,
=
(-1)
>0,所以
2
2
Tn>Sn.
2
[对点训练 2](2024·山东聊城模拟)已知数列{an}满足 a1+a3=2a2,
3 ,为奇数,
an+1=
数列{cn}满足 cn=a2n-1.
+ 2,为偶数,
(1)求数列{cn}和{an}的通项公式;
(2)求数列{an}的前n项和Sn.
解 (1)由 an+1=
探究二
奇、偶项通项不同的数列求和
-6,为奇数,
数列中的奇偶项问题(微专题)(解析版)
数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。
数列中的奇偶项问题
而 Cn=an+an+1
∴①n
为奇数时,n+1
为偶数: Cn
an
an1
2(
1
)
n1 2
3
1
(
1
)
n1 2
23
13
(
1
)
n1 2
63
13(1- 1 )
则: C1 C3 C5 … C2n1
6 3n 1 1
3
②n 为偶数时,n+1 为奇数: Cn
an
an1
1
(1
)
n 2
23
2(
1
)
n 2
3
5
(
1
)
n 2
23
则:
5(1- 1 )
于是: C2
C4
C6
… C2n
6
1
3n 1
3
S2n c1 c2 c3 c4 ... c2n1 c2n
13 . 6
(1
1 3n
1 1
)
5 6
.
(1
1 3n
1 1
)
9 2
(1
1 3n
)
3
3
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
方 法 二 : 由 题 意 可 得 a2-a1=1 , a3+a2=3 , a4-a3=5 , a5+a4=7 , a6-a5=9 , a7+a6=11,…a50-a49=97,变形可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24, a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…
数列中分奇偶的典型例题大题
数列中分奇偶的典型例题大题含解答共10题题目1:数列A的第1项为1,公差为2,求A的前10项中奇数的和。
解答1:数列A的前10项为:1, 3, 5, 7, 9, 11, 13, 15, 17, 19。
其中奇数的和为:1 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 98。
题目2:数列B的前10项为:2, 5, 8, 11, 14, 17, 20, 23, 26, 29,求B的前10项中偶数的和。
解答2:数列B的前10项为:2, 5, 8, 11, 14, 17, 20, 23, 26, 29。
其中偶数的和为:2 + 8 + 14 + 20 + 26 = 70。
题目3:已知数列C的第1项为3,公差为4,数列C中的第n项为奇数,求n的取值范围。
解答3:数列C的第n项可以表示为3 + (n - 1) * 4。
我们知道奇数减去奇数的结果一定是偶数,所以3 + (n - 1) * 4一定是偶数。
即,3 + (n - 1) * 4是奇数的条件是3 + (n - 1) * 4减去3是偶数。
简化得到(n - 1) * 4是偶数。
因为4是偶数,所以(n - 1)必须是偶数,即n必须是奇数。
所以n 的取值范围为奇数。
题目4:数列D的第1项为2,公差为3,数列D中的第n项为偶数,求n的取值范围。
解答4:数列D的第n项可以表示为2 + (n - 1) * 3。
我们知道偶数减去偶数的结果一定是偶数,所以2 + (n - 1) * 3一定是偶数。
即,2 + (n - 1) * 3是偶数的条件是2 + (n - 1) * 3减去2是偶数。
简化得到(n - 1) * 3是偶数。
因为3是奇数,所以(n - 1)必须是偶数,即n必须是奇数。
所以n 的取值范围为奇数。
题目5:数列E的第1项为1,公差为1,求数列E的前20项中奇数和偶数的个数分别是多少。
解答5:数列E的前20项为:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20。
数列中的奇偶项问题(解析版)
数列中的奇偶项问题一、真题剖析【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=_____ ________【试题情景】本题属于课程学习情景,本题以数列中的两项之间的关系为载体,考查数列中的项。
【必备知识】本题考查数列中的递推公式以及通项公式,并项求和等问题·【能力素养】本题考查空间想象能力、逻辑思维能力和运算能力,考查的学科素养是理想思维和数学探索,对n为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a1表示,由偶数项递推公式得出偶数项的和,建立a1方程,求解即可得出结论.【答案】7【解析】a n+2+(-1)n a n=3n-1,当n为奇数时,a n+2=a n+3n-1;当n为偶数时,a n+2+a n=3n-1.设数列a n的前n项和为S n,S16=a1+a2+a3+a4+⋯+a16=a1+a3+a5⋯+a15+(a2+a4)+⋯(a14+a16)=a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)+(5+17+29+41)=8a1+392+92=8a1+484=540,∴a1=7.故答案为:7.二、题型选讲题型一、分段函数的奇偶项求和例1.(2022·南京9月学情【零模】)(本小题满分10分)已知正项等比数列{a n}的前n项和为S n,S3= 7a1,且a1,a2+2,a3成等差数列.(1)求{a n}的通项公式;(2)若b n=a n,n为奇数,n,n为偶数,求数列{bn}的前2n项和T2n.【解析】(1)因为数列{a n}为正项等比数列,记其公比为q,则q>0.因为S 3=7a 1,所以a 1+a 2+a 3=7a 1,即a 3+a 2-6a 1=0,因此q 2+q -6=0,解得q =2或-3,从而q =2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又a 1,a 2+2,a 3成等差数列,所以2(a 2+2)=a 1+a 3,即2(2a 1+2)=a 1+4a 1,解得a 1=4.因此a n =4×2n -1=2n +1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)因为b n =a n ,n 为奇数,n ,n 为偶数,所以T 2n =(b 1+b 3+⋯+b 2n -1)+(b 2+b 4+⋯+b 2n )=(a 1+a 3+⋯+a 2n -1)+(2+4+⋯+2n )=(22+24+⋯+22n )+(2+4+⋯+2n ))⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分=4×1-4n 1-4+(2+2n )n 2=n 2+n +4n +1-43.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分变式1.(2022·江苏南京市金陵中学高三10月月考)已知等差数列{a n }前n 项和为S n (n ∈N +),数列{b n }是等比数列,a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)若c n =2S n ,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .【答案】(1)a n =2n +1,b n =2n -1;(2)1+22n +13-12n +1.【解析】【分析】(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q ≠0),根据等差等比数列通项公式基本量的计算可得结果;(2)求出S n =n (3+2n +1)2=n (n +2),代入可得c n =2n (n +2)=1n -1n +2,n 为奇数2n -1,n 为偶数,再分组求和,利用裂项求和和等比数列的求和公式可求得结果.【详解】(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q ≠0), ∵a 1=3,b 1=1,b 2+S 2=10, a 5-2b2=a 3,∴q +3+3+d =103+4d -2q =3+2d,∴d =2,q =2,∴a n =2n +1,b n =2n -1;(2)由(1)知,S n =n (3+2n +1)2=n (n +2),∴c n =2n (n +2)=1n -1n +2,n 为奇数2n -1,n 为偶数,∴T 2n =1-13+13-15+⋅⋅⋅+12n -1-12n +1+(21+23+25+⋅⋅⋅+22n -1)=1-12n +1+2(1-4n )1-4=1+22n +13-12n +1.变式2.(2022·山东·潍坊一中模拟预测)已知数列a n 满足a 12+a 222+⋅⋅⋅+a n 2n =n2n .(1)求数列a n 的通项公式;(2)对任意的n ∈N ∗,令b n =2-n ,n 为奇数22-n ,为偶数 ,求数列b n 的前n 项和S n .【解析】 (1)当n =1时,得a 12=12,解得a 1=1;当n ≥2时,可得a 12+a 222+⋅⋅⋅+a n 2n =n 2n ①a 12+a 222+⋅⋅⋅+a n -12n -1=n -12n -1②,由①-②,得a n 2n =n 2n -n -12n -1=2-n2n,a n =2-n ,当n =1时,a 1=2-1=1也符合,所以数列a n 的通项公式为a n =2-n .(2)由(1)知b n =2-n ,n 为奇数22-n ,为偶数.当n 为偶数时,S n =1+-1 +-3 +⋅⋅⋅+2-n -1 +20+2-2+⋅⋅⋅+22-n =1+3-n n 22+1-14 n21-14=4-n n 4+431-12n =-3n 2+12n +1612-13×2n -2;当n 为奇数时,S n =S n +1-b n +1=-3n +1 2+12n +1 +1612-13×2n -1-21-n =-3n 2+6n +2512-43×2n -1.综上所述,S n =-3n 2+6n +2512-43×2n -1,n 为奇数-3n 2+12n +1612-13×2n -2,n 为偶数 .变式3.(2022·湖南省雅礼中学开学考试)(10分)已知数列{a n }满足n 2a n +12+12,为正奇数,2a n 2+n 2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由.(2)求证:数列a 2n2n是等差数列,并求数列{a 2n}的通项公式.【解析】(1)由题意可知,a 1=12a 1+12+12=12a 1+12,所以a 1=1,a 2=2a 22+22=2a 1+1=3,a 3=32a 3+12+12=32a 2+12=5,a 4=2a 42+42=2a 2+2=8,因为a 3-a 2=2,a 4-a 3=3,a 3-a 2≠a 4-a 3,所以数列{a n }不是等差数列.又因为a 2a 1=3,a 3a 2=53,a2a 1≠a 3a 2所以数列{a n }也不是等比数列.(2)法一:因为对任意正整数n ,a 2n +1=2a 2n+2n ,a 2n +12n +1-a 2n2n =12,a 22=32,所以数列a 2n2n是首项为32,公差为72的等差数列.从而对 n ∈N *,a 2n2n =32+n -12,a 2n=(n+2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).法二:因为对任意正整数n ,a 2n +1=2a 2n+2n ,得a 2n +1-(n +3)2n =2[a 2n-(n +2)2n -1],且a 21-(1+2)21-1=a 2-3=0所以数列{a 2n-(n +2)2n -1}是每项均为0的常数列,从而对∀n ∈N *,a 2n=(n +2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).∀n ∈N *,a 2n2n =n +22,a 2n +12n +1-a 2n2n =n +32-n +22,a 22=32,所以数列a 2n2n是首项为32,公差为12的等差数列题型二、含有(-1)n 类型例2.【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2.变式1.【2022·广东省深圳市育才中学10月月考】已知数列a n的前n项和为S n,且对任意正整数n,a n =34S n+2成立.(1)b n=log2a n,求数列b n的通项公式;(2)设c n=-1n+1n+1b n b n+1,求数列c n的前n项和T n.【答案】(1)a n=22n+1;(2)T n=1413+-1n+112n+3.【解析】【分析】(1)利用数列a n与S n的关系,即可求得数列a n的通项公式,代入b n=log2a n,即可求得数列b n的通项公式;(2)由(1)可知c n=14-1n+112n+1+12n+3,分n为奇数和偶数,分别求和.【详解】(1)在a n=34S n+2中令n=1得a1=8.因为对任意正整数n,a n=34S n+2成立,所以a n+1=34S n+1+2,两式相减得a n+1-a n=34a n+1,所以a n+1=4a n,又a1≠1,所以a n为等比数列,所以a n=8⋅4n-1=22n+1,所以b n=log222n+1=2n+1.(2)c n=-1n+1n+12n+12n+3=14-1n+14n+42n+12n+3=14-1n+112n+1+12n+3当n为偶数时,T n=1413+15-15+17+17+19-⋯-12n+1+12n+3=1413-12n+3,当n为奇数时,T n=1413+15-15+17+17+19-⋯+12n+1+12n+3=1413+12n+3.所以T n=1413+-1n+112n+3.变式2.(2021·山东济宁市·高三二模)已知数列a n是正项等比数列,满足a3是2a1、3a2的等差中项,a4 =16.(1)求数列a n 的通项公式;(2)若b n =-1 n 2a 2n +1log ,求数列b n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列a n 是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-L -2n -1 +2n +1 =-3+5 +-7+9 +L +-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+L +-1 n 2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+L +-1 n +12n +1 所以2T n =-3+2-1 2+-1 3+L +-1 n --1 n +12n +1=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n =n +1 -1 n -1,n ∈N *变式3.(2022·湖北·黄冈中学二模)已知数列a n 中,a 1=2,n a n +1-a n =a n +1.(1)求证:数列a n +1n是常数数列;(2)令b n =(-1)n a n ,S n 为数列b n 的前n 项和,求使得S n ≤-99的n 的最小值.【解析】(1)由n a n +1-a n =a n +1得:na n +1=n +1 a n +1,即a n +1n +1=a n n +1n n +1∴a n +1n +1=a n n +1n -1n +1,即有a n +1+1n +1=a n +1n,∴数列a n +1n 是常数数列;(2)由(1)知:a n +1n =a 1+1=3,∴a n =3n -1,∴b n =(-1)n 3n -1即b n =3n -1,n 为偶数-3n -1 ,n 为奇数,∴当n 为偶数时,S n =-2+5 +-8+11 +⋯+-3n -4 +3n -1 =3n2,显然S n ≤-99无解;当n 为奇数时,S n =S n +1-a n +1=3n +1 2-3n +1 -1 =-3n +12,令S n ≤-99,解得:n ≥66,结合n 为奇数得:n 的最小值为67.所以n 的最小值为67.题型三、a n +a n +1类型例3.(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z ,b n =3n -1;(2)58n -5 9n8.【解析】【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b2=3,∴n≥2时,b n=3n-1,b1=1=30,∴b n=3n-1;(2)由(1)得c n=n3n-1,n=2k-1,k∈Zn-13n-1,n=2k,k∈Z,T2n=1×30+3×32+5×34+⋅⋅⋅+2n-1⋅32n-2+1×31+3×33+5×35+⋅⋅⋅+2n-1⋅32n-1= 41×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2设K n=1×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2①则9K n=1×32+3×34+5×36+⋅⋅⋅+2n-1⋅32n②①-②得-8K n=1+232+34+⋅⋅⋅+32n-2-2n-1⋅32n=5+8n-59n-4,K n=5+8n-59n32,∴T2n=58n-59n8变式1.(2022·江苏苏州·高三期末)若数列a n满足a n+m=a n+d(m∈N*,d是不等于0的常数)对任意n∈N*恒成立,则称a n是周期为m,周期公差为d的“类周期等差数列”.已知在数列a n中,a1=1,a n+a n+1=4n+1(n∈N*).(1)求证:a n是周期为2的“类周期等差数列”,并求a2,a2022的值;(2)若数列b n满足b n=a n+1-a n(n∈N*),求b n的前n项和T n.【答案】(1)证明见解析;a2=4;a2022=4044(2)T n=2n+1,n为奇数, 2n,n为偶数.【解析】【分析】(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),即可得到答案;(2)对当n分为偶数和奇数进行讨论,进行并求和,即可得到答案;(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),所以a n周期为2,周期公差为4的“类周期等差数列”,由a1+a2=5,a1=1,得a2=4,所以a2022=a2+(2022-2)×2=4+4040=4044.(2)由b n=a n+1-a n,b n+1=a n+2-a n+1,得b n+1+b n=a n+2-a n=4,当n为偶数时,T n=(b1+b2)+(b3+b4)+⋯+(b n-1+b n)=4⋅n2=2n;当n为奇数时,T n=b1+(b2+b3)+(b4+b5)+⋯+(b n-1+b n)=3+4⋅n-12=2n+1.综上所述,T n=2n+1,n为奇数, 2n,n为偶数.变式2.(2022·江苏新高考基地学校第一次大联考期中)(10分)已知等差数列{a n}满足an+an+1= 4n,n∈N*.(1)求{a n}的通项公式;(2)设b1=1,bn+1=a n,n为奇数,-b n+2n,n为偶数,求数列{bn}的前2n项和S2n.【答案】(1)a n=2n-1;(2)4n-13+4n-3.【解析】【分析】(1)设等差数列a n的公差为d,由已知可得a n+1+a n+2=4n+1与已知条件两式相减可得a n+2-a n=4=2d求得d的值,再由a1+a2=4求得a1的值,利用等差数列的通项公式可得a n的通项公式;(2)当n为奇数时,b n+1=2n-1,当n为偶数时,b n+1+b n=2n,再利用分组并项求和以及等比数列的求和公式即可求解.【小问1详解】因为a n+a n+1=4n,所以a n+1+a n+2=4n+1,所以a n+2-a n=4,设等差数列a n的公差为d,则a n+2-a n=4=2d,可得d=2,当n=1时,a1+a2=a1+a1+2=4,可得a1=1,所以a n=1+2n-1=2n-1.【小问2详解】当n为奇数时,b n+1=a n=2n-1,当n为偶数时,b n+1+b n=2n,所以S2n=b1+b2+b3+b4+b5+b6+b7+⋯+b2n-2+b2n-1+b2n=1+22+24+26+⋯+22n-2+22n-1-1=20+22+24+26+⋯+22n-2+22n-1-1=201-4n1-4+4n-3=4n-13+4n-3.三、追踪训练1.(2022·江苏苏州市八校联盟第一次适应性检测)若数列{a n}中不超过f(m)的项数恰为b m(m∈N*),则称数列{b m}是数列{a n}的生成数列,称相应的函数f(m)是数列{a n}生成{b m}的控制函数.已知a n=2n,且f(m)=m,数列{b m}的前m项和S m,若S m=30,则m的值为()A.9B.11C.12D.14【答案】B【解析】由题意可知,当m 为偶数时,可得2n ≤m ,则b m =m2;当m 为奇数时,可得2n ≤m -1,则bm =m -12,所以b m =m -12(m 为奇数)m 2(m 为偶数),则当m 为偶数时,S m =b 1+b 2+⋯+b m =12(1+2+⋯+m )-12×m 2=m 24,则m 24=30,因为m ∈N *,所以无解;当m 为奇数时,S m =b 1+b 2+⋯+b m =S m +1-b m +1=(m +1)24-m +12=m 2-14,所以m 2-14=30,因为m ∈N *,所以m =11,故答案选B .2.【2022·广东省深圳市第七高级中学10月月考】(多选题)已知数列a n 满足a n +1+a n =n ⋅-1n n +12,其前n 项和为S n ,且m +S 2019=-1009,则下列说法正确的是()A.m 为定值B.m +a 1为定值C.S 2019-a 1为定值D.ma 1有最大值【答案】BCD 【解析】【分析】分析得出a 2k +a 2k +1=2k ⋅-1 k 2k +1 ,由已知条件推导出S 2019-a 1=-1010,m +a 1=1,可判断出ABC 选项正误,利用基本不等式可判断D 选项的正误.【详解】当n =2k k ∈N ∗ ,由已知条件可得a 2k +a 2k +1=2k ⋅-1 k 2k +1 ,所以,S 2019=a 1+a 2+a 3+⋯+a 2019=a 1+a 2+a 3 +a 4+a 5 +⋯+a 2018+a 2019 =a 1-2+4-6+8-⋯-2018=a 1+2×504-2018=a 1-1010,则S 2019-a 1=-1010,所以,m +S 2019=m +a 1-1010=-1009,∴m +a 1=1,由基本不等式可得ma 1≤m +a 12 2=14,当且仅当m =a 1=12时,等号成立,此时ma 1取得最大值14.故选:BCD .3.(2022·江苏南通市区期中)(多选题)已知数列{a n }满足a 1=-2,a 2=2,a n +2-2a n =1-(-1)n ,则A.{a 2n -1}是等比数列 B.5i =1a 2i −1+2 =-10C.{a 2n }是等比数列D.10i =1a i =52【答案】ACD【解析】由题意可知,数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,所以a n+2=1-(-1)n+2a n=2+2a n,n为奇数2a n,n为偶数,所以a3=2+2×(-2)=-2,a4=2×2=4,a5=2+2×(-2)=-2,a6=2×4=8,a7=2+2×(-2)=-2,a8=2×8=16,a9=2+2×(-2)=-2,a10=2×16=32,⋯,所以{a2n-1}={-2},是等比数列,故选项A正确;5i=1a2i−1+2=(a1+a3+a5+a7+a9)+2×5=-2×5+2×5=0,故选项B错误;对于选项C,{a2n}={2n}是等比数列,故选项C正确;对于选项D,10i=1a i=-2+2-2+4-2+8-2+16-2+32=52,故选项D正确,综上,答案选ACD.4.(2022·江苏海门中学、泗阳中学期中联考)已知数列{a n}满足a n+1+(-1)n a n=2n+1,则a1+a3+ a5+⋯+a99=.【答案】50【解析】【分析】根据所给递推关系,可得a2n+1+a2n=4n+1,a2n-a2n-1=4n-1,两式相减可得a2n+1+a2n-1= 2.即相邻奇数项的和为2,即可求解.【详解】∵a n+1+(-1)n a n=2n+1,∴a2n+1+a2n=4n+1,a2n-a2n-1=4n-1.两式相减得a2n+1+a2n-1 =2.则a3+a1=2,a7+a5=2,⋯,a99+a97=2,∴a1+a3+a5+⋯+a99=25×2=50,故答案为:505.(2021·天津红桥区·高三一模)已知数列a n的前n项和S n满足:S n=2a n+(-1)n,n≥1.(1)求数列a n的前3项a1,a2,a3;(2)求证:数列a n+23⋅-1n是等比数列:(3)求数列(6n-3)⋅a n的前n项和T n.【详解】(1)当n=1时,有:S1=a1=2a1+-1⇒a1=1;当n=2时,有:S2=a1+a2=2a2+-12⇒a2=0;当n=3时,有:S3=a1+a2+a3=2a3+-13⇒a3=2;综上可知a1=1,a2=0,a3=2;(2)由已知得:n≥2时,a n=S n-S n-1=2a n+(-1)n-2a n-1-(-1)n-1化简得:a n=2a n-1+2(-1)n-1上式可化为:a n +23(-1)n =2a n -1+23(-1)n -1 故数列a n +23(-1)n 是以a 1+23(-1)1为首项,公比为2的等比数列.(3)由(2)知a n +23(-1)n =132n -1∴a n =13⋅2n -1-23(-1)n 6n -3 ⋅a n =2n -1 2n -1-2-1 n=2n -1 ⋅2n -1-2⋅(-1)n ⋅(2n -1)当n 为偶数时,T n =1⋅20+3⋅21+⋅⋅⋅+(2n -1)⋅2n -1 -2[-1+3-5+⋅⋅⋅-(2n -3)+(2n -1)]令A n =1⋅20+3⋅21+⋅⋅⋅+(2n -1)⋅2n -1,B n =2[-1+3-5+⋅⋅⋅-(2n -3)+(2n -1)]A n =1⋅20+3⋅21+5⋅22⋅⋅⋅+(2n -3)⋅2n -2+(2n -1)⋅2n -1①2A n =1⋅21+3⋅22+⋅⋅⋅⋅⋅⋅+(2n -3)⋅2n -1+(2n -1)⋅2n ②则①-②得-A n =20+2⋅21+2⋅22⋅⋅⋅+2⋅2n -1-(2n -1)⋅2n =1+221+22⋅⋅⋅+2n -1 -(2n -1)⋅2n =1+2⋅21-2n -11-2-(2n -1)⋅2n=-3+(3-2n )⋅2n ∴A n =3+(2n -3)⋅2n 10B n =2[-1+3-5+⋅⋅⋅-(2n -3)+(2n -1)]=2⋅2⋅n2=2n 所以T n =A n -B n =3+(2n -3)⋅2n -2n .当n 为奇数时,A n =3+(2n -3)⋅2nB n =2[-1+3-5+⋅⋅⋅-(2n -5)+(2n -3)-(2n -1)]=22⋅n -12-2n +1 =-2n 所以T n =A n -B n =3+(2n -3)⋅2n +2n 综上,T n =3+(2n -3)⋅2n -2n ,n 为偶数,3+(2n -3)⋅2n +2n ,n 为奇数.6.(2022·山东烟台·高三期末)已知数列a n 满足a 1=4,a n +1=12a n+n ,n =2k -1a n -2n ,n =2k(k ∈N *).(1)记b n =a 2n -2,证明:数列b n 为等比数列,并求b n 的通项公式;(2)求数列a n 的前2n 项和S 2n .【答案】(1)证明见解析;b n =12n -1,n ∈N *;(2)S 2n =-2n 2+6n +6-32n -1.【解析】【分析】(1)根据给定的递推公式依次计算并探求可得b n +1=12b n,求出b 1即可得证,并求出通项公式.(2)由(1)求出a 2n ,再按奇偶分组求和即可计算作答.(1)依题意,b n +1=a 2n +2-2=12a 2n +1+2n +1 -2=12a 2n -2×2n +2n +1 -2=12a 2n -1=12(a 2n -2)=12b n,而b 1=a 2-2=12a 1+1-2=1>0,所以数列b n 是以1为首项,12为公比的等比数列,b n =12n -1,n ∈N *.(2)由(1)知,a 2n =b n +2=12 n -1+2,则有a 2+a 4+⋅⋅⋅+a 2n =1-12 n1-12+2n =2-12n -1+2n ,又a 2n =12a 2n -1+2n -1,则a 2n -1=2a 2n -2(2n -1),于是有a 1+a 3+⋅⋅⋅+a 2n -1=2(a 2+a 4+⋅⋅⋅+a 2n )-2×1+(2n -1)2×n =22-12n -1+2n -2n 2=-2n 2+4n +4-22n -1,因此,S 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(a 2+a 4+⋅⋅⋅+a 2n )=-2n 2+4n +4-22n -1+2-12n -1+2n =-2n 2+6n +6-32n -1,所以S 2n =-2n 2+6n +6-32n -1.。
专题34数列中的奇偶性问题(解析版)
专题34数列中的奇偶性问题(解析版)专题34 数列中的奇偶性问题一、题型选讲题型一、与奇偶性有关讨论求含参问题含参问题最常用的方法就是把参数独立出来,要独立出来就要除以一个因式,此因式的正负与n 的奇偶性有关,因此要对n 进行奇偶性的讨论.例1、(2015扬州期末)设数列{a n }的前n 项和为S n ,且a n =4+-12n -1,若对任意n ∈N *,都有1≤p (S n -4n )≤3,则实数p 的取值范围是________.答案:[2,3]思路分析求参数的常用方法是分离参数,所以首先将参数p 进行分离,从而将问题转化为求函数f (n )=S n-4n 的最大值与最小值,再注意到题中含有-12n -1,涉及负数的乘方,所以需对n 进行分类讨论.令f (n )=S n -4n =4n +1--12n 1--12-4n =231--12n . 当n 为奇数时,f (n )=231+12n 单调递减,则当n =1时,f (n )max =1;当n 为偶数时,f (n )=231-12n 单调递增,由当n =2时,f (n )min =12. 又1S n -4n ≤p ≤3S n -4n,所以2≤p ≤3. 解后反思本题的本质是研究数列的最值问题,因此,研究数列的单调性就是一个必要的过程,需要注意的是,由于本题是离散型的函数问题,所以,要注意解题的规范性,“当n为奇数时,f (n )=231+12n ,单调递减,此时f (n )∈23,1;当n 为偶数时,f (n )=2 31-12n ,单调递增,此时f (n )∈12,1”的写法是不正确的,因为f (n )并不能取到12,1∈23,1=12,1内的所有值.例2、(2019苏州三市、苏北四市二调)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.思路分析 (1) 对3S 2n -4S n +T n =0,令n =1,2得到方程,解得a 1,a 2的值.(2) 3S 2n -4S n +T n =0中,对n 赋值作差,消去T n,再对n 赋值作差,消去S n ,从而得到a n +1=-12a n ,证得数列{a n }是等比数列.(3)先求出a n =-12n -1,由(λ-na n )(λ-na n +1)<0恒成立,确定λ=0适合,再运用反证法证明λ>0和λ<0不成立.规范解答 (1)因为3S 2n -4S n +T n =0,n∈N *.令n =1,得3a 21-4a 1+a 21=0,因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0,因为a 2≠0,所以a 2=-12.(3分) (2)解法1 因为3S 2n -4S n +T n =0, ∈所以3S 2n +1-4S n +1+T n +1=0, ∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, ∈(5分) 所以3(S n +S n -1)-4+a n =0(n≥2), ∈当n≥2时,∈-∈得,3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n ,因为a n ≠0,所以a n +1a n =-12. 又因(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)解法2 因为3S 2n -4S n +T n=0,∈ 所以3S 2n +1-4S n +1+T n +1=0,∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,所以3(S n +1+S n )-4+(S n +1-S n )=0,(5分) 整理为S n +1-23=-12S n -23,又S 1-23=a 1-23=13, 所以S n -23=13·-12n -1,得S n =13·-12n -1+23,当n≥2时,a n =S n -S n -1=-12n -1,而a 1=1也适合此式,所以a n =-12n -1,所以a n +1a n =-12所以数列{a n }是以-12为公比的等比数列.(8分)(3)解法1 由(2)知,a n =-12n -1.因为对任意的n∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n -12n -1和n -12n 之间.因为n-12n -1·n -12n <0对任意的n ∈N *恒成立,所以λ=0适合.(10分)若λ>0,当n 为奇数时,n -12n<λ<="" bdsfid="142" p="">-12n -1恒成立,从而有λ<n< bdsfid="144" p=""></n<>2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n -12n<λ<="" bdsfid="156" p="">-12n -1恒成立,从而有-λ<n< bdsfid="159" p=""></n<>2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0.题型二、数列中奇偶项问题数列通项中出现奇、偶不同的表达式,需要分奇、偶分别赋值得到关系式,再对关系式相加或相减,得到奇数项或偶数项的关系式,体现减元的思想,考生要能够多观察,多思考,养成良好的逻辑推理的习惯.例3、例3、(2015苏州期末)已知数列{a n }中a 1=1,a n +1=13a n +n ,n 为奇数,a n -3n , n 为偶数.(1) 是否存在实数λ,使得数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由. (2) 若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .规范解答 (1) 由已知,得a 2(n +1)=13a 2n +1+(2n +1)=13[a 2n -3(2n )]+2n +1=13a 2n +1.(2分)令a 2(n +1)-λ=13(a 2n -λ),得a 2(n +1)=13a 2n +23λ,所以λ=32.(4分)此时,a 2-λ=13+1-32=-16.(5分)所以存在λ=32,使得数列{a 2n -λ}是等比数列.(6分)(2) 由(1)知,数列a 2n -32是首项为-16,公比为13的等比数列,所以a 2n -32=-16·13n -1=-12·13n ,即a 2n =123-13n .(8分) 由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=323-13n -6n +3,(10分) 所以a 2n -1+a 2n =323-13n -6n +3+123-13n =-213n -6n +9. 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-213+132+…+13n -6(1+2+…+n )+9n =13n -3n 2+6n -1,(12分)从而S 2n -1=S 2n -a 2n =32·13n -3n 2+6n -52.因为13n 和-3n 2+6n =-3(n -1)2+3在n ∈N *时均单调递减,所以S 2n 和S 2n -1均各自单调递减.(14分)计算得S 1=1,S 2=73,S 3=-73,S 4=-89,所以满足S n >0的所有正整数n 的值为1和2.(16分)解后反思对于通项公式分奇偶不同的数列{a n }求S n 时,一般先把a 2k -1+a 2k 看做一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .例4、(2018苏中三市、苏北四市三调)已知数列{}n a 满足15(1)()2n n n n aa n *+++-=∈N ,数列{}n a 的前n 项和为n S .(1)求13a a +的值; (2)若1532a a a +=.∈ 求证:数列{}2n a 为等差数列;∈ 求满足224()pm S S p m *=∈N ,的所有数对()p m ,.【思路分析】(1)直接令1,2n =得到关系式,两式相减,求出13a a +的值(2)分别赋值21,2n n -,得到关系式,两式相减,得到212112n n a a -++=,结合1532a a a +=,计算出114a =,从而求2114n a -=,代入关系式,得出294n a n =+,利用定义法证明{}2n a 为等差数列(3)求和得到2n S ,代入关系式整理得()2234322p m p m +=+,需要转化两个因数相乘的形式,变形处理,利用平方差公式得到(29)(23)27m p m p ++-+=,因为2912m p ++≥且2923m p m p ++-+,均为正整数,则两个因数只能为27和1,从而求出p m ,的值.规范解答 (1)由条件,得2132372a a a a -=+=??①②,∈-∈得 1312a a +=.……………………… 3分(2)∈证明:因为15(1)2n n n n a a +++-=,所以221212242252n n n n n a an a a -++?-=??+?+=?③④, ∈-∈得212112n n a a -++=, ……………………………………………… 6分于是13353111()()422a a a a a =+=+++=,所以314a =,从而114a =. (8)分所以121231111()(1)()0444n n n a a a ----=--==--=L , 所以2114n a -=,将其代入∈式,得294n a n =+, 所以2(1)21n n a a +-=(常数),所以数列{}2n a 为等差数列.……………………………………………… 10分∈注意到121n a a +=,所以2122n n S a a a =+++L2345221()()()n n a a a a a a +=++++++L2125322nk k n n =+==+∑,…………………………………………… 12分由224p m S S =知()2234322p m p m +=+.所以22(26)(3)27m p +=++,即(29)(23)27m p m p ++-+=,又*p m ∈N ,,所以2912m p ++≥且2923m p m p ++-+,均为正整数,所以2927231m p m p ++=??-+=?,解得104p m ==,,所以所求数对为(104),. (16)分例5、(2017苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *. (1) 求数列{a n }的通项公式;(2) 若∈n ∈N * ,都有S n ≤n (3n +1)成立,求实数a 的取值范围;(3) 当a =2时,将数列{a n }中的部分项按原来的顺序构成数列{bn },且b 1=a 2,证明:存在无数个满足条件的无穷等比数列{b n }.规范解答 (1) 当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5;当n≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1), 所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n)-6(S n -1+n -1),即(a n +1)(a n +1-a n -1)=6(a n +1), 又a n >0,所以a n +1-a n -1=6,(3分)所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,k∈N *,故a n=3n +a -3,n 为奇数,3n -1,n 为偶数.)(5分)(2) 当n 为奇数时,n +1为偶数,所以a n =3n +a -3,a n +1=3n +2,所以(3n +a -3+1)(3n +2+1)=6(S n +n ),整理得S n =1 2(3n +a -2)(n +1)-n ,由S n ≤n (3n +1)得,a ≤3n 2+3n +2n +1对n ∈N *恒成立.令f (n )=3n 2+3n +2n +1(n ∈N *),则f (n +1)-f (n )=3n 2+9n +4(n +2)(n +1)>0,所以f (n )=3n 2+3n +2n +1(n ∈N *)单调递增,f (n )min =f (1)=3+3+22=4,所以a ≤4.(8分) 当n 为偶数时,n +1为奇数,a n =3n -1,a n +1=3n +a ,所以(3n -1+1)(3n +a +1)=6(S n +n ),整理得S n =3n 2+(a -1)n2,由S n ≤n (3n +1)得,a ≤3(n +1)对n ∈N *恒成立,所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].(10分)(3) 当a =2时,若n 为奇数,则a n =3n -1,所以a n =3n -1(n ∈N *).解法1 因为数列{a n }的项是b 1=5的整数倍的最小项是a 7=20,故可令等比数列{b n }的公比q =4m (m ∈N *),因为b 1=a 2=5,所以b n =5·4m (n-1),设k =m (n -1),因为1+4+42+…+4k -1=4k -13,所以4k =3(1+4+42+…+4k -1)+1, 所以5·4k =5[3(1+4+42+…+4k -1)+1] =3[5(1+4+42+…+4k -1)+2]-1,(14分) 因为5(1+4+42+…+4k -1)+2为正整数, 所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =4m (m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解法2 设b 2=ak 2=3k 2-1(k 2≥3),因为b 1=a 2=5,所以公比q =3k 2-15.因为等比数列{b n }的各项为整数,所以q 为整数, 取k 2=5m +2(m ∈N *),则q =3m +1,故b n =5·(3m +1)n -1.由3k n -1=5·(3m +1)n得k n =13[5(3m +1)n -1+1](m ,n ∈N *),而当n ≥2时,k n -k n -1=53[(3m +1)n -1-(3m +1)n -2]=5m (3m +1)n -2,即k n =k n -1+5m (3m +1)n -2.(14分)又因为k 1=2,5m (3m +1)n-2都是正整数,所以k n 也都是正整数,所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =3m +1(m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解后反思作为数列压轴题,本题三个小题梯度明显,有较好的区分度,其中第(1)(2)小题联系紧密,难度中等,考生应该努力完成这两小题,而不是轻易放弃;而第(3)小题要求高,试题开放,解法1构造特殊数列,而解法2从一般性推理与证明两个角度完成证明,难度都非常大,建议考生果断放弃.题型三、数列中连续两项和或积的问题“相邻两项的和是一次式”的特征,联想到数列{a n }中相邻两项的和成等差数列,故考虑采用相邻项作差法,得到数列{a n }中奇数项成等差,偶数项也成等差,而且公差相同的结论,进而求出数列通项公式.例6、(2018苏州暑假测试)已知数列{a n }满足a n +1+a n =4n -3(n∈N *).(1) 若数列{a n }是等差数列,求a 1的值;(2) 当a 1=2时,求数列{a n }的前n 项和S n ;(3) 若对任意n ∈N *,都有a 2n +a 2n +1a n +a n +1成立,求a 1的取值范围.规范解答 (1) 若数列{a n }是等差数列,则a n =a 1+(n -1)d,a n +1=a 1+nd.由a n +1+a n =4n -3,得(a 1+nd)+[a 1+(n -1)d]=4n -3,(2分) 即2d =4,2a 1-d =-3,解得d =2,a 1=-12.(3分)(2) 由a n +1+a n =4n -3(n∈N *),得a n +2+a n +1=4n +1(n ∈N *).两式相减,得a n +2-a n =4.(5分)所以数列{a 2n -1}是首项为a 1,公差为4的等差数列.数列{a 2n }是首项为a 2,公差为4的等差数列,由a 2+a 1=1,a 1=2,得a 2=-1,所以a n =?2n ,n 为奇数,2n -5,n 为偶数.(6分)∈当n 为奇数时,a n =2n ,a n +1=2n -3.S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n=1+9+…+(4n -11)+2n =n -12×(1+4n -11)2+2n=2n 2-3n +52;(8分)∈当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7) =2n 2-3n 2.(10分)(3) 由(2)知,a n =?2n -2+a 1,n 为奇数,2n -3-a 1,n 为偶数.(11分)∈当n 为奇数时,a n =2n -2+a 1,a n +1=2n -1-a 1.由a 2n +a 2n +1a n +a n +1≥5得a 21-a 1≥-4n 2+16n -10. 令f (n )=-4n 2+16n -10=-4(n -2)2+6,当n=1或3时,f(n)max=2,所以a21-a1≥2.解得a1≥2或a1≤-1.(13分)∈当n为偶数时,a n=2n-a1-3,a n+1=2n+a1.由a2n+a2n+1a n+a n+1≥5得a21+3a1≥-4n2+16n-12.令g(n)=-4n2+16n-12=-4(n-2)2+4,当n=2时,g(n)max=4,所以a21+3a1≥4,解得a1≥1或a1≤-4.(15分)综上,a1的取值范围是(-∞,-4]∈[2,+∞).(16分)例7、(2019苏州期初调查)已知数列{a n}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n}前n项和为S n,且满足S3=a4,a5=a2+a3.(1) 求数列{a n}的通项公式;(2) 若a m a m+1=a m+2,求正整数m的值;(3) 是否存在正整数m,使得S2mS2m-1恰好为数列{a n}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.思路分析(1)建立方程组,求出公比和公差,用分段的形式写出{a n}的通项公式.(2)对m分奇、偶数,根据通项公式和a m a m+1=a m+2建立方程,求出m的值.(3)运用求和公式求出S 2m 和S 2m -1,计算S 2mS 2m -1,通过分析其值只能为a 1,a 2,a 3,分情况讨论,解方程,求m 的值.规范解答 (1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q.所以数列{a n }的前5项依次为1,2,1+d,2q,1+2d.因为{S 3=a 4,a 5=a 2+a 3,所以{4+d =2q ,1+2d =3+d ,解得{d =2,q =3.(2分) 所以a n =n ,n 为奇数,2·332-1,n 为偶数.(4分)(2)因为a m a m +1=a m +2.1° 若m =2k(k∈N *),则a 2k a 2k +1=a 2k +2,所以2·3k -1·(2k +1)=2·3k ,即2k +1=3,所以k =1,即m =2.(6分)2° 若m =2k -1(k ∈N *),则a 2k -1a 2k =a 2k +1,所以(2k -1)×2·3k -1=2k +1,所以2·3k -1=2k +12k -1=1+22k -1.因为2·3k-1为整数,所以22k -1必为整数,所以2k -1=1,所以k =1,此时2·30≠3.不合题意.(8分)综上可知m =2.(9分)(3) 因为S 2m =(a 1+a 3+…+a 2m -1)+(a 2+a 4+…+a 2m ) =m (1+2m -1)2+2(1-3m )1-3=3m +m 2-1.(10分)S 2m -1=S 2m -a 2m =3m +m 2-1-2·3m -1=3m -1+m 2-1.(11分) 所以S 2mS 2m -1=3m +m 2-13m -1+m 2-1=3-2(m 2-1)3m -1+m 2-1≤3.(12分)若S 2mS 2m -1为数列{a n }中的项,则只能为a 1,a 2,a 3. 1° S 2m S 2m -1=1,则3-2(m 2-1)3m -1+m 2-1=1,所以3m -1=0,m 无解.(13分) 2° S 2m S 2m -1=2,则3-2(m 2-1)3m -1+m 2-1=2,所以3m -1+1-m 2=0. 当m =1时,等式不成立;当m =2时,等式成立;当m ≥3时,令f (x )=3x -1+1-x 2=13·3x +1-x 2.所以f ′(x )=ln33·3x -2x ,f ″(x )=ln 233·3x-2.因为f ″(x )在(14分)3° S 2mS 2m -1=3,则3-2(m 2-1)3m -1+m 2-1=3,所以m 2-1=0,即m =1.(15分)综上可知m =1或m =2.(16分)解后反思第(3)问中,解方程3m -1+1-m 2=0,其中m 为正整数,体现函数的思想,可以先取m =1,m =2,…,找出规律,即执果索因,然后用导数的方法研究函数f(x)=3x -1+1-x 2的单调性,也可以用作差法来研究数列c m =3m -1+1-m 2的单调性来处理.二、达标训练1、(2018南京、盐城一模)设S n 为等差数列{a n }的前n 项和,若{a n }的前2017项中的奇数项和为2018,则S 2017的值为________.答案: 4034解析:因为a 1+a 3+a 5+…+a 2017=1009a 1009=2018,所以a 1009=2,故S 2017=a 1+a 2+…+a 2017=2017a 1009 =4034.2、(2019常州期末) 数列{a n },{b n }满足b n =a n +1+(-1)na n (n∈N *),且数列{b n }的前n 项和为n 2,已知数列{a n -n }的前2018项和为1,那么数列{a n }的首项a 1=________.答案: 32解析:思路分析通项公式中出现(-1)n ,注意分奇、偶项,求和时自然采用分组求和法.数列{b n }的前n 项和为n 2,所以b n =n 2-(n -1)2=2n -1(n≥2),b 1=1也符合,故b n =2n -1,故a n +1+(-1)n a n =2n -1,设{a n }的前n 项和为S n ,a 2-a 1=1.若n 为奇数,则a n +1-a n =2n -1,a n +2+a n +1=2n +1,解得a n +a n +2=2.若n 为偶数,则?a n +a n +1=2n -1,a n +2-a n +1=2n +1,解得a n +a n +2=4n.S 2018=a 1+(a 3+a 5)+(a 7+a 9)+…+(a 2015+a 2017)+a 2+(a 4+a 6)+(a 8+a 10)+…+(a 2016+a 2018)=2a 1+1+1008+4×(4+8+…+2016)=2a 1+1009+4×504×(4+2016)2=2a 1+1+1008×2021.又S 2018-2018×20192=1,所以2a 1+1+1008×2021=1+1009×2019,得a 1=32.3、(2015南京、盐城一模)已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n (n ∈N *),若数列{a 2n -1}单调递减, 数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.【答案】(-2)n -13 因为|a n +1-a n |=2n ,所以当n =1时,|a 2-a 1|=2.由a 2>a 1,a 1=-1得a 2=1.当n =2时,|a 3-a 2|=4,得a 3=-3或a 3=5.因为{a 2n -1}单调递减,所以a 3=-3.当n =3时,|a 4-a 3|=8,得a 4=5或a 4=-11.因为{a 2n }单调递增,所以a 4=5.同理得a 5=-11,a 6=21.因为{a 2n -1}单调递减,a 1=-1<0,所以a 2n -1<0.同理a 2n >0.所以当n 为奇数时(n ≥3),有a n -a n -1=-2n -1,a n-1-a n -2=2n -2.两式相加得a n -a n -2=-2n -2.那么a 3-a 1=-2;a 5-a 3=-23;…;a n -a n -2=-2n -2. 以上各式相加得a n -a 1=-(2+23+25+…+2n -2).所以a n =a 1-2[1-(22)n -32+1]1-22=-2n +13.同理,当n 为偶数时,a n =2n -13.所以a n=-2n +13,n 为奇数,2n-13, n 为偶数.也可以写成a n =(-2)n -13.4、(2017镇江期末)已知n ∈N *,数列{a n }的各项均为正数,前n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n . (1) 若数列{b n }是公比为3的等比数列,求S 2n ;(2) 若对任意n ∈N *,Sn =a 2n +n2恒成立,求数列{a n }的通项公式; (3) 若S 2n =3(2n -1),数列{a n a n +1}也为等比数列,求数列{a n }的通项公式.思路分析第2问,用相邻项作差法可把条件“对任意n ∈N *,S n =a 2n +n2”转化为“a n -a n -1=1或a n +a n -1=1”,因为a n +a n -1=1对任意的n ∈N *恒不成立,故有a n -a n -1=1对任意的n ∈N *恒成立;第3问,由“数列{a n a n +1}为等比数列”知a n +2a n 为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,在S 2n=3(2n -1)中,令n =2即可求出q .规范解答 (1) b 1=a 1+a 2=1+2=3,(1分)S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3(3n -1)2.(3分)(2) 当n ≥2时,由2S n =a 2n +n ,得2S n -1=a 2n -1+n -1,则2a n =2S n -2S n -1=a 2n +n -(a 2n -1+n -1)=a2n -a 2n -1+1,(a n -1)2-a 2n -1=0,(a n -a n -1-1)(a n +a n -1-1)=0,故a n -a n -1=1或a n +a n -1=1.(*)(6分)下面证明a n +a n -1=1对任意的n ∈N *恒不成立.事实上,a 1+a 2=3,则a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立.所以a n -a n -1=1对任意的n ∈N *恒成立.(8分)因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n .(10分) (3) 因为数列{a n a n +1}为等比数列,设公比为q ,则当n ≥2 时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列,(12分)故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.(14分)当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=2n -12,n 为奇数,2n2,n 为偶数.(16分)易错警示在第2问中,必须证明a n +a n -1=1对任意的n ∈N *恒不成立,不是“对任意的n ∈N *不恒成立”,因为若存在某个n 0∈N *使得a n +a n -1=1成立,由于逻辑连结词“或”的缘故,则此时式子“an 0-an 0-1=1”可以不成立!也就是说,“a n -a n -1=1对任意的n ∈N *恒成立”不一定正确.解后反思由于“S 2n =3(2n -1)”符合特征“S n =A -Aq n ”,故数列{a 2n -1+a 2n }是等比数列,且公比为2,再由“数列{a n a n +1}为等比数列”知a n +2a n为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,则有a 2n +1a 2n -1=a 2n +2a 2n =q ,即a 2n +1+a 2n +2a 2n -1+a 2n=q ,故q =2.5、(2016南京、盐城、连云港、徐州二模)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0).(1) 求p 的值;(2) 求数列{a n }的通项公式;(3) 设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n .若b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .规范解答 (1) 由a 1=-S 1+p,得a 1=p2.(2分)。
数列中的奇数项和偶数项问题
数列中的奇数项和偶数项问题(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1设数列{a n }的首项a 1=a ≠41,且11为偶数21为奇数4n n n a n a a n +⎧⎪⎪=⎨⎪+⎪⎩,记2114n n b a -=-,n ==l ,2,3,…·. (I )求a 2,a 3;(II )判断数列{b n }是否为等比数列,并证明你的结论; 解:(I )a 2=a 1+41=a +41,a 3=21a 2=21a +81; (II )∵ a 4=a 3+41=21a +83, 所以a 5=21a 4=41a +316,所以b 1=a 1-41=a -41, b 2=a 3-41=21(a -41), b 3=a 5-41=41(a -41),猜想:{b n }是公比为21的等比数列·证明如下:因为b n +1=a 2n +1-41=21a 2n -41=21(a 2n -1-41)=21b n , (n ∈N *)所以{b n }是首项为a -41, 公比为21的等比数列·2 在数列{}n a 中,1a =0,且对任意k *N ∈,2k 12k 2k+1a ,a ,a -成等差数列,其公差为2k.(Ⅰ)证明456a ,a ,a 成等比数列; (Ⅱ)求数列{}n a 的通项公式;(I )证明:由题设可知,2122a a =+=,3224a a =+=,4348a a =+=,54412a a =+=, 65618a a =+=。
从而655432a a a a ==,所以4a ,5a ,6a 成等比数列。
(II )解:由题设可得21214,*k k a a k k N +--=∈ 所以()()()2112121212331...k k k k k a a a a a a a a ++----=-+-+-()21,*k k k N =+∈.由10a =,得()2121k a k k +=+ ,从而222122k k a a k k +=-=.所以数列{}n a 的通项公式为221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数或写为()21124n n n a --=+,*n N ∈。
专题3 第4讲 数列中的奇、偶项问题
第4讲数列中的奇、偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.例已知数列{〃〃}满足0 = 1,。
2=;,[3 + (—1)〃]%+2—2斯+⑴令儿=S,i,判断{5}是否为等差数列,并求数列{〃〃}的通项公式;(2)记数列{④}的前2n项和为求T2n.解⑴因为[3 + (—1)〃]如+2—2为+2[(—1)〃-1]=0,所以[3 + (—1)2"「]他〃+1 — 2。
2〃-1 + 2[(-1)2〃>-1] = 0,即。
2〃+1 —。
2〃-1=2,又仇所以E+1—。
“ = 〃2"+|一-1=2,所以{儿}是以"=0 = 1为首项,2为公差的等差数列,所以勿=l+(〃-l)X2 = 2〃-l, n eN\⑵对于[3 + (—1)〃]如+2-2如+2[(—1)"- l]=0,当〃为偶数时,可得(3+1)。
〃+2—2%+2(1 — 1) = 0,即等4 所以〃2,。
4, 〃6,…是以。
2v为首项,聂公比的等比数列;当“为奇数时,可得(3——2斯+ 2(—1 — 1) = 0,即。
〃+2 —斯=2,所以。
1,的,。
5,…是以0 = 1为首项,2为公差的等差数列,所以公”=(。
। + a3 H ---------------- H。
2,?-1)+(。
2+a4 H F做〃)「I ]=/?Xl+-/?(^-l)X2j+———L1-2=/?2+1 - 2^,■能力提升- -----------------------------------------------------------------------(1)数列中的奇、偶项问题的常见题型①数列中连续两项和或积的问题(。
〃+。
〃+]=/5)或〃〃必+1=佝));②含有(一1)〃的类型;③含有{仇},{如-1}的类型;④已知条件明确的奇偶项问题.(2)对于通项公式分奇、偶不同的数列{斯}求S〃时,我们可以分别求出奇数项的和与偶数项的和,也可以把〃2A-l+〃2人看作一项,求出S2&,再求S?&-1=S2£ —。
高中数学:数列通项的奇偶项问题
高中数学:数列通项的奇偶项问题
在日常学习考试中,我们经常会遇到数列求和问题,通常的做法是先求出数列通项解析式,判定数列性质,再依照公式求和,这是大多数同学都能把握并熟练运用的。
但也经常会遇到依照给出的条件,按照正常解题思路无法准确求出解析式的情形,这时,我们必须要学会巧用奇偶分析法求出通项解析式,或者选择舍弃求通项解析式,采纳分类讨论法研究,一定会收到意想不到的成效。
同样的方法研究偶数项的通项公式:
我们看到,不管n为奇数依旧偶数,通项公式的形式是相同的。
在采纳奇偶分析法研究数列的通项时,我们采纳了累加法.那个方法简单易用,不容易犯错。
因此,因为奇数项成等差,偶数项也成等差,你也能够利用等差数列的通项公式直截了当写出奇数项和偶数项的通项公式,
前提是项数不要搞错。
下面,摸索一个一样化的问题:
请摸索2分钟,再往下看。
看下面的简图:
把等差数列的各项放在数轴上,那么等差数列可明白得为任意相邻两项的距离为定值(假设入>0)。
但是,由题我们只能
确定间隔一项的两项距离为定值,如何做到符合等差数列的要求呢?
事实上也容易,假如我们使得第1项和第2项的距离为入/2,自然地,第2项和第3项的距离就为入/2,第3项和第4项的距离
也为入/2,依次往下,多米诺骨牌效应......。
专题34 数列中的奇偶性问题(原卷版)
专题34数列中的奇偶性问题、题型选讲题型一、与奇偶性有关讨论求含参问题含参问题最常用的方法就是把参数独立出来,要独立出来就要除以一个因式,此因式的正负与n的奇偶性有关,因此要对n进行奇偶性的讨论.例1、(2015扬州期末)设数列{a”}的前n项和为S“,且a“=4+(—扌)-1,若对任意“□”*,都有1伞(S“一4〃)三3,则实数p的取值范围是.例2、(2019苏州三市、苏北四市二调)已知数列{a n}的各项均不为零.设数列{a n}的前n项和为S n,数列{聲}的前n项和为T n,且3S2—4S n+T n=0,nD N*.(1)求a1?a2的值;(2)证明:数列{a n}是等比数列;⑶若(X—na n)(X—na n十])<0对任意的n D N*恒成立,求实数久的所有值.题型二、数列中奇偶项问题数列通项中出现奇、偶不同的表达式,需要分奇、偶分别赋值得到关系式,再对关系式相加或相减,得到奇数项或偶数项的关系式,体现减元的思想,考生要能够多观察,多思考,养成良好的逻辑推理的习惯.仃.、「亠“”云a+n,n为奇数,例3、例3、(2015苏州期末)已知数列{a n}中a=1,a n+i=*"l a—3n,n为偶数.n(1)是否存在实数入使得数列{a2n—A}是等比数列?若存在,求出久的值;若不存在,请说明理由.(2)若S n是数列{a^}的前n项和,求满足S n>0的所有正整数n.例4、(2018苏中三市、苏北四市三调)已知数列匕}满足n a+(一1)n an+1—出5(n G N*),数列{a}的前恢n和为S n(1)求a1+a的值;(2)^^a+a—2a口求证:数列{d}为等差数列;2n口求满足S—4S2(p m G N*)的所有数对(p,m)•2p2m例5、(2017苏北四市期末)已知正项数列{a^}的前n项和为S”,且a1a,(a“+1)(a n+]+1)=6(S“+n),n D N*.(1)求数列{a n}的通项公式;(2)若□“□”*,都有S<n(3n+1}成立,求实数a的取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b”},且b=a2,证明:存在无数个满足条件的无穷等比数列{b n}.题型三、数列中连续两项和或积的问题“相邻两项的和是一次式”的特征,联想到数列{a n}中相邻两项的和成等差数列,故考虑采用相邻项作差法,得到数列{a n}中奇数项成等差,偶数项也成等差,而且公差相同的结论,进而求出数列通项公式.例6、(2018苏州暑假测试)已知数列{a n}满足a”1+a n=4n-3(nD N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S”;a2+a2(3)若对任意n D N*,都有a n+a n|1>5成立,求a1的取值范围.nn+1例7、(2019苏州期初调查)已知数列{a n}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n}前n项和为S n,且满足S3=a4,a5=a2+a3・(1)求数列{a n}的通项公式;(2)若a m a m+]=a m+2,求正整数m的值;S(3)是否存在正整数m,使得s~e恰好为数列{a n}中的一项?若存在,求出所有满足条件的m值,若不存在,S2m-1n说明理由.二、达标训练1、(2018南京、盐城一模)设S n为等差数列{a n}的前n项和,若{a n}的前2017项中的奇数项和为2018,则S2017的值为.2、(2019常州期末)数列{a n},{b n}满足b n=a n+]+(—1)n a n(nD N*),且数列{b”}的前n项和为n2,已知数列{a“—n}的前2018项和为1,那么数列{a n}的首项a=•3、(2015南京、盐城一模)已知数列{a n}满足a1=—1,a2>a1?|a n+1—a”|=2”(n D N*),若数列{a2n—1}单调递减,数列{a2n}单调递增,则数列{a n}的通项公式为a n=.4、(2017镇江期末)已知n D N*,数列{a n}的各项均为正数,前n项和为S n,且a1=1,a2=2,设b n=a2n—1+a2n.(1)若数列{b n}是公比为3的等比数列,求S2n;a2+n(2)若对任意“□N*,S n=~^恒成立,求数列{a n}的通项公式;⑶若S2n=3(2n—1),数列{aa n+1}也为等比数列,求数列{a n}的通项公式.5、(2016南京、盐城、连云港、徐州二模)已知数列{a n}的前n项和为S n,且对任意正整数n都有a”=(—1)n S n+p n(p 为常数,p^0).(1)求P的值;(2)求数列{a n}的通项公式;(3)设集合A n={a2n—],a2n},且b n,c n DA n,记数列{nb n},{nc“}的前n项和分别为P n,Q n•若久舛,求证:对任意n D N*,P n^Q n-6、(2015扬州期末)已知数列{a n}中,a]=1,a2=a,且a^]=k(a n+a“十2)对任意正整数都成立,数列{a n}的前n项和为S n.(1)若k=g且S2015=2015a,求a的值.(2)是否存在实数k,使数列{a n}是公比不为1的等比数列,且对任意相邻三项a m,a m十代十2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.⑶若k=-g,求S n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题34 数列中的奇偶性问题一、题型选讲题型一、与奇偶性有关讨论求含参问题含参问题最常用的方法就是把参数独立出来,要独立出来就要除以一个因式,此因式的正负与n 的奇偶性有关,因此要对n 进行奇偶性的讨论.例1、(2015扬州期末)设数列{a n }的前n 项和为S n ,且a n =4+⎝⎛⎭⎫-12n -1,若对任意n ∈N *,都有1≤p (S n -4n )≤3,则实数p 的取值范围是________.答案:[2,3]思路分析 求参数的常用方法是分离参数,所以首先将参数p 进行分离,从而将问题转化为求函数f (n )=S n-4n 的最大值与最小值,再注意到题中含有⎝⎛⎭⎫-12n -1,涉及负数的乘方,所以需对n 进行分类讨论. 令f (n )=S n -4n =4n +1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12-4n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 当n 为奇数时,f (n )=23⎣⎡⎦⎤1+⎝⎛⎭⎫12n 单调递减,则当n =1时,f (n )max =1; 当n 为偶数时,f (n )=23⎣⎡⎦⎤1-⎝⎛⎭⎫12n 单调递增,由当n =2时,f (n )min =12. 又1S n -4n ≤p ≤3S n -4n,所以2≤p ≤3. 解后反思 本题的本质是研究数列的最值问题,因此,研究数列的单调性就是一个必要的过程,需要注意的是,由于本题是离散型的函数问题,所以,要注意解题的规范性,“当n 为奇数时,f (n )=23⎣⎡⎦⎤1+⎝⎛⎭⎫12n ,单调递减,此时f (n )∈⎝⎛⎦⎤23,1;当n 为偶数时,f (n )=23⎣⎡⎦⎤1-⎝⎛⎭⎫12n ,单调递增,此时f (n )∈⎣⎡⎭⎫12,1”的写法是不正确的,因为f (n )并不能取到⎣⎡⎭⎫12,1∈⎝⎛⎦⎤23,1=⎣⎡⎦⎤12,1内的所有值.例2、(2019苏州三市、苏北四市二调)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.思路分析 (1) 对3S 2n -4S n +T n =0,令n =1,2得到方程,解得a 1,a 2的值.(2) 3S 2n -4S n +T n =0中,对n 赋值作差,消去T n,再对n 赋值作差,消去S n ,从而得到a n +1=-12a n ,证得数列{a n }是等比数列.(3)先求出a n =⎝⎛⎭⎫-12n -1,由(λ-na n )(λ-na n +1)<0恒成立,确定λ=0适合,再运用反证法证明λ>0和λ<0不成立.规范解答 (1)因为3S 2n -4S n +T n =0,n∈N *.令n =1,得3a 21-4a 1+a 21=0,因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0,因为a 2≠0,所以a 2=-12.(3分) (2)解法1 因为3S 2n -4S n +T n =0, ∈所以3S 2n +1-4S n +1+T n +1=0, ∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, ∈(5分)所以3(S n +S n -1)-4+a n =0(n≥2), ∈当n≥2时,∈-∈得,3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n ,因为a n ≠0,所以a n +1a n =-12. 又因(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)解法2 因为3S 2n -4S n +T n=0,∈ 所以3S 2n +1-4S n +1+T n +1=0,∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,所以3(S n +1+S n )-4+(S n +1-S n )=0,(5分) 整理为S n +1-23=-12⎝⎛⎭⎫S n -23,又S 1-23=a 1-23=13, 所以S n -23=13·⎝⎛⎭⎫-12n -1,得S n =13·⎝⎛⎭⎫-12n -1+23,当n≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n -1,而a 1=1也适合此式,所以a n =⎝⎛⎭⎫-12n -1,所以a n +1a n =-12所以数列{a n }是以-12为公比的等比数列.(8分)(3)解法1 由(2)知,a n =⎝⎛⎭⎫-12n -1.因为对任意的n∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n ⎝⎛⎭⎫-12n -1和n ⎝⎛⎭⎫-12n 之间.因为n ⎝⎛⎭⎫-12n -1·n ⎝⎛⎭⎫-12n <0对任意的n ∈N *恒成立,所以λ=0适合.(10分)若λ>0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有λ<n2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有-λ<n2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0.题型二、数列中奇偶项问题数列通项中出现奇、偶不同的表达式,需要分奇、偶分别赋值得到关系式,再对关系式相加或相减,得到奇数项或偶数项的关系式,体现减元的思想,考生要能够多观察,多思考,养成良好的逻辑推理的习惯.例3、例3、(2015苏州期末)已知数列{a n }中a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n , n 为偶数.(1) 是否存在实数λ,使得数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由. (2) 若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .规范解答 (1) 由已知,得a 2(n +1)=13a 2n +1+(2n +1)=13[a 2n -3(2n )]+2n +1=13a 2n +1.(2分)令a 2(n +1)-λ=13(a 2n -λ),得a 2(n +1)=13a 2n +23λ,所以λ=32.(4分)此时,a 2-λ=13+1-32=-16.(5分)所以存在λ=32,使得数列{a 2n -λ}是等比数列.(6分)(2) 由(1)知,数列⎩⎨⎧⎭⎬⎫a 2n -32是首项为-16,公比为13的等比数列,所以a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·13n ,即a 2n =12⎝⎛⎭⎫3-13n .(8分) 由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=32⎝⎛⎭⎫3-13n -6n +3,(10分) 所以a 2n -1+a 2n =32⎝⎛⎭⎫3-13n -6n +3+12⎝⎛⎭⎫3-13n =-2⎝⎛⎭⎫13n -6n +9. 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-213+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =13n -3n 2+6n -1,(12分)从而S 2n -1=S 2n -a 2n =32·13n -3n 2+6n -52.因为13n 和-3n 2+6n =-3(n -1)2+3在n ∈N *时均单调递减,所以S 2n 和S 2n -1均各自单调递减.(14分)计算得S 1=1,S 2=73,S 3=-73,S 4=-89,所以满足S n >0的所有正整数n 的值为1和2.(16分)解后反思 对于通项公式分奇偶不同的数列{a n }求S n 时,一般先把a 2k -1+a 2k 看做一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .例4、(2018苏中三市、苏北四市三调)已知数列{}n a 满足15(1)()2n n n n aa n *+++-=∈N ,数列{}n a 的前n 项和为n S .(1)求13a a +的值; (2)若1532a a a +=.∈ 求证:数列{}2n a 为等差数列;∈ 求满足224()pm S S p m *=∈N ,的所有数对()p m ,.【思路分析】(1)直接令1,2n 得到关系式,两式相减,求出13a a +的值(2)分别赋值21,2n n ,得到关系式,两式相减,得到212112n n a a -++=,结合1532a a a +=,计算出114a ,从而求2114n a -=,代入关系式,得出294n a n =+,利用定义法证明{}2n a 为等差数列(3)求和得到2n S ,代入关系式整理得()2234322p m p m +=+,需要转化两个因数相乘的形式,变形处理,利用平方差公式得到(29)(23)27m p m p ++-+=,因为2912m p ++≥且2923m p m p ++-+,均为正整数,则两个因数只能为27和1,从而求出p m ,的值.规范解答 (1)由条件,得2132372a a a a -=⎧⎪⎨+=⎪⎩①②,∈-∈得 1312a a +=.……………………… 3分 (2)∈证明:因为15(1)2n n n n a a +++-=,所以221212242252n n n n n a an a a -++⎧-=⎪⎨+⎪+=⎩③④, ∈-∈得 212112n n a a -++=, ……………………………………………… 6分于是13353111()()422a a a a a =+=+++=,所以314a =,从而114a =. ……………………………………………… 8分所以121231111()(1)()0444n n n a a a ----=--==--=,所以2114n a -=,将其代入∈式,得294n a n =+,所以2(1)21n n a a +-=(常数),所以数列{}2n a 为等差数列.……………………………………………… 10分∈注意到121n a a +=,所以2122n n S a a a =+++2345221()()()n n a a a a a a +=++++++2125322nk k n n =+==+∑,…………………………………………… 12分 由224pm S S =知()2234322p m p m +=+. 所以22(26)(3)27m p +=++,即(29)(23)27m p m p ++-+=,又*p m ∈N ,,所以2912m p ++≥且2923m p m p ++-+,均为正整数,所以2927231m p m p ++=⎧⎨-+=⎩,解得104p m ==,,所以所求数对为(104),.………………………………………………… 16分例5、(2017苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *. (1) 求数列{a n }的通项公式;(2) 若∈n ∈N * ,都有S n ≤n (3n +1)成立,求实数a 的取值范围;(3) 当a =2时,将数列{a n }中的部分项按原来的顺序构成数列{b n },且b 1=a 2,证明:存在无数个满足条件的无穷等比数列{b n }.规范解答 (1) 当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5;当n≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1), 所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n)-6(S n -1+n -1),即(a n +1)(a n +1-a n -1)=6(a n +1), 又a n >0,所以a n +1-a n -1=6,(3分)所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,k∈N *,故a n=⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.)(5分)(2) 当n 为奇数时,n +1为偶数,所以a n =3n +a -3,a n +1=3n +2,所以(3n +a -3+1)(3n +2+1)=6(S n +n ),整理得S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1)得,a ≤3n 2+3n +2n +1对n ∈N *恒成立.令f (n )=3n 2+3n +2n +1(n ∈N *),则f (n +1)-f (n )=3n 2+9n +4(n +2)(n +1)>0,所以f (n )=3n 2+3n +2n +1(n ∈N *)单调递增,f (n )min =f (1)=3+3+22=4,所以a ≤4.(8分) 当n 为偶数时,n +1为奇数,a n =3n -1,a n +1=3n +a ,所以(3n -1+1)(3n +a +1)=6(S n +n ),整理得S n =3n 2+(a -1)n2,由S n ≤n (3n +1)得,a ≤3(n +1)对n ∈N *恒成立,所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].(10分)(3) 当a =2时,若n 为奇数,则a n =3n -1,所以a n =3n -1(n ∈N *).解法 1 因为数列{a n }的项是b 1=5的整数倍的最小项是a 7=20,故可令等比数列{b n }的公比q =4m (m ∈N *),因为b 1=a 2=5,所以b n =5·4m (n-1),设k =m (n -1),因为1+4+42+…+4k -1=4k -13,所以4k =3(1+4+42+…+4k -1)+1, 所以5·4k =5[3(1+4+42+…+4k -1)+1] =3[5(1+4+42+…+4k -1)+2]-1,(14分) 因为5(1+4+42+…+4k -1)+2为正整数, 所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =4m (m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解法2 设b 2=ak 2=3k 2-1(k 2≥3),因为b 1=a 2=5,所以公比q =3k 2-15.因为等比数列{b n }的各项为整数,所以q 为整数, 取k 2=5m +2(m ∈N *),则q =3m +1,故b n =5·(3m +1)n -1.由3k n -1=5·(3m +1)n-1得k n =13[5(3m +1)n -1+1](m ,n ∈N *),而当n ≥2时,k n -k n -1=53[(3m +1)n -1-(3m +1)n -2]=5m (3m +1)n -2,即k n =k n -1+5m (3m +1)n -2.(14分)又因为k 1=2,5m (3m +1)n-2都是正整数,所以k n 也都是正整数,所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =3m +1(m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解后反思 作为数列压轴题,本题三个小题梯度明显,有较好的区分度,其中第(1)(2)小题联系紧密,难度中等,考生应该努力完成这两小题,而不是轻易放弃;而第(3)小题要求高,试题开放,解法1构造特殊数列,而解法2从一般性推理与证明两个角度完成证明,难度都非常大,建议考生果断放弃.题型三、数列中连续两项和或积的问题“相邻两项的和是一次式”的特征,联想到数列{a n }中相邻两项的和成等差数列,故考虑采用相邻项作差法,得到数列{a n }中奇数项成等差,偶数项也成等差,而且公差相同的结论,进而求出数列通项公式.例6、(2018苏州暑假测试)已知数列{a n }满足a n +1+a n =4n -3(n∈N *).(1) 若数列{a n }是等差数列,求a 1的值;(2) 当a 1=2时,求数列{a n }的前n 项和S n ;(3) 若对任意n ∈N *,都有a 2n +a 2n +1a n +a n +1≥5成立,求a 1的取值范围.规范解答 (1) 若数列{a n }是等差数列,则a n =a 1+(n -1)d,a n +1=a 1+nd.由a n +1+a n =4n -3,得(a 1+nd)+[a 1+(n -1)d]=4n -3,(2分)即2d =4,2a 1-d =-3,解得d =2,a 1=-12.(3分) (2) 由a n +1+a n =4n -3(n∈N *),得a n +2+a n +1=4n +1(n ∈N *).两式相减,得a n +2-a n =4.(5分)所以数列{a 2n -1}是首项为a 1,公差为4的等差数列.数列{a 2n }是首项为a 2,公差为4的等差数列,由a 2+a 1=1,a 1=2,得a 2=-1,所以a n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -5,n 为偶数.(6分)∈当n 为奇数时,a n =2n ,a n +1=2n -3.S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n=1+9+…+(4n -11)+2n=n -12×(1+4n -11)2+2n =2n 2-3n +52;(8分) ∈当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2.(10分) (3) 由(2)知,a n =⎩⎪⎨⎪⎧2n -2+a 1,n 为奇数,2n -3-a 1,n 为偶数.(11分) ∈当n 为奇数时,a n =2n -2+a 1,a n +1=2n -1-a 1.由a 2n +a 2n +1a n +a n +1≥5得a 21-a 1≥-4n 2+16n -10. 令f (n )=-4n 2+16n -10=-4(n -2)2+6,当n=1或3时,f(n)max=2,所以a21-a1≥2.解得a1≥2或a1≤-1.(13分)∈当n为偶数时,a n=2n-a1-3,a n+1=2n+a1.由a2n+a2n+1a n+a n+1≥5得a21+3a1≥-4n2+16n-12.令g(n)=-4n2+16n-12=-4(n-2)2+4,当n=2时,g(n)max=4,所以a21+3a1≥4,解得a1≥1或a1≤-4.(15分)综上,a1的取值范围是(-∞,-4]∈[2,+∞).(16分)例7、(2019苏州期初调查)已知数列{a n}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n}前n项和为S n,且满足S3=a4,a5=a2+a3.(1) 求数列{a n}的通项公式;(2) 若a m a m+1=a m+2,求正整数m的值;(3) 是否存在正整数m,使得S2mS2m-1恰好为数列{a n}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.思路分析(1)建立方程组,求出公比和公差,用分段的形式写出{a n}的通项公式.(2)对m分奇、偶数,根据通项公式和a m a m+1=a m+2建立方程,求出m的值.(3)运用求和公式求出S 2m 和S 2m -1,计算S 2m S 2m -1,通过分析其值只能为a 1,a 2,a 3,分情况讨论,解方程,求m 的值. 规范解答 (1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q.所以数列{a n }的前5项依次为1,2,1+d,2q,1+2d.因为{S 3=a 4,a 5=a 2+a 3,所以{4+d =2q ,1+2d =3+d ,解得{d =2,q =3.(2分)所以a n =⎩⎨⎧n ,n 为奇数,2·332-1,n 为偶数.(4分) (2)因为a m a m +1=a m +2.1° 若m =2k(k∈N *),则a 2k a 2k +1=a 2k +2,所以2·3k -1·(2k +1)=2·3k ,即2k +1=3,所以k =1,即m =2.(6分) 2° 若m =2k -1(k ∈N *),则a 2k -1a 2k =a 2k +1,所以(2k -1)×2·3k -1=2k +1,所以2·3k -1=2k +12k -1=1+22k -1. 因为2·3k -1为整数,所以22k -1必为整数,所以2k -1=1,所以k =1,此时2·30≠3.不合题意.(8分) 综上可知m =2.(9分)(3) 因为S 2m =(a 1+a 3+…+a 2m -1)+(a 2+a 4+…+a 2m )=m (1+2m -1)2+2(1-3m )1-3=3m +m 2-1.(10分) S 2m -1=S 2m -a 2m =3m +m 2-1-2·3m -1=3m -1+m 2-1.(11分)所以S 2m S 2m -1=3m +m 2-13m -1+m 2-1=3-2(m 2-1)3m -1+m 2-1≤3.(12分)若S 2m S 2m -1为数列{a n }中的项,则只能为a 1,a 2,a 3. 1° S 2m S 2m -1=1,则3-2(m 2-1)3m -1+m 2-1=1,所以3m -1=0,m 无解.(13分) 2° S 2m S 2m -1=2,则3-2(m 2-1)3m -1+m 2-1=2,所以3m -1+1-m 2=0. 当m =1时,等式不成立;当m =2时,等式成立;当m ≥3时,令f (x )=3x -1+1-x 2=13·3x +1-x 2. 所以f ′(x )=ln33·3x -2x ,f ″(x )=ln 233·3x -2. 因为f ″(x )在(14分)3° S 2m S 2m -1=3,则3-2(m 2-1)3m -1+m 2-1=3,所以m 2-1=0,即m =1.(15分) 综上可知m =1或m =2.(16分)解后反思 第(3)问中,解方程3m -1+1-m 2=0,其中m 为正整数,体现函数的思想,可以先取m =1,m =2,…,找出规律,即执果索因,然后用导数的方法研究函数f(x)=3x -1+1-x 2的单调性,也可以用作差法来研究数列c m =3m -1+1-m 2的单调性来处理.二、达标训练1、(2018南京、盐城一模)设S n 为等差数列{a n }的前n 项和,若{a n }的前2017项中的奇数项和为2018,则S 2017的值为________.答案: 4034解析:因为a 1+a 3+a 5+…+a 2017=1009a 1009=2018,所以a 1009=2,故S 2017=a 1+a 2+…+a 2017=2017a 1009=4034.2、(2019常州期末) 数列{a n },{b n }满足b n =a n +1+(-1)n a n (n∈N *),且数列{b n }的前n 项和为n 2,已知数列{a n -n }的前2018项和为1,那么数列{a n }的首项a 1=________.答案: 32解析:思路分析通项公式中出现(-1)n ,注意分奇、偶项,求和时自然采用分组求和法. 数列{b n }的前n 项和为n 2,所以b n =n 2-(n -1)2=2n -1(n≥2),b 1=1也符合,故b n =2n -1,故a n +1+(-1)n a n =2n -1,设{a n }的前n 项和为S n ,a 2-a 1=1.若n 为奇数,则⎩⎪⎨⎪⎧a n +1-a n =2n -1,a n +2+a n +1=2n +1,解得a n +a n +2=2. 若n 为偶数,则⎩⎪⎨⎪⎧a n +a n +1=2n -1,a n +2-a n +1=2n +1,解得a n +a n +2=4n. S 2018=a 1+(a 3+a 5)+(a 7+a 9)+…+(a 2015+a 2017)+a 2+(a 4+a 6)+(a 8+a 10)+…+(a 2016+a 2018)=2a 1+1+1008+4×(4+8+…+2016)=2a 1+1009+4×504×(4+2016)2=2a 1+1+1008×2021. 又S 2018-2018×20192=1,所以2a 1+1+1008×2021=1+1009×2019,得a 1=32.3、(2015南京、盐城一模)已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n (n ∈N *),若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.【答案】(-2)n -13因为|a n +1-a n |=2n ,所以当n =1时,|a 2-a 1|=2.由a 2>a 1,a 1=-1得a 2=1.当n =2时,|a 3-a 2|=4,得a 3=-3或a 3=5.因为{a 2n -1}单调递减,所以a 3=-3.当n =3时,|a 4-a 3|=8,得a 4=5或a 4=-11.因为{a 2n }单调递增,所以a 4=5.同理得a 5=-11,a 6=21.因为{a 2n -1}单调递减,a 1=-1<0,所以a 2n -1<0.同理a 2n >0.所以当n 为奇数时(n ≥3),有a n -a n -1=-2n -1,a n -1-a n -2=2n -2.两式相加得a n -a n -2=-2n -2.那么a 3-a 1=-2;a 5-a 3=-23;…;a n -a n -2=-2n -2.以上各式相加得a n -a 1=-(2+23+25+…+2n -2).所以a n =a 1-2[1-(22)n -32+1]1-22=-2n +13. 同理,当n 为偶数时,a n =2n -13. 所以a n =⎩⎨⎧-2n +13,n 为奇数,2n -13, n 为偶数.也可以写成a n =(-2)n -13.4、(2017镇江期末)已知n ∈N *,数列{a n }的各项均为正数,前n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1) 若数列{b n }是公比为3的等比数列,求S 2n ;(2) 若对任意n ∈N *,Sn =a 2n +n 2恒成立,求数列{a n }的通项公式; (3) 若S 2n =3(2n -1),数列{a n a n +1}也为等比数列,求数列{a n }的通项公式.思路分析 第2问,用相邻项作差法可把条件“对任意n ∈N *,S n =a 2n +n 2”转化为“a n -a n -1=1或a n +a n -1=1”,因为a n +a n -1=1对任意的n ∈N *恒不成立,故有a n -a n -1=1对任意的n ∈N *恒成立;第3问,由“数列{a n a n +1}为等比数列”知a n +2a n为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,在S 2n =3(2n -1)中,令n =2即可求出q .规范解答 (1) b 1=a 1+a 2=1+2=3,(1分)S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3(3n -1)2.(3分) (2) 当n ≥2时,由2S n =a 2n +n ,得2S n -1=a 2n -1+n -1,则2a n =2S n -2S n -1=a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,(a n -1)2-a 2n -1=0,(a n -a n -1-1)(a n +a n -1-1)=0,故a n -a n -1=1或a n +a n -1=1.(*)(6分)下面证明a n +a n -1=1对任意的n ∈N *恒不成立.事实上,a 1+a 2=3,则a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立.所以a n -a n -1=1对任意的n ∈N *恒成立.(8分)因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n .(10分)(3) 因为数列{a n a n +1}为等比数列,设公比为q ,则当n ≥2 时,a n a n +1a n -1a n =a n +1a n -1=q . 即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列,(12分)故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.(14分)当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1). 综上所述,a n =⎩⎨⎧ 2n -12,n 为奇数,2n 2,n 为偶数.(16分)易错警示 在第2问中,必须证明a n +a n -1=1对任意的n ∈N *恒不成立,不是“对任意的n ∈N *不恒成立”,因为若存在某个n 0∈N *使得a n +a n -1=1成立,由于逻辑连结词“或”的缘故,则此时式子“an 0-an 0-1=1”可以不成立!也就是说,“a n -a n -1=1对任意的n ∈N *恒成立”不一定正确.解后反思 由于“S 2n =3(2n -1)”符合特征“S n =A -Aq n ”,故数列{a 2n -1+a 2n }是等比数列,且公比为2,再由“数列{a n a n +1}为等比数列”知a n +2a n为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,则有a 2n +1a 2n -1=a 2n +2a 2n =q ,即a 2n +1+a 2n +2a 2n -1+a 2n=q ,故q =2. 5、(2016南京、盐城、连云港、徐州二模)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0).(1) 求p 的值;(2) 求数列{a n }的通项公式;(3) 设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n .若b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .规范解答 (1) 由a 1=-S 1+p,得a 1=p 2.(2分)由a 2=S 2+p 2,得a 1=-p 2,所以p 2=-p 2. 又p≠0,所以p =-12.(3分) (2)由a n =(-1)n S n +⎝⎛⎭⎫-12n , 得⎩⎨⎧ a n =(-1)n S n +⎝⎛⎭⎫-12n , ∈a n +1=-(-1)n S n +1+⎝⎛⎭⎫-12n +1, ∈∈+∈得a n +a n +1=(-1)n (-a n +1)+12×⎝⎛⎭⎫-12n .(5分) 当n 为奇数时,a n +a n +1=a n +1-12×⎝⎛⎭⎫12n , 所以a n =-⎝⎛⎭⎫12n +1.(7分)当n 为偶数时,a n +a n +1=-a n +1+12×⎝⎛⎭⎫12n , 所以a n =-2a n +1+12×⎝⎛⎭⎫12n =2×⎝⎛⎭⎫12n +2+12×⎝⎛⎭⎫12n =⎝⎛⎭⎫12n , 所以a n=⎩⎨⎧-12n +1,n 为奇数, n∈N *,12n , n 为偶数,n ∈N *. (9分)(3)A n =⎩⎨⎧⎭⎬⎫-14n ,14n ,由于b 1≠c 1,则b 1 与c 1一正一负, 不妨设b 1>0,则b 1=14,c 1=-14. 则P n =b 1+2b 2+3b 3+…+nb n ≥14-⎝⎛⎭⎫242+343+…+n 4n .(12分)设S =242+343+…+n 4n ,则14S =243+…+n -14n +n 4n +1, 两式相减得34S =242+143+…+14n -n 4n +1=116+116×1-⎝⎛⎭⎫14n -11-14-n 4n +1=748-112×14n -1-n 4n +1<748. 所以S <748×43=736,所以P n ≥14-⎝⎛⎭⎫242+343+…+n 4n >14-736=118>0.(14分) 因为Q n = c 1+2 c 2+3 c 3+…+n c n ≤-14+S <-14+736=-118<0,所以P n ≠Q n .(16分) 解题反思 作为压轴题,第(1)小题的分数是较容易得到的;第(2)小题中的主要难点在于对正整数n 的奇偶性进行讨论,特别在求n 为偶数时数列{a n }的通项公式,注意利用n +1为奇数时数列a n +1的通项公式求解;第(3)小题在思维层面上的难度大,理解题意后还需用错位相减法求和,这也是在数列求和中较容易出错的题型,所以请考生在二轮复习备考中不仅要注重思维提升,而且不能忽视基本数学思想方法以及基本数学运算.6、(2015扬州期末)已知数列{a n }中,a 1=1,a 2=a ,且a n +1=k (a n +a n +2)对任意正整数都成立,数列{a n }的前n 项和为S n .(1) 若k =12,且S 2 015=2 015a ,求a 的值. (2) 是否存在实数k ,使数列{a n }是公比不为1的等比数列,且对任意相邻三项a m ,a m +1,a m +2按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.(3) 若k =-12,求S n .思路分析 (1) 当k =12时,由等差中项法可得数列为等差数列,根据等差数列的前n 项和公式,得到一个关于a 的方程,可求出a 的值.(2) 假设存在这样的k ,这样根据{a n }是等比数列,就可得a m ,a m +1,a m +2,然后进行排序,从而分类讨论来解决问题.(3) 当k =-12时,由a n +1=-12(a n +a n +2)可得a n +2+a n +1=-(a n +1+a n )=a n +a n -1,从而构造数列{b n },其中b n =a n +a n +1(n 为偶数时)(或b n =a n +1+a n +2(n 为奇数时),则该数列就是一个常数列,从而求出S n .规范解答 (1) 当k =12时,a n +1=12(a n +a n +2),a n +2-a n +1=a n +1-a n , 所以数列{a n }是等差数列,(2分)此时首项a 1=1,公差d =a 2-a 1=a -1,数列{a n }的前2 015项和是S 2 015=2 015+12×2 015(2 015-1)(a -1)=2 015a ,解得a =1.(4分)(2) 设数列{a n }是等比数列,则它的公比q =a 2a 1=a , 所以a m =a m -1,a m +1=a m ,a m +2=a m +1.(6分)∈若a m +1为等差中项,则2a m +1=a m +a m +2,即2a m =a m -1+a m +1,解得a =1,不合题意; ∈若a m 为等差中项,则2a m =a m +1+a m +2,即2a m -1=a m +a m +1,化简得a 2+a -2=0,解得a =-2(舍去a =1),所以k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25; ∈若a m +2为等差中项,则2a m +2=a m +1+a m ,即2a m +1=a m +a m -1,化简得2a 2-a -1=0,解得a =-12(舍去a =1),所以k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.(9分) 综上,满足要求的实数k 有且仅有一个,k =-25.(10分) (3) k =-12,则a n +1=-12(a n +a n +2), a n +2+a n +1=-(a n +1+a n ),a n +3+a n +2=-(a n +2+a n +1)=a n +1+a n .(12分)当n 是偶数时,S n =a 1+a 2+a 3+a 4+…+a n -1+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=n 2(a 1+a 2) =n 2(a +1); 当n 是奇数时,S n =a 1+a 2+a 3+a 4+…+a n -1+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=a 1+n -12(a 2+a 3) =a 1+n -12[-(a 1+a 2)] =1-n -12(a +1). 当n =1也适合上式.(15分)综上所述,S n =⎩⎨⎧ 1-n -12(a +1),n 是奇数,n 2(a +1), n 是偶数.(16分)解后反思 考查等差数列与等比数列的相关知识、或将数列转化为等差(等比)数列来加以研究,是江苏高考对数列知识考查的最为典型的形式.本题就具有这样的特征,体现了高考命题的特点.。