物理化学第十章 界面现象

合集下载

物理化学 第十章 界面现象

物理化学 第十章  界面现象

4. 热力学基本公式
考虑了表面功,热力学基本公式中应相应增加一项,即:
dU TdS pdV
dn
B
B
dAS
B
dH TdS VdP
dn
B
B
dAS
B
dA SdT pdV
dn
B
B
dAS
B
dG SdT VdP
dn
B
B
dAS
B
由此可得:
( U AS
Ga 0 1800 任何液体与固体间都能粘湿
在等温等压条件下,单位面积的液固界面分开产生液体表面与固体表 面所需的功称为粘附功。粘附功越 大,液体越能润湿固体,液-固结合 得越牢。
Wa Ga gl (cos 1 )
Wa o
(2)浸湿(work of immersion)
浸湿:固体浸入液体,固体表面消失,液-固界面产生的润湿过程。
当将边长为10-2m的立方体分割成10-9m的小立方体 时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
对具有巨大表面积的分散体系,界面分子的 特殊性对体系性质的巨大影响不能忽略
界面与表面:是指两相接触的约几个分子厚度的过渡区 (界面相),若其中一相为气体,这种界面通常称为表 面。
Langmuir吸附等温式的缺点:
1.假设吸附是单分子层的,与事实不符。 2.假设表面是均匀的,其实大部分表面是不均匀的。
3.在覆盖度 较大时,Langmuir吸附等温式不适用。
§ 10.4 液—固界面
接触角 粘附功 浸湿功 铺展系数
1 接触角(contact angle)和Young equation

第十章__界面现象2005.11.20

第十章__界面现象2005.11.20

有等于系统增加单位面积时所增加的吉布斯函数,
所以也称为表面吉布斯函数
9
例:
20 ℃时汞的表面张力 =4.85×10
-1
N· m
-1
,若在此温度
及101.325 kPa 时,将半径r1 = 1 mm的汞滴分散成半径为 r2 =10-5 mm 的微小液滴时,请计算环境所做的最小功。 解:因为T,p 恒定,所以为常数,环境所做的最小功为可逆过程 表面功W’,
6
此实验证明,液体表面层存在着一个平行于液面,垂直 于分界线的力,此力使表面收缩 —— 表面张力。



对于弯曲液面,表面张力则与液面 相切。


表面张力
7
2. 表面功与表面张力表面吉布斯函数:
dx
当T、p、n不变的条件下,若把 MN移动dx,
F外

l
则增加面积dA=2l· dx,
此时外界必反抗表面张力做功。 WR' F外 dl 在可逆条件下:F外=F表+dF≌F表
15
5. 影响表面张力的因素
(1)表面张力和物质性质有关和它接触的另一相的性质有关。 (i)和空气接触时,液体和固体中的分子间作用力越大表面 张力越大。一般:
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
(ii)同一种物质和不同性质的其它物质接触时,界面层中分 子所处的力场不同,界面张力出现明显差异。(看下表数据)
16
某些液体、固体的表面张力和液/液界面张力
物质 水(溶液) 乙醇(液)
/(10-3
N· -1) m 72.75 22.75
T/K 293 293
物质 W(固) Fe(固)

物理化学第十章界面现象

物理化学第十章界面现象

第十章界面现象10.1 界面张力界面:两相的接触面。

五种界面:气—液、气—固、液—液、液—固、固—固界面。

(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。

)界面不是接触两相间的几何平面!界面有一定的厚度,有时又称界面为界面相(层)。

特征:几个分子厚,结构与性质与两侧体相均不同比表面积:αs=A s/m(单位:㎡·㎏-¹)对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。

与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。

1. 表面张力,比表面功及比表面吉布斯函数物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因!表面的分子总是趋向移往内部,力图缩小表面积。

液体表面如同一层绷紧了的富有弹性的橡皮膜。

称为表面张力:作用于单位界面长度上的紧缩力。

单位:N/m,方向:表面(平面、曲面)的切线方向γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。

单位:J · m-2。

恒温恒压:所以:γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。

单位J · m-2表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。

(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1)推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。

2. 不同体系的热力学公式对一般多组分体系,未考虑相界面面积时:当体系作表面功时,G 还是面积A的函数在恒温、恒压、组成不变的情况下,使面积减小或表面张力减小,致系统总界面吉布斯函数减小的表面过程可以自发进行。

10-物理化学第十章 界面现象

10-物理化学第十章 界面现象

ln
Pr Ps
2 M r RT
凸(液滴)~ “+” 凹(气泡)~ “–”
凸(液滴,固体粉末 or r > 0)— Pr>Ps 凹(气泡 or r < 0 )— Pr<Ps
水平液面(r→∞)— Pr=Ps
❖ 亚稳状态和新相的生成 ——分散度对系统性质的影响
亚稳状态
——热力学不稳定态,一定条件下能相对 稳定的存在。
杨氏方程
cos
s l
sl
润湿条件 s sl 铺展条件 s sl l
❖ 应用
毛细管内液面
凹: 润湿
凸: 不润湿
§10–3 弯曲液面下的附加压
由此产生毛细现象,并影响饱和蒸气压
10·3·1 弯曲液面产生附加压
附加压 △P= P心-P外
➢ 杨-拉普拉斯方程
曲面— P 2 膜— P 4
第十章 界面现象
讨论界面性质对系统的影响
新的系统—多相,小颗粒系统
非体积功—表面功
❖ 需考虑界面影响的系统 界面所占比例大的系统
比表面——
aS
AS m
❖ 本章内容 表面张力
① 表面现象的成因 表面现象的总成因
与AS↓有关 ② 各类现象分析
与γ↓有关
§10–1 表面现象的成因 10·1·1 表面张力 ❖ 表面张力 γ 定义—作用于单位边界上的表面紧缩力 方向—总指向使表面积减小的方向
为降低表面张力而产生 吸附剂 —— 起吸附作用的 吸附质 —— 被吸附的
§10–4 固体表面的吸附 固体对气体的吸附
10·4·1 吸附的产生
固体特点—有大的比表面,不稳定。 通过吸附其它分子间力较小的物质,形成 新的表面能较低的界面。
两个相对的过程——吸附和解吸 吸附量——一定T、P下,吸附和解吸达平 衡时,吸附气体的量。

物理化学第十章表面现象

物理化学第十章表面现象
P = P 0 + P
P = P 0 P
图10-8 弯曲液面的附加压力
§10-3 弯曲液面的附加压力和毛细现象 这种弯曲液面内外的压力差,就称之为附加压力,用 P 来表示。
P = P内 P外 = P P 0
附加压力的方向总是指向曲率中心。 二、拉普拉斯(Laplace)方程 附加压力的大小与弯曲液面曲率半径有关 。
Ga = γ s l (γ s g + γ l g ) = Wa'
图10-4 沾湿过程
§10-2 润湿现象与接触角
则此过程中, Wa' 即称为沾湿功。 对于一个自发过程来讲, Wa' > 0 。 Wa' 外
W a' 所做的最大功。
ቤተ መጻሕፍቲ ባይዱ是液固沾湿时,系统对
值愈大,液体愈容易润湿固体。
(2)浸湿(immersional wetting) 所谓浸湿是指当固体浸入液体中,气—固界面完全被 固—液界面所取代的过程。如图10-5所示: 在恒温恒压可逆情况下,将具有单位表面积的固体 浸入液体中,气—固界面转变为液固界面,在该过 程中吉布斯函数的变化值为 Gi = γ s l γ s g = Wi
γ s g = γ s l + γ l g cos θ
cos θ =
γ
sg
γ
sl
γ l g
1805年杨氏(TYoung)曾得到此式,故称其为杨氏方程。 1)当 θ > 90 0 时, cosθ < 0 即 γ s g < γ s l
G = γ s l γ s g > 0
γ s g > γ s l 2)当θ < 90 0 时, θ > 0 cos 液体润湿固体过程中能自动发生,液体有扩大固—液界面的趋势,

材料物理化学:10界面现象

材料物理化学:10界面现象

§10 界面现象在有关固体催化反应动力学一章中,我们已经简单地讨论了固体物质表面上的一些现象——吸附。

本章将讨论的重点放在液体的界面上。

举例有关界面现象:密切接触的两相之间的过渡区称为界面(interface),约有几个分子的厚度。

实际上,当两个不同的物相之间表现了与两个本体中的不同性质的现象就称为界面现象。

界面的相接触有:s-s,s-l,s-g,l-l,l-g。

界面现象的出现是因为界面层的分子所受到的分子-分子之间的作用力与相本体中的分子所受到作用力不一样,在相本体中的分子受到的作用力是对称的、均匀的,而界面层的分子受到两个不同相中不同分子的相互作用,而作用力是不对称的、不均匀的。

因此界面层的性质与相本体的性质不同。

作用力大的那一相有自动收缩其界面到最小值的趋势。

对于固体物质的界面就表现为对气体或液体物质的吸附。

对于一个体系而言,界面现象(界面性质)所表现的显著程度,取决于体系的相对界面积大小,相对界面积的大小可以用比表面来表示:A o =V A或 A o =mA 比表面小的体系,界面现象表现不显著,常常可以忽略;比表面大的体系,表现出很显著的界面现象。

表13.1为相同体积(或质量)不同尺寸时界面积的大小。

●§10.1表面Gibbs 自由能和表面张力 ● §10.1.1表面Gibbs 自由能和表面张力的概念由于表面上的分子所受到的力与相本体中分子所受到的力不同,所以如果将一个分子从相本体中移到表面成为表面分子(或者说扩大表面积),就必须克服体系内部的分子间作用力而对体系做功。

在等温、等压和组成不变时,可逆地使表面积增加dA 所需要对体系做的功,称为表面功:-δw ’=γdA γ=dAw 'δ- γ为比例系数。

它在数值上等于当等温、等压及组成不变的条件下,增加单位表面积时必须对体系做的可逆非膨胀功。

将表面功引入到热力学中,得到:dU= TdS ―pdV +γdA +∑BμB dn BdH= TdS +Vdp +γdA +∑BμB dn BdF =―S dT ―pdV +γdA +∑BμB dn Bd G=―S dT +Vdp +γdA +∑BμB dn Bγ=(A U ∂∂)S ,V ,n B =(A H ∂∂)S ,p ,n B =(A F ∂∂)T ,V ,n B =(AG ∂∂)T ,p ,n B 从能量的角度上看:γ就是等温、等压及组成不变的条件下,每增加单位表面积时所引起的Gibbs 自由能变化,所以可以称为表面Gibbs 自由能。

物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题
(原创版)
目录
1.物理化学第六版第十章界面现象概述
2.课后思考题解答
正文
一、物理化学第六版第十章界面现象概述
物理化学第六版第十章主要讲述了界面现象,界面现象是指发生在两种不同相(如固相与液相、液相与气相等)之间的物理化学现象。

在这一章中,我们学习了界面张力、表面能、润湿现象等相关知识。

通过学习这些内容,我们可以更好地理解不同相之间的相互作用,从而为实际应用提供理论基础。

二、课后思考题解答
课后思考题 1:请简述界面张力的概念及其对界面现象的影响。

答:界面张力是指作用在液体界面上的力,使得液体表面有缩小的趋势。

界面张力的大小取决于液体的性质以及液体之间的相互作用。

界面张力对界面现象有重要影响,它决定了液体滴的形成、液滴的合并以及液体在固体表面的展开等过程。

课后思考题 2:请举例说明表面能的概念,并分析其在实际应用中的意义。

答:表面能是指在标准状态下,将一个物质的表面从完美晶体变为实际表面所需要的能量。

表面能可以通过吉布斯吸附等温线来测量。

在实际应用中,表面能对材料的润湿性、腐蚀性以及催化活性等方面具有重要意义。

课后思考题 3:请简述润湿现象及其分类。

答:润湿现象是指液体在固体表面上的展开过程。

根据液体在固体表面上的行为,润湿现象可分为三种类型:附着润湿、铺展润湿和毛细润湿。

润湿现象对涂料、粘合剂等材料的性能有重要影响。

通过学习物理化学第六版第十章界面现象,我们可以深入了解不同相之间的相互作用,为实际应用提供理论基础。

物理化学知识点chap 10

物理化学知识点chap 10

Pa
2.356
103
kPa
【10.5】水蒸气迅速冷却至298.15K时可达到过饱和状态。已
知该温度下水的表面张力为71.97×10-3 N·m -1 ,密度为997
kg·m-3。 当过饱和水蒸气压力为平液面水的饱和蒸气压的4
倍时,计算: (1)开始形成水滴的半径;(2)每个水滴中
所含水分子的个数。
m
= 7.569 ? 10- 10m
(2)每个水滴的体积
( ) V 水滴=
4 3
pr
3
=
4 创3.14 3
7.569 ? 10- 10 3 m 3
1.815 ? 10- 27m 3
每个水分子的体积
V 水分子=
M rL
=
骣 琪 琪 琪 桫997

0.018 6.022
m 3 = 3.00 ? 10- 29m 3 1023
分析: 利用拉普拉斯方程
p 2
r
解: (1)和(2)两种情况下均只存在一个气-液界面, 其附加压力相同。根据拉普拉斯方程
p
2
r
2 58.91103 0.1106
Pa
1.178
103
kPa
(3)空气中存在的气泡,有两个气-液界面,其附加压力 为
p
4
r
4
58.91103 0.1106

pg
••



p
• •
pl
(a)
pg
• 气 p • •
液•
pl (b)
附加压力方向示意图


气•


• •
p=• 0

物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题

物理化学第六版第十章界面现象课后思考题摘要:1.物理化学第六版第十章界面现象概述2.课后思考题解答正文:一、物理化学第六版第十章界面现象概述物理化学第六版第十章主要讲述了界面现象,这是物理化学中的一个重要内容。

界面现象是指两种或多种物质相互接触时,由于它们之间的相互作用力不同,会发生的一系列现象。

这些现象包括表面张力、接触角、界面电荷等。

本章主要通过讲述这些现象,使读者了解并掌握界面现象的基本概念和相关知识。

二、课后思考题解答1.问题一:请简述表面张力的概念及其产生原因。

答:表面张力是指液体分子之间的相互作用力。

当液体与气体接触时,液体表面层的分子受到气体分子的吸引,使液体表面层的分子间距大于液体内部分子间距,从而使液体表面形成一个收缩的趋势。

这种使液体表面有收缩趋势的力称为表面张力。

2.问题二:请解释接触角的概念,并举例说明。

答:接触角是指液体与固体接触时,液体与固体的界面形成的角度。

接触角可以用来判断液体与固体的亲水性或疏水性。

当接触角小于90°时,液体与固体呈亲水性;当接触角大于90°时,液体与固体呈疏水性。

例如,水滴在玻璃板上时,水滴与玻璃板接触角大于90°,说明水与玻璃呈疏水性。

3.问题三:请简述界面电荷的概念及其产生原因。

答:界面电荷是指在两种介质接触的界面上,由于介质的极性不同,会产生电荷分布的现象。

当两种介质接触时,如果它们的极性不同,就会在接触界面上产生正负电荷。

这些电荷称为界面电荷。

例如,当金属与非金属接触时,由于金属表面的电子与非金属表面的电子互相转移,会在接触界面上产生界面电荷。

通过以上解答,我们可以更好地理解物理化学第六版第十章界面现象的相关知识。

物理化学 10 界面现象

物理化学 10 界面现象
19 of 153
(10 .1 .12)
河北联合大学
由吉布斯函数判据可知:在恒温、恒 压、各相中各种物质的量不变时,系统总 界面吉布斯函数减小的过程为自发过程。 例:液体对固体的润湿,小液滴聚集成大液滴……
3.界面张力及其影响因素
界面张力取决于界面的性质,能影响物质性质的因素,都 能影响界面张力。 ①与物质的本性有关:不同的物质,分子间的作用力不 同,对界面上分子的影响也不同。分子间相互作用力越大,γ 越 大。 一般对于气液界面有:γ(金属键)> γ(离子键)> γ(极 性键)> γ(非极性键)
液体
水 乙醇 甲醇 CCl4 丙酮 甲苯 苯
河北联合大学
25 of 153
③ 压力及其它因素对表面张力的的影响:
压力增加,使气相密度增加,减小表面分子受力不对称 程度;也使气体分子更多溶于液体,改变液相成分,这些 因素都使表面张力下降。 a.表面分子受力不对称的程度 ↓ p↑ b.气体分子可被表面吸附,改变γ, ↓ γ↓
α B
4.2.7
河北联合大学
16 of 153
dU TdS pdV μB (α )dnB (α)
α B
4.2.8 4.2.9 4.2.10
dH TdS Vdp μB (α )dnB (α)
α B
dA SdT pdV μB (α )dnB (α)
t /°C
1050 215 5.5 0. 25 1850 20 -196
/mNm-1
1670 1140 685 527 12010 1000 905 4500 1030
Cu Ag Sn 苯 冰 氧化镁 氧化铝 云母 石英
河北联合大学

物化 第十章 界面现象

物化 第十章 界面现象

δWr' γ = dAs
γ :使液体增加单位表面时环境所需作的可逆功, 使液体增加单位表面时环境所需作的可逆功, 单位表面时环境所需作的可逆功
单位: 单位:J·m-2
表面吉布斯函数: 表面吉布斯函数
恒温、 恒温、恒压下的可逆非体积功等于系统的 吉布斯函数变: 吉布斯函数变: δWr' ∂G ' γ = = δWr = dGT , p = γ dAs dAs ∂As T , p
Freundlich用指数方程描述 Ι 型吸附等温线 用指数方程描述
a
V
= kp
n
n、k 是两个经验参数,均是 T 的函数。 、 是两个经验参数, 的函数。 k: 单位压力时的吸附量。一般 ↑,k↓; 单位压力时的吸附量。一般T ↓ n :介于 介于0~1之间,反映 p 对V a 影响的强弱。 之间, 影响的强弱。 之间 直线式: lgV 直线式
毛细现象
2γ ∆p = = ρ gh r1 2γ cos θ h= rρ g
θ < 90o , h > 0 液体在毛细管中上升
r = r1 cos θ
θ > 90o , h < 0 液体在毛细管中下降
3. 开尔文公式(微小液滴的饱和蒸气压) 开尔文公式(
微小液滴的饱和蒸气压不仅与物质的本性、 微小液滴的饱和蒸气压不仅与物质的本性、 温度及外压有关,还与液滴的大小有关。 温度及外压有关,还与液滴的大小有关。 pr p dn r + dr l dG 小液滴面积 : dn液体由 p→pr : 液体由 → pr 4πr 2 → 4π( r + dr )2 dG = (dn) RT ln
界面是系统中的特殊部分
在高度分散系统中界面效应不可忽视

10-1界面张力 物理化学

10-1界面张力 物理化学
第十章第十章界面相几个分子厚几到十几个nm十几到几十个a界面现象产生的根源在界面现象产生的根源在于表面层中的分子受力不匀有巨大的表面积的系统往往产生明显的界面效应表面现象高度分散的物质多孔性物质表面积的大小用比表面来衡量比表面即每单位体积或单位质量的物质所具有的表面积引言10多孔硅胶的比表面积可达300700m1活性炭10002000一般情况下界面的质量和性质与体相相比可忽略不计但当其被高度分散时界面的作用会很明显

B
dAs T , p , n
J m 2
dU TdS pdV B( )dnB( ) dAS
dH TdS Vdp B( )dnB( ) dAS
dA SdT pdV B( )dnB( ) dAS
l F=2 γ l F(环)=F+dF • 做表面功示意图
F Wr ' G ( )T , P dAS AS 2l
d Wr dT , pG
表面功(系统增加 单位面积所需的可 逆功(J/m2)
N Nm J 2 2 m m m
表面张力(引起液体 表面收缩的单位长度 上的力(N/m)
Cu 1000℃ γ / mN • m-1 1300 H2O 25℃ 72 Cl2-3016 ℃ 26
3. 影响 的因素
第十章 界 面 现 象
• 瞬间(微秒级)存在的液体“王冠 ”
1
第十章 表 面 现 象
2

我们身边的界面现象 活性炭粉脱色; 硅胶吸水,塑料防水; 玻璃毛细管内水面上升,石蜡毛细管水面下降; 牛奶,豆浆成乳状液而稳定存在; 肥皂洗衣粉气泡去污; 水过冷而不结冰,液体过热而不沸腾; 溶液过饱和而不结晶。

物理化学第10章界面现象

物理化学第10章界面现象
§10.1 界面张力 §10.2 弯曲液面的附加压力及其后果 §10.3 固体表面 §10.4 液 - 固界面 §10.5 溶液表面
第一页,编辑于星期五:点 十一分。
界面现象是自然界普遍存在的现象。胶体指的是 具有很大比表面的分散体系。对胶体和界面现象 的研究是物理化学基本原理的拓展和应用。从历 史角度看,界面化学是胶体化学的一个最重要的 分支,两者间关系密切。而随着科学的发展,现 今界面化学已独立成一门科学,有关“界面现象” 或“胶体与界面现象”的专著在国内外已有多种 版本。本课程主要介绍与界面现象有关的物理化学
界面现象有着广泛的应用。主要有:
1、吸附 如用活性炭脱除有机物;用硅胶或活性氧化铝 脱除水蒸汽;用分子筛分离氮气和氧气;泡沫浮选等。
2、催化作用 在多相催化中使用固体催化剂以加速反 应。如石油工业的催化裂化和催化加氢、胶束催化 等。
3、表面膜 如微电子集成电路块中有重要应用的LB
膜;在生物学和医学研究中有重要意义的BL膜和人 工膜;能延缓湖泊水库水分蒸发的天然糖蛋白膜等。 4、新相生成 晶核生成或晶体生长是典型的新相生成, 过冷、过热、过饱和等亚稳现象产生的主要原因也 是由于新相生成。
2l
另一方面,当用外力F,使金属丝向下移动 dx ,皂膜面积增大 dA,则表面张力作可逆表面功.
第十九页,编辑于星期五:点 十一分。
首 页 刚看的页 上一页 下一页
结束
肥皂膜
l
无摩擦、可自由活动
dx
F
δ' Wr' Fdx 2γ l dx γ dAs
γ δWr' dAs
10.1.3
γ可理解为:使液体增加单位表面时环境所需作的可逆功,称 比表面功。 单位:J ·m-2。

《物理化学教学课件》第十章界面现象

《物理化学教学课件》第十章界面现象

界面现象的基本原理
表面张力
表面张力是物质表面分子或离子间的吸引力,使得物质表 面尽可能收缩。表面张力的大小与物质种类和温度有关。
润湿
润湿是指液体在固体表面铺展或被固体表面吸附的现象。 润湿与固体的表面能、液体的表面张力以及固体与液体之 间的相互作用力有关。
吸附
吸附是指物质在界面上的富集现象。吸附可以分为物理吸 附和化学吸附,物理吸附主要与物质在界面上的范德华力 有关,化学吸附则涉及到化学键的形成。
润湿是指液体在固体表面铺展并覆盖住表面的现象,而不润湿则是指液体不能在固体表面 铺展的现象。
润湿与不润湿产生的原因
润湿与不润湿现象的产生与液体和固体表面的分子间相互作用有关,当液体分子与固体表 面分子间的相互作用力大于液体分子间的内聚力时,就会产生润湿现象;反之则产生不润 湿现象。
润湿与不润湿的应用
能源
能源的储存与转化过程中涉及大量界面现象,如电池、燃料电池等,深入研究 界面现象有助于提高能源利用效率和降低环境污染。
环保
污水处理、大气污染控制等领域涉及大量界面现象,通过优化界面现象可实现 更高效的环保技术。
THANKS
感谢观看
毛细现象
毛细现象定义
毛细现象是指由于液体的表面张力作用,使得液体会在细管中上 升或下降的现象。
毛细现象产生的原因
由于液体的表面张力作用,使得液体会在细管中产生向上的附加压 力,从而使液体在细管中上升。
毛细现象的应用
毛细现象在自然界和日常生活中广泛存在,如植物的吸水、毛细血 管等。
润湿与不润湿
润湿与不润湿定义
04
界面现象的实验研究方法
表面张力测量方法
表面张力是液体表面所受到的垂 直于表面方向的力与表面每单位

界面现象

界面现象

§10-2 弯曲液面的附加压力及其后果
1. 液面附加压力的产生 (1)平液面 对一小面积 AB , 沿 AB 的四周
p0
f
A
每点的两边都存在表面张力,大 小相等,方向相反。因此,水平 液面下液体所受压力即为外界压 力。 所以平液面没有附加压力。
B
f
p0
(2)凸液面 例如:一个液滴悬浮在它的饱和蒸汽中,呈球状,液面为凸面。 由于液面是弯曲的,则沿AB的周 界上的表面张力不在一个平面上, 无法对消,于是产生了一个指向 球心的合力,称为附加压力,用 Δp表示。
——Kelvin公式
(2)kelven公式
凸液面(液滴):
2g M pr R T ln = p rr
——Kelvin公式
pr:弯曲液面的饱和蒸汽压 p:水平液面的饱和蒸汽压
凹液面(气泡、毛细管凹面):
2g M pr R T ln = p rr
——Kelvin公式
由Kelvin公式可知: 1)p凸> p平> p凹 2)在一定温度下,液滴越小,其饱和蒸汽压越大; 气泡越小,泡内(毛细管内)液体的饱和蒸汽压越小。 简答: 请利用Kelvin公式解释毛细管凝结现象。

2)空气中的小气泡,其内外气体的压力差在数值上 等于 。
3)在室温、大气压力下,于肥皂水内吹入一个半径为r的空气 泡,该空气泡的压力为p1。若用该肥皂水在空气中吹一同样为r 的气泡,其泡内压力为p2,则两气泡内压力的关系为p2 p1。 设肥皂水的静压力可忽略不计。 (A)>; (B) <; (C) =; (D)二者大小无一定的关系。
三种情况:
①润湿:液滴在固体表面上呈单面凸透镜形。
②不润湿:液滴呈扁球形。

十界面现象物理化学

十界面现象物理化学
Klvin公式
弯曲表面下的附加压力
1.在平面上 研究以AB为直径的一个环作
为边界,由于环上每点的两边都 存在表面张力,大小相等,方向 相反,所以没有附加压力。
设向下的大气压力为Po, 向上的反作用力也为Po ,附加 压力Ps等于零。
Ps = Po - Po =0
剖面图 液面正面图
弯曲表面下的附加压力
气压曲线
Tf < Tf T
一定外压下,温度低于正常凝固点还不凝固 的液体称为过冷液体。
过饱和溶液
• 一定温度下,溶液浓度已超过饱和浓度而仍未析 出晶体的溶液称为过饱和溶液。
产生原因: 同样温度下,小颗粒的溶解度大于普通晶
体的溶解度。 消除:结晶操作中,溶液过饱和程度大会生成
细小的晶粒,不利于后续操作。常采用 投入晶体种子的方法,获得较大颗粒的 晶体。
比表面Av/(m2/m3) 6 ×102
6 ×103 6 ×105 6 ×107
6 ×109
分散度与比表面
从表上可以看出,当将边长为10-2m的立方体分 割成10-9m的小立方体时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
影响表面张力的因素
(1)分子间相互作用力的影响 对纯液体或纯固体,表面张力决定于分子间形成
的化学键能的大小,一般化学键越强,表面张力越大。
g (金属键)>g (离子键)> g g (极性共价键)> (非极性共价键)
两种液体间的界面张力,界于两种液体表面张力之间。
(2)温度的影响 温度升高,表面张力下降。
2g R'
RTln(p p0)g2gR Vm '(l)2r gR M '

沈阳化工大学物理化学。第十章 界面现象

沈阳化工大学物理化学。第十章 界面现象
结论:
J N m 1 N m m2 m2
表面张力、单位表面功和单位表面自由能的大小和单位
相同,但物理意义不同。
5. 表面现象产生的热力学原因
若 dT = 0, dp = 0 and nB一定, 那么:
dGT , p,nB dAs
(表面吸附外来分子) dGT,p < 0
As (表面收缩)
8.2 弯曲液面的附加压力
1.弯曲液面的附加压力
平液面 液体表面 弯曲液面 凹液面 (液相中的小气泡)
• • • • • • • • • • • • • •
凸液面 (气相中的小液滴)

l
• •
• •


g

• • • • • • • g • •• •

液 l
附加压力 —弯曲液面两侧的压力差,即、 两相间存在 的压力差。 p
4.高度分散系统的表面自由能
若 dT = 0, dV = 0 and nB 一定, 那么:
A dAT ,V ,n B dAs A s T ,V ,n B
—单位表面亥姆霍兹自由能 若dT = 0, dp = 0 and nB一定, 那么:
5.亚稳状态及 新相的生成 亚稳状态—过饱和蒸气、过饱和溶液、过热液体、过冷 液体所处的状态。 (1) 过饱和蒸气( 蒸气冷凝过程 )
一定温度下,当蒸气分压超过该温度下的饱和蒸气压时 应当凝结而未凝结的蒸气。
消除: 加入小液滴的生成中心。
例如 人工降雨:加入AgI小晶粒。 (2)过饱和溶液( 溶液结晶过程 ) 一定温度、压力下,当溶液中溶质的浓度已超过该温 度、压力下溶质的溶解度时,应当有结晶析出而未析

《物理化学教学》第十章 界面现象

《物理化学教学》第十章 界面现象

由于 dn
2
M2 r=
Vm r
4 r 2(dr ) / M
——Kelvin公式
由Kelvin公式可知: 1) r 越小,pr 越大;
2) p凸> p平> p凹
整理ppt
23
3. 亚稳态及新相生成
(1) 过饱和蒸气
在t0温度下缓慢提高蒸 气的压力 (如在气缸内缓慢 压缩)至A点,蒸气对通常 液体已达到饱和状态p0, 但对微小液滴却未达到饱 和状态,所以蒸气在A点 不能凝结出微小液滴。要 继续提高蒸气的压力至B 点,达到小液滴的饱和蒸 气压p 时,才可能凝结出 微小液滴。
22
饱和蒸气压与液滴曲率半径关系的推导:
dn的微量液体转移到小液滴表面 小液滴面积A:4r2 4(r+dr)2
面积的增量:dA = 8rdr
dG = dA= 8rdr
又:dn液体由p pr:
所以有 (dn)RT ln pr p
可导出:
RT
ln
pr p
dG = (dn)RTln(pr/p)
8 rdr
合力对凸液面下液体造成额外压力。将凹
液面一侧压力以p内表示,凸液面一侧压力 用p外表示,附加压力
Δp = p内-p外
整理ppt
13
球形液滴(凸液面),附加压力为: p p内 p外 pl pg
液体中的气泡(凹液面),附加压力: p p内 p外 pg pl
这样定义的p总是一个正值,而力的方向指向凹面曲率半 径中心。
这种在正常相平衡条件下应该凝结而未凝结的蒸气,
称为过饱和蒸气。

整理ppt
24
(2) 过热液体
液体内部产生气泡所需压力:
pi = p大+ p静+Δp 由此所需的温度: Ti >T正常 因此很容易产生暴沸。

物理化学:第十章 界面现象4

物理化学:第十章 界面现象4

Ga sg ls lg lg (cos 1) Gi sg ls lg cos Gs sg ls lg lg (cos 1)
>0,θ<180º >0,θ<90º ≥0,θ=0º
利用接触角 判断润湿
<90°, 润湿 >90°, 不润湿 =0°或不存在,完全润湿 =180°,完全不润湿
一液界面所交的角。
l-g M
l-g
M
g
s-g
A l
s
N
s-l
s-g
g
A
l
s
s-l
N
亲液性固体
憎液性固体
10
1805年,Young指出,接触角是平面固体上 液滴受三个界面张力的作用,达到平衡时形成 的 ,应有下面关系
s ls lg cos
cos
s lg
ls
这就是著名的Young方程,也称润湿方程
吸附热沿DE线上升,合 成速率沿AB上升。
速率达到最高点B后,吸 附热继续上升,由于吸附 太强,合成速率反而下降。
对应B点的是第八族第 一列铁系元素。
8
§10.4 液 - 固界面
固体表面力场不对称,存在润湿和吸附
1. 接触角与杨氏方程
将液滴(L)放在一理想平面(S)上),如果有一
相是气体,则接触角是气一液界面通过液体而与固
32
固体自溶液中的吸附
吸附量 na V ( c0 c ) m
① 自稀溶液中的吸附
一般为 I 型等温线,可用Langmuir公式描述:
na nma bc 1 bc
b :吸附系数,与溶剂、溶质的性质有关;
nma :单分子层饱和吸附量;
亦可用弗罗因德利希吸附经验式: na kcn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W W 2 W2
2
13
如的
重力F与总的表面张力大小相等方向 相反,则金属丝不再滑动。
F =(W1 W2 ) g = 2 l
2 l
这时
F 2 l
W1
这种按照相平衡条件,应当沸腾而不沸腾的液体,
称为过热液体。
30
(3) 过冷液体
这种按照相平衡条件,应当凝固而未凝固的液体,称 为过冷液体。
31
(4) 过饱和溶液 溶液浓度已超过饱和 液体,但仍未析出晶体的溶 液称为过饱和溶液。
原因:小晶体为凸面, pr>p , 表
明分子从固相中逸出的倾向大 ,
这造成它的浓度大,即溶解度大, 由此产生过饱和现象。
到饱和状态 p0 ,但对微小液
滴却未达到饱和状态,所以 蒸气在A点不能凝结出微小液 滴。要继续提高蒸气的压力 至B点,达到小液滴的饱和蒸 气压p'时,才可能凝结出微小 液滴。
这种在正常相平衡条件下应该凝结而未凝结的蒸气,称 为过饱和蒸气。
29
(2) 过热液体
液体内部产生气泡所需压力: pi = p大+ p静+Δp 由此所需的温度: Ti >T正常 因此很容易产生暴沸。
单位:molkg-1 单位: m3kg-1
所以有
(dn )R T ln
pr
可导出:
2g M 2gV m pr R T ln = = p r r r
——Kelvin公式
由Kelvin公式可知: 1) r 越小,pr 越大; 2) p凸> p平> p凹
28
3. 亚稳态及新相生成
(1) 过饱和蒸气
在t0温度下缓慢提高蒸气的
压力 ( 如在气缸内缓慢压缩 ) 至A点,蒸气对通常液体已达
3
1.气-液界面
空气 气-液 界面
CuSO 4 溶液
4
2.气-固界面
气-固界面
5
3.液-液界面
H2 O
Hg
液 -液 界面
6
5.固-固界面
Cr镀层 铁管
固-固界面
7
界面并不是两相接触的几何 面,它有一定的厚度,一般约几 个分子厚,故有时又将界面称为 “界面相”。 界面的结构和性质与相邻两 侧的体相都不相同。
24
毛细现象:
当接触角θ<90o时, 液体在毛细管中上升; 当接触角θ>90o时,液 体在毛细管中下降。 当接触角θ=0时,r曲面= r毛细管= r 2
r 由流体静力学有: p g p l gh p p g p l
h
r pg pl pg
液体在毛细管中的上升高度为: 2 h r g
B
B( )
d n B( ) dA s
A G U H A A A A s s s s T , p,n B( ) S,V ,n B( ) S, p,n B( ) T ,V ,n B( )
液面是平面,表面张力就在这个平面上。如果液面是曲面,表面张力则
在这个曲面的切面上。 需要说明的一点是,如果在液体表面上任意划一条分界线把液面分 成a、b两部分,则 a 部分表面层中的分子对 b 部分的吸引力,一定等于 b 部分对 a 部分的吸引力,这两部分的吸引力大小相等、方向相反。这种 表面层中任意两部分间的相互吸引力,造成了液体表面收缩的趋势。由 于表面张力的存在,液体表面总是趋于尽可能缩小,微小液滴往往呈圆
25
当接触角0 < < 90o
r cos r1
2 cos h r g
90o , h 0 液体在毛细管中上升
90o , h 0 液体在毛细管中下降
26
2. 微小液滴的饱和蒸汽压-kelven公式
足够长的时间
原因:
p 小水滴 p 大水滴
饱和蒸气压p*反比于液滴的曲率半径
10
§10.1
界面张力
1. 液体的表面张力,表面功及表面吉布斯函数
的由来:
表面分子受力不对称
液体内部分子所受的力可以彼此抵销,但表面分子受到液相分 子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表
面分子受到被拉入液相的作用力。
这种作用力使表面有自动收缩到最小的趋势,扩展表面要作功。 并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现 象、过饱和状态等。
17
2. 热力学公式
对一般多组分体系: G f (T , p, nB , nC ) 当系统作表面功时,G 还是面积A的函数,若系统内只有 一个相界面,且两相T、p相同 , G f (T , p , A s , n B , n C )
dG S dT V d p

p 2 r
2 r 1 r 1 / r
r12
——Laplace方程
23
2 p r
——Laplace方程
讨论:① 该形式的Laplace公式只适用于球形液面。 ②曲面内(凹)的压力大于曲面外(凸)的压力,
Δp>0。
③ r 越小,Δp越大;r越大,Δp越小。 平液面:r →∞,Δp→0,(并不是 = 0) ④ Δp永远指向球心。
33
1. 物理吸附与化学吸附:
性质 吸附力 吸附层数 吸附热 物理吸附 范德华力 单层或多层
小(近于液化热)
化学吸附 化学键力 单层
大(近于反应热)
选择性
可逆性
无或很差
可逆
较强
不可逆
吸附平衡
易达到
不易达到
34
2. 等温吸附
吸附量:当吸附平衡时,单位重量吸附剂吸附的吸附质 即: 或:
n
a
n = m
pg pl
一般情况下,液体表面是水平的,水
平液面下液体所受压力即为外界压力。 图中为球形液滴的某一球缺,凸液面 上方为气相,压力 pg ;下方为液相,压力 pl , 底面与球形液滴相交处为一圆周。圆周 外液体对球缺表面张力 作用在圆周线上, 垂直于圆周线,而且与液滴表面相切。圆 周线上表面张力合力对凸液面下液体造成 额外压力。将凹液面一侧压力以 p 内 表示, 凸液面一侧压力用p外表示,附加压力
第十章 界面现象
1
自然界中物质的存在状态: 气—液界面 液—液界面
气 液 固
固—液界面
固—气界面 固—固界面
界面现象
界面:所有两相的接触面
2
表面和界面 (surface and interface)
界面是指两相接触的约几个分子厚度的过渡区,若
其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间的界 面,但习惯上把液体或固体与空气的界面称为液体或固 体的表面。 常见的界面有:气-液界面,气-固界面,液-液界面, 液-固界面,固-固界面。
11
(1)表面张力(surface tension)
液体表面的最基本的特性是趋向于收缩。 由于表面层分子的受力不均衡,液滴趋向于呈球
形,水银珠和荷叶上的水珠也收缩为球形。
从液膜自动收缩的实验,可以更好地认识这一现象。 将一含有一个活动边框的金属线框架放在肥皂液
中,然后取出悬挂,活动边在下面。
由于金属框上的肥皂膜的表面张力作用,可滑动的
G s As 恒T、p、、恒组分下积分,有: s dG T , p dA s A s d 全微分得:
可知自发降低表面自由焓有两种途径——降低表面积 降低表面张力 dT ,pG s < 0
18
3. 表面张力及其影响因素:
(1)与物质的本性有关——分子间相互作用力越大, 越大。
边会被向上拉,直至顶部。
12
2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l
F =(W1 W2 ) g = 2 l
2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 lW 2 2 l l 1
例:气-液界面: (金属键) > (离子键) > (极性键) > (非极性键)
(2) 与接触相的性质有关。 (3) 温度的影响:温度升高,界面张力下降。 极限情况:T→Tc时, →0。
T↑
气相中分子密度↑ 液相中分子距离↑
↓ (有例外)
其中:0与n为经验常数。
19
0 1 T / Tc
弯曲液面的附加压力
Δp = p内-p外
21
球形液滴(凸液面),附加压力为:
p p内 p 外 p l p g
液体中的气泡(凹液面),附加压力: p p内 p 外 p g p l 这样定义的p总是一个正值,方向指向凹面曲率半径中心。
表面张力的方向是和液面相切的,并和两部分的分界线垂直。如果
由于小颗粒物质的表面特殊性,造成新相难以生成,从 而形成四种不稳定状态(亚稳态):
——过饱和蒸气,过热液体,过冷液体,过饱和溶液
32
§10-3 固体表面
在固体或液体表面,某物质的浓度与体相浓度不同的 现象称为吸附。
产生吸附的原因,也是由于表面分子受力不对称。
dG =dA+Ad 被吸附的物质—— 有吸附能力的物质——
球形,正是因为相同体积下球形面积最小。
22
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导: 水平分力相互平衡, 垂直分力指向液体内部, 其单位周长的垂直分力为 cos 球缺底面圆周长为2 r1 ,得垂直分力在圆周上的合力为: F=2r1 cos 因cos = r1/ r ,球缺底面面积为 r12, 故弯曲液面对于单位水平面上的附加压力 p 整理后得:
相关文档
最新文档