初中几何专项——手拉手模型

合集下载

初中必会几何模型(口诀突破):手拉手模型(或旋转型)

初中必会几何模型(口诀突破):手拉手模型(或旋转型)

初中必会几何模型(口诀突破):手拉手模型(或旋转型)教材知识:三角形全等知识中,教材对全等三角形的图形变换概括为三种:平移型、翻折型、旋转型。

一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.归纳模型:三种变换中以旋转型为考试的热点和难点,这种变换我们往往也称为手拉手模型。

因为这种图形变换都是以等腰三角形的顶点为旋转点,进行适当旋转而成。

然后,连接对应点构造新的三角形,证明三角形全等即可解决。

划重点,上口诀:等腰图形有旋转,辨清共点旋转边。

关注三边旋转角,全等思考边角边。

模型变换:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE=a。

结论:连接BD、CE,则有△BAD≌△CAE。

模型证明:图②图③同理可证。

模型分析:(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形。

(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型。

(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现。

模型实例:如图,△ADC与△EDG都为等腰直角三角形,连接AG、CE,相交于点H,问:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?问题解答:模型实练:如图,在直线AB的同一侧作△ABD和△BCE,△ABD和△BCE都是等边三角形、连接AE、CD,二者交点为H.求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC.。

中考数学相似三角形中的重要模型手拉手模型

中考数学相似三角形中的重要模型手拉手模型

相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。

而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。

手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等; ④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。

模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=α,A DA E kA BA C==; 结论:△ADE ∽△ABC ,△ABD ∽△ACE ;E CkB D=.2)手拉手相似模型(直角三角形)条件:如图,90A O BC OD ∠=∠=︒,O C O D kO AO B==(即△COD ∽△AOB );结论:△AOC ∽△BOD ;B DkA C=,AC ⊥BD ,12A B C DS A B C D=⨯.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点; 结论:△BME ∽△CMF ;B EC F条件:△ABC 和ADE 是等腰直角三角形; 结论:△ABD ∽△ACE.例1.(2022·山西·寿阳县九年级期末)问题情境:如图1所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,在图1中将ADE 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)猜想证明:若AB =AC ,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是_________. ②在图3中,猜想∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)拓展应用:其他条件不变,若AB ,按上述操作方法,得到图4,请你继续探究:∠MAN 与∠BAC的数量关系?AM 与AN 的数量关系?直接写出你的猜想.例2.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD 与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.例3.(2022·山东·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为α(0°<α<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.例4.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.例5.(2022•长垣市一模)在△AB=AC,点D为AB边上一动点,∠CDE=∠BAC=α,CD=ED,连接BE,EC.(1)问题发现:如图①,若α=60°,则∠EBA=,AD与EB的数量关系是;(2)类比探究:如图②,当α=90°时,请写出∠EBA的度数及AD与EB的数量关系并说明理由;(3)拓展应用:如图③,点E为正方形ABCD的边AB上的三等分点,以DE为边在DE上方作正方形DEFG,点O为正方形DEFG的中心,若OA=,请直接写出线段EF的长度.例6.(2022·成都市·九年级课时练习)一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现B ED G=且B ED G⊥.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形A E F G 绕点A 按逆时针方向旋转(如图1),还能得到B E D G=吗?若能,请给出证明,请说明理由;(2)把背景中的正方形分别改成菱形A E F G 和菱形A B C D ,将菱形A E F G 绕点A 按顺时针方向旋转(如图2),试问当E A G ∠与B A D ∠的大小满足怎样的关系时,B ED G=;(3)把背景中的正方形分别改写成矩形A E F G 和矩形A B C D ,且23AE AB AGAD==,2A Ea=,2A Bb=(如图3),连接D E ,B G .试求22D E B G+的值(用a ,b 表示).课后专项训练1.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√32.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④3、如图,正方形A B C D的边长为8,线段C E绕着点C逆时针方向旋转,且3C E=,连接B E,以B E为边作正方形B E F G,M为A B边的中点,当线段F M的长最小时,ta n E C B∠=______.4.(2022•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.5.(2023·浙江·九年级课时练习)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,求证:P A=DC;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.(3)当α=120°时,若AB=6,BP D到CP的距离.6.(2022·重庆·九年级课时练习)观察猜想(1)如图1,在等边A B C中,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等边A M N,连接C N ,则A B C ∠与A C N ∠的数量关系是______. (2)类比探究:如图2,在等边A B C中,点M 是B C 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由. (3)拓展延伸:如图3,在等腰A B C中,B AB C=,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等腰A M N,使顶角A M NA B C∠=∠.连按C N .试探究A B C ∠与A C N ∠的数量关系,并说明理由.7.(2022·江苏·九年级课时练习)【问题发现】如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为斜边BC 上一点(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°得到AE ,连接EC ,则线段BD 与CE 的数量关系是______,位置关系是______;【探究证明】如图2,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,当点C ,D ,E 在同一条直线上时,BD 与CE 具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt △BCD 中,∠BCD =90°,BC =2CD =4,过点C 作CA ⊥BD 于A .将△ACD 绕点A 顺时针旋转,点C 的对应点为点E .设旋转角∠CAE 为α(0°<α<360°),当C ,D ,E 在同一条直线上时,画出图形,并求出线段BE 的长度.8.(2022·山东·九年级课时练习)如图,A B C和A D E是有公共顶点直角三角形,90B A C D A E ∠=∠=︒,点P 为射线B D ,C E 的交点.(1)如图1,若A B C和A D E是等腰直角三角形,求证:C PB D⊥;(2)如图2,若30A D EA B C ∠=∠=︒,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,4A B =,3A D =,若把A D E 绕点A 旋转,当90E A C ∠=︒时,请直接写出P B 的长度9.(2023·广东·深圳市九年级期中)(1)如图1,Rt △ABC 与Rt △ADE ,∠ADE =∠ABC =90°,12A BA DB CD E==,连接BD ,CE .求证:5B DC E=.(2)如图2,四边形ABCD ,∠BAD =∠BCD =90°,且12A B A D=,连接BC ,BC 、AC 、CD 之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC 绕点A 逆时针旋转90°,并放大2倍,点B 对应点D .点C 落点为点E ,连接DE ,请你根据以上思路直接写出BC ,AC ,CD 之间的关系. (3)拓展:如图4,矩形ABCD ,E 为线段AD 上一点,以CE 为边,在其右侧作矩形CEFG ,且12A B C EB CE F==,AB=5,连接BE,BF.求BE的最小值.510.(2023·绵阳市·九年级专题练习)在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.观察猜想:的值为,直线CD与AP所成的较小角的度数为°;(1)如图1,当α=60°时,C DA P的值及直线CD与AP所成的较小角的度数;类比探究:(2)如图2,当α=90°时,求出C DA P拓展应用:(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H. 若CD=2BD的长.11.(2023·湖北·九年级专题练习)在A B C和A D E中,B A B C∠=∠=,点=,D A D E=,且A B C A D EαE在A B C的内部,连接EC,EB,EA和BD,并且90∠+∠=︒.A C E AB Eα=︒时,线段BD与CE的数量关系为__________,线段EA,EB,EC的【观察猜想】(1)如图①,当60数量关系为__________.α=︒时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,【探究证明】(2)如图②,当90请说明理由;【拓展应用】(3)在(2)的条件下,当点E在线段CD上时,若B C=B D E的面积.12.(2023··广西一模)如图,A C B△和D C E均为等腰直角三角形,,.现将D C E绕点C旋转.∠=∠=︒==A CB DC E A C B CD CE C90,(1)如图1,若,,A D E三点共线,A D=B到直线C E的距离;(2)如图2,连接,A EB D,点F为线段B D的中点,连接C F,求证:A E C F⊥;(3)如图3,若点G在线段A B上,且8,==,在A C G内部有一点O,请直接写出A C A G22O C A G++的最小值.13.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG 的两边分别在正方形ABCD 的边AB 和AD 上,连接CF .填空:①线段CF 与DG 的数量关系为 ;②直线CF 与DG 所夹锐角的度数为 .(2)【拓展探究】如图②,将正方形AEFG 绕点A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =10,O 为AC 的中点.若点D 在直线BC 上运动,连接OE ,则在点D 的运动过程中,线段OE 长的最小值为 (直接写出结果).14、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边A B C 中,点P 是边B C 上任意一点,连接A P ,以A P 为边作等边A P Q,连接CQ ,BP 与CQ 的数量关系是________; (2)变式探究:如图2,在等腰A B C中,A BB C=,点P 是边B C 上任意一点,以A P 为腰作等腰A P Q,使A PP Q=,A P QA B C∠=∠,连接C Q ,判断A B C ∠和A C Q ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形A D B C 中,点P 是边B C 上一点,以A P 为边作正方形A P E F ,Q 是正方形A P E F 的中心,连接C Q .若正方形A P E F 的边长为5,2C Q =A DBC 的边长.15、如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:△MFC ∽△MCA ;(2)求证△ACF ∽△ABE ; (3)若DM =1,CM =2,求正方形AEFG 的边长.16、已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出B F的值;(2)如图2,当∠BAC=90°时,(1)中的结论是A E否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时D F的值最小.最小值是多少?(用含α的三角函数表示)D C。

中考数学几何专题——手拉手模型一

中考数学几何专题——手拉手模型一

手拉手模型一、手拉手模型1.手的判别:人站在等腰三角形顶角的位置,张开双臂,左手边的腰为左手,右手边的腰为右手。

2.手拉手模型的定义:两个等顶角的等腰三角形组成的图形,且顶角的顶点为公共顶点。

(顶角相等、等腰三角形、共顶点)条件模型结论特殊结论△ABC与△CDE是等腰三角形,且∠ACB=∠DCE (1)D ACD@D BCE (SSS)(2)AD=BE(左手拉左手,右手拉右手)(3)ÐBHA=ÐBCA(4)HC平分ÐAHE△ABC与△CDE是等腰直角三角形,且∠ACB=∠DCE=90°(5)S D BCD=S D ACE(6)BD2+AE2=AB2+DE2正方形ACBP与正方形CEQD是正方形△ABC 与△CDE是等边三角形(5)D ACM@D BCND DCM@D ECN(6) CM=CN(7)D CMN是等边三角形(8)MN∥AE,CD∥AB, CB∥DE(9) BH+CH=AHDH+CH=EH二、手拉手模型的变形:(两三角形相似,且对应角共顶点)条件模型结论D BAC∽D DAE,且ÐDAE=ÐBAC (1)D BAD∽D CAE(两边对应成比例且夹角相等) (2)BDCE=BACA(3) ÐBHC=ÐBAC【巩固练习】1、如图所示,若△ABC、△ADE都是正三角形,试比较线段BD与线段CE的大小.2、如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()3、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)说明四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,四边形ADEF是正方形?(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?4、问题情境:如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=2,CD=CE=1,点D在AC 边上,点E 在BC 延长线上。

中考数学几何专题之手拉手模型(初三数学)

中考数学几何专题之手拉手模型(初三数学)

手拉手模型【课堂导入】什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。

在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC,△ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】 已知:△ABC ,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD ,BE.(1)如图 1,当 EF 与 BC 在同一条直线上时,直接写出 AD 与 BE 的数量关系和位置关系;(2)△ABC 固定不动,将图 1 中的△DEF 绕点M 顺时针旋转 ( 0o ≤ ≤ 90o )角,如图 2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立, 说明理由;【例2】以平面上一点O为直角顶点,分别①如图 1,当点D 、C 分别在 AO 、BO 的延长线上时EM FM ②如图 2,将图 1 中的△AOB 绕点 O 沿顺时针方向旋转60度 角,其他条件不变,判断EMFM 的值是否发生变化,并对你的结论进行证明;【例3】 如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E ,F 分别是线段 BC ,AC 的中点,连结 EF . (1)线段 B E 与 A F 的位置关系是_______, BEAF =_______. (2)如图2,当△CEF绕点C顺时针旋转α时(°<α<【例4】 如图 1,在四边形 ABCD 中,点 E 、F 分别是 AB 、CD 的中点,过点 E 作 AB 的垂线,过点 F 作 CD 的垂线,两垂线交于点G ,连接 AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1) 求证:AD=BC . (2) 求证:△AGD ∽△EGF . (3) 如图 2,若 AD 、BC 所在直 线互相垂直,求 E F A D 的值.【例5】 如图1,△A B C为等腰直角三角形,∠A C B =90°,(1)①猜想图 1 中线段 BF 、AD 的数量关系及所在直线的位置关系,直接写出结论;②将图 1 中的正方形 CDEF ,绕着点 C 按顺时针(或逆时针)方向旋转任意角度α,得到如图 2、图 3 的情形.图 2 中 BF 交 AC 于点 H ,交 AD 于点 O ,请你判断①中得到的结论是否仍然成立,并选取图 2 证明你的判断.(2)将原题中的等腰直角三角形 ABC 改为直角三角形 ABC ,∠ACB=90∘,正方形 CDEF 改为矩形 CDEF ,如图4,且 AC=4,BC=3,CD= 4 ,CF=1,BF 交 AC 于点H ,交 AD 于点O ,连接 BD 、AF ,求 BD 2 +AF 2 的值.3手拉手(二)【例1】如图,B ,C ,E 三点共线,且ABC 与DCE 是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM= CN .【例2】如图,点C 为线段AB 上一点,ACM 、CBN 是等边三角形,求证:DE∥AB .【例3】如图,点C 为线段AB 上一点,ACM 、CBN 是等边三角形,求证:CF 平分 AFB .B【例4】如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90︒,AB =AC ,AD =AE ..连接BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF .(1)如图1 ,求证:BD=CE ;(2)如图1 ,求证:FA 是∠CFD 的平分线;(3)如图2 ,当当AC = 2 ,∠BCE =15︒时,求CF 的长.【例5】已知△ABC,以 AC 为边在△ABC 外作等腰△ACD,其中 AC=AD(1)如图①,若∠DAC=2∠ABC,AC=BC,四边形A BCD 是平行四边形,则∠ABC= (2)如图②,若∠ABC=30°,△ACD 是等边三角形,AB=3,BC=4,求BD 的长(3)如图③,若∠ACD 为锐角,做AH⊥BC 于H,当BD2 = 4AH2 + BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,请证明你的结论。

七年级手拉手模型及答案

七年级手拉手模型及答案

七年级手拉手模型及答案在学习数学的过程中,为了更好地帮助学生理解抽象概念和解决实际问题,一些数学老师会使用手拉手模型来进行教学。

那么,什么是手拉手模型呢?在这篇文章中,我们将会介绍七年级手拉手模型及答案。

一、手拉手模型简介手拉手模型是一种利用手势来模拟和表示数学问题的方法。

它可以帮助学生建立直观的数学概念,并且能够使他们更好地理解和解决数学问题。

手拉手模型的形成是基于二维平面中的基本几何概念。

通过手拉手模型,学生可以轻松地理解点、线、面等基础几何图形的定义和特性。

二、七年级手拉手模型与应用1. 一次函数在学习一次函数的时候,手拉手模型可以用来帮助学生图像地理解函数的性质和特点。

举例来说,在图像中,两条平行的线通过两个指头重合,这时候可以让学生用手模拟函数图像上的两个交点。

这样的模拟可以使学生更好地理解和记忆函数的函数值和斜率的概念。

2. 一元一次方程组在解决一元一次方程组的时候,手拉手模型可以用来表示等式与方程的关系。

首先,学生可以将两个含有一个未知数的等式拆开,并将它们的左右侧分别放在手的两个手指上。

然后,将两个手的手腕相连,就可以表示两个等式组成的一元一次方程组。

此时,学生可以通过手拉手模型来演示方程的解的求解过程。

3. 平行线与垂直线在二维平面中,平行线和垂直线是非常基本的概念。

通过手拉手模型,可以将这些概念变得更加生动形象。

例如,在学习平行线的时候,可以让学生用食指和中指分别表示两条平行线,然后让学生把手指靠近,重合。

这样,就可以形成两个平行线。

使用手拉手模型时,最重要的是要做到简单易懂,能够快速帮助学生理解和掌握基本数学概念。

三、总结在现代教育中,手拉手模型已成为许多老师教学的一种主要方式。

手拉手模型可以不仅可以帮助学生理解和掌握基本的数学概念,使学习更加生动有趣。

因此,在进行数学教学时,加入手拉手模型的方法是一种非常有益的教学方法。

只要学生掌握了手拉手模型的使用技巧,就能够快速有效地解决数学问题。

中考必会几何模型:手拉手模型

中考必会几何模型:手拉手模型

手拉手模型模型讲解【结论】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,则(1)△ABD≌△ACE;(2)BD和CE的夹角∠BFE=∠BAC=∠DAE.【证明】(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.∴∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△ABD≌△ACE(SAS).(2)△ABD≌△ACE,可看成△ABD绕点A逆时针旋转到△ACE 的位置,BA和CA的夹角为∠BAC,AD和AE的夹角为∠DAE,BD和CE的夹角为∠BFE,根据旋转的性质容易得到对应边的夹角等于旋转角,故∠BFE=∠BAC=∠DAE.手拉手模型的变形【结论1】如图所示,等边△ABC和等边△CDE.则△BCD≌△ACE,AE=BD,∠BFA=60°.【结论2】如图所示,等腰Rt△ABC 和等腰Rt△CDE.则△BCD≌△ACE,∠BFA=90°.典例秒杀典例1如图,△ACB和△DCE均为等边三角形,点A,D,E在同一条直线上,连接BE,则∠AEB的度数是( ).A.30°B.45°C.60°D.75°典例2如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M.则BD与CE的数量关系为().A.BD= 12CE B.BD=23CE C.BD=CE D.BD=32CE典例3如图,△ABC中,AB=AC. ∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE.连接BD、CE交于点F,则BD与(E 的数量关系为( ).A.BD= 12CE B.BD= 23CE C.BD=CED.BD=32CE小试牛刀1.如图,△ABC和△CDE均为等边三角形,点A,D,E在同一条直线上,连接BE.若∠CAE=25°.则∠EBC的度数是().8A.35°B. 30°C.25°D.20°2.如图所示,B,D,E在同一条直线上,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=( ).A.60°B.55°C.50°D.无法计算3.如图,在△ABC中,∠ABC=45°.AD,BE分别为BC,AC边上的高,AD,BE相交于点F.连接CF,则有下列结论:①BF=AC;②∠FCD=45°;③若BF=2EC,则△FDC的周长等于AB的长,其中正确的有( ).A.0个B.1个C.2个D.3个直击中考1.(2020湖北鄂州中考真题)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<CC, ∠AOB=∠COD=36°.连接AC,BD交于点M.连接OM.有下列结论: ∠AMB=36DU3:②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论个数为( ).A.4B.3C.2D.12.(2020辽宁锦州中考真题)已知△AOB和△MON都是等腰直角三OA<OM=ON),∠AOB=∠MON=90°.角形(√22(1)如图1.连接AM,BN.求证:△AOM≌△BON.(2)若将△MON绕点O顺时针旋转.①如图2,当点N恰好在AB边上时,求证:BN2+AN2 =2ON2;②当点A,M,N在同一条直线上时,若OB=4.ON=3.请直接写出线段BN的长.典例1【答案】C【解析】∵△ACB和△DCE均为等边三角形,且△ACB与△DCE 共点,形成了手拉手模型。

相似三角形重要模型-手拉手模型(解析版)-初中数学

相似三角形重要模型-手拉手模型(解析版)-初中数学

相似三角形重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。

而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。

手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。

模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

1)手拉手相似模型(任意三角形)条件:如图,∠BAC =∠DAE =α,AD AB =AE AC=k ;结论:△ADE ∽△ABC ,△ABD ∽△ACE ;EC BD =k .2)手拉手相似模型(直角三角形)条件:如图,∠AOB =∠COD =90°,OC OA =OD OB =k (即△COD ∽△AOB );结论:△AOC ∽△BOD ;BD AC =k ,AC ⊥BD ,S ABCD =12AB ×CD .3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点;结论:△BME ∽△CMF ;BE CF =3.条件:△ABC 和ADE 是等腰直角三角形;结论:△ABD ∽△ACE .1(2023秋·福建泉州·九年级校考期末)问题背景:(1)如图①,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用:(2)如图②,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =60°,AC 与DE相交于点F ,点D 在BC 边上,DF CF=233,求AD BD 的值;拓展创新:(3)如图③,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23,求AD 的长.【答案】(1)见解析;(2)AD BD =2;(3)AD =5【分析】问题背景(1)由题意得出AB AD =AC AE ,∠BAC =∠DAE ,则∠BAD =∠CAE ,可证得结论;尝试应用(2)连接EC ,证明△ABC ∽△ADE ,由(1)知△ABD ∽△ACE ,由相似三角形的性质得出AE AD =EC BD =3,∠ACE =∠ABD =∠ADE ,可证明△ADF ∽△ECF ,得出DF CF =AD CE=233,则可求出答案.拓展创新(3)过点A 作AB 的垂线,过点D 作AD 的垂线,两垂线交于点M ,连接BM ,证明△BDC ∽△MDA ,由相似三角形的性质得出BD MD =DC DA ,证明△BDM ∽△CDA ,得出BM CA =DM AD=3,求出BM =6,由勾股定理求出AM ,最后由直角三角形的性质可求出AD 的长.【详解】问题背景(1)证明:∵△ABC ∽△ADE ,∴AB AD =AC AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,AB AC =AD AE,∴△ABD ∽△ACE ;尝试应用(2)解:如图,连接EC ,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=60°,∴△ABC∽△ADE,AE=3AD由(1)知△ABD∽△ACE,∴AEAD=ECBD=3,∠ACE=∠ABD=∠ADE=60°,∴AEEC=ADBD,∵∠AFD=∠AEFC∴△ADF∽△ECF∴DFCF =ADCE∵DF CF =233∴DFCF=ADCE=233∴AD=233CE∴AE=3AD=2CE∴ADBD=AEEC=2,拓展创新(3)解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴BDMD=DCDA,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴BMCA=DMAD=3,∵AC=23,∴BM=23×3=6,∴AM=BM2-AB2=62-42=25,∴AD=12AM=5.【点睛】此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.2(2023秋·江苏无锡·九年级校考阶段练习)【模型呈现:材料阅读】如图,点B,C,E在同一直线上,点A,D在直线CE的同侧,△ABC和△CDE均为等边三角形,AE,BD 交于点F,对于上述问题,存在结论(不用证明):(1)△BCD≌△ACE(2)△ACE可以看作是由△BCD绕点C旋转而成;⋯【模型改编:问题解决】点A ,D 在直线CE 的同侧,AB =AC ,ED =EC ,∠BAC =∠DEC =50°,直线AE ,BD 交于F ,如图1:点B 在直线CE 上,①求证:△BCD ∽△ACE ; ②求∠AFB 的度数. 如图2:将△ABC 绕点C 顺时针旋转一定角度.③补全图形,则∠AFB 的度数为;④若将“∠BAC =∠DEC =50°”改为“∠BAC =∠DEC =m °”,则∠AFB 的度数为.(直接写结论)【模型拓广:问题延伸】如图3:在矩形ABCD 和矩形DEFG 中,AB =2,AD =ED =23,DG =6,连接AG ,BF ,求BF AG 的值.图1 图2 图3【答案】【模型改编:问题解决】①见解析;②65°;③图见解析,115°;④90°+m °2【模型拓广:问题延伸】233【分析】【模型改编:问题解决】①先证明△ABC ∽△EDC ,可得AC EC =BC DC,再证明∠ACE =∠BCD ,可得△BCD ∽△ACE ;②由△BCD ∽△ACE ,可得∠DBC =∠EAC ,再结合三角形的外角可得答案;③连接EA 并延长交BD 于F ,同理可得:△BCD ∽△ACE ,∠CEF =∠BDC ,再结合三角形的外角可得答案;④先求解∠CDE =∠DCE =12180°-m ° =90°-12m °,结合③的思路可得答案;【模型拓广:问题延伸】连接BD 、DF ,先证明△ADB ∽△GDF ,可得∠ADB =∠GDF ,AD DG =BD DF ,证明∠ADG =∠BDF ,可得△BDF ∽△ADG ,可得BF AG =BD AD,从而可得答案.【详解】【模型改编:问题解决】①∵AB =AC ,ED =EC ,∠BAC =∠DEC =50°,∴∠ABC =∠ACB =180°-50° ÷2=65°,∠EDC =∠ECD =180°-50° ÷2=65°,∴△ABC ∽△EDC ,∴AC EC =BC DC,∵∠ACE =180°-∠ACB =115°,∠BCD =180°-∠DCE =115°,∴∠ACE =∠BCD ,∴△BCD ∽△ACE ;②由①知,△BCD ∽△ACE ,∴∠DBC =∠EAC ,∴∠AFB =∠DBC +∠CEA =∠EAC +∠CEA =∠ACB =65°③补图如下:连接EA 并延长交BD 于F ,图2同理可得:△BCD ∽△ACE ∴∠CEF =∠BDC ,∴∠AFB =∠BDC +∠CDE +∠DEF =∠CEF +∠CDE +∠DEF =∠CED +∠CDE =50°+65°=115°,④∵∠BAC =∠DEC =m °,CE =DE ,∴∠CDE =∠DCE =12180°-m ° =90°-12m °,同理③可得∠AFB =∠CED +∠CDE =m °+90°-12m °=90°+m °2,故答案为:90°+m °2;【模型拓广:问题延伸】连接BD 、DF ,图3∵在矩形ABCD 和矩形DEFG 中,AB =2,AD =ED =FG =23,DG =6,∴AB AD =GF DG =33,又∵∠BAD =∠DGF =90°,∴△ADB ∽△GDF ,∴∠ADB =∠GDF ,AD DG=BD DF ,∵∠ADG =∠GDF +∠ADF ,∠BDF =∠ADB +∠ADF ,∴∠ADG =∠BDF ,∴△BDF ∽△ADG ,∴BF AG =BD AD,∵AD =23,AB =2,∴BD =AB 2+AD 2=4,∴BF AG =BD AD =423=233.【点睛】本题考查的是等腰三角形的性质,矩形的性质,勾股定理的应用,相似三角形的判定与性质,熟练的证明三角形相似是解本题的关键.3(2023春·湖北黄冈·九年级专题练习)【问题呈现】△CAB 和△CDE 都是直角三角形,∠ACB =∠DCE =90°,CB =mCA ,CE =mCD ,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当m =1时,直接写出AD ,BE 的位置关系:;(2)如图2,当m ≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m =3,AB =47,DE =4时,将△CDE 绕点C 旋转,使A ,D ,E 三点恰好在同一直线上,求BE 的长.【答案】(1)BE ⊥AD (2)成立;理由见解析(3)BE =63或43【分析】(1)根据m =1,得出AC =BC ,DC =EC ,证明△DCA ≌△ECB ,得出∠DAC =∠CBE ,根据∠GAB +∠ABG =∠DAC +∠CAB +∠ABG ,求出∠GAB +∠ABG =90°,即可证明结论;(2)证明△DCA ∽△ECB ,得出∠DAC =∠CBE ,根据∠GAB +∠ABG =∠DAC +∠CAB +∠ABG ,求出∠GAB +∠ABG =90°,即可证明结论;(3)分两种情况,当点E 在线段AD 上时,当点D 在线段AE 上时,分别画出图形,根据勾股定理求出结果即可.【详解】(1)解:∵m =1,∴AC =BC ,DC =EC ,∵∠DCE =∠ACB =90°,∴∠DCA +∠ACE =∠ACE +∠ECB =90°,∴∠DCA =∠ECB ,∴△DCA ≌△ECB ,∴∠DAC =∠CBE ,∵∠GAB+∠ABG=∠DAC+∠CAB+∠ABG,=∠CBE+∠CAB+∠ABG=∠CAB+∠CBA=180°-∠ACB=90°,∴∠AGB=180°-90°=90°,∴BE⊥AD;故答案为:BE⊥AD.(2)解:成立;理由如下:∵∠DCE=∠ACB=90°,∴∠DCA+∠ACE=∠ACE+∠ECB=90°,∴∠DCA=∠ECB,∵DC CE =ACBC=1m,∴△DCA∽△ECB,∴∠DAC=∠CBE,∵∠GAB+∠ABG=∠DAC+∠CAB+∠ABG,=∠CBE+∠CAB+∠ABG =∠CAB+∠CBA=180°-∠ACB=90°,∴∠AGB=180°-90°=90°,∴BE⊥AD;(3)解:当点E在线段AD上时,连接BE,如图所示:设AE=x,则AD=AE+DE=x+4,根据解析(2)可知,△DCA∽△ECB,∴BE AD =BCAC=m=3,∴BE=3AD=3x+4=3x+43,根据解析(2)可知,BE⊥AD,∴∠AEB=90°,根据勾股定理得:AE2+BE2=AB2,即x2+3x+432=472,解得:x=2或x=-8(舍去),∴此时BE=3x+43=63;当点D在线段AE上时,连接BE,如图所示:设AD=y,则AE=AD+DE=y+4,根据解析(2)可知,△DCA∽△ECB,∴BE AD =BCAC=m=3,∴BE=3AD=3y,根据解析(2)可知,BE⊥AD,∴∠AEB=90°,根据勾股定理得:AE 2+BE 2=AB 2,即y +4 2+3y 2=47 2,解得:y =4或y =-6(舍去),∴此时BE =3y =43;综上分析可知,BE =63或43.【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.4(2023秋·福建泉州·九年级校考阶段练习)如图,已知△ABC 中,AB =AC ,∠BAC =α.点D 是△ABC 所在平面内不与点A 、C 重合的任意一点,连接CD ,将线段CD 绕点D 顺时针旋转α得到线段DE ,连接AD 、BE .(1)如图1,当α=60°时,求证:BE =AD .(2)当α=120°时,请判断线段BE 与AD 之间的数量关系是,并仅就图2的情形说明理由.(3)当α=90°时,且BE ⊥AB 时,若AB =8,BE =2,点E 在BC 上方,求CD 的长.【答案】(1)见解析,(2)BE =3AD ,理由见解析(3)82【分析】(1)先证明△ABC 和△DCE 是等边三角形,再证明△ADC ≌△BEC ,可推出BE =AD ;(2)过A 作AH ⊥BC 与H ,先根据含30°的直角三角形的性质,等腰三角形的性质以及勾股定理可求出BC =3AC ,同理求出CE =3CD ,可得出BC EC =3AC 3DC=AC DC ,证明∠DCA =∠BCE ,然后证明△EBC ∽△DAC 即可求解;(3)过E 作EF ⊥BC 于F ,可判断△BEF 是等腰直角三角形,然后可求出EF ,BF ,CF 的长度,由(2)同理可证出△EBC ∽△DAC ,最后根据相似三角形的性质即可求解.【详解】(1)解:∵旋转,∴CD =ED ,当α=60°时,又AB =AC ,∴△ABC 和△DCE 是等边三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =60°,∴∠ACD =∠BCE ,∴△ADC ≌△BEC ,∴AD =BE ;(2)解:BE =3AD 过A 作AH ⊥BC 与H ,∵AB =AC ,∠BAC =α=120°,∴∠ACB =30°,CH =12BC ,∴AC =2AH ,又由勾股定理得AH 2+CH 2=AC 2,∴CH =32AC ,∴BC =3AC ,同理CE =3CD ,∵DC =EC ,∠CDE =α=120°,∴∠DCE =30°=∠ACB ,∴∠DCA =∠BCE ,∵BC =3AC ,CE =3CD ,∴BC EC =3AC 3DC =AC DC ,∴△EBC ∽△DAC ,∴BE AD =BC AC =3,即BE =3AD (3)解:如图,过E 作EF ⊥BC 于F ,当α=90°时,∵AC =AB =8,∴∠ACB =45°,BC =AB 2+AC 2=2AC =82,∵BE ⊥AB ,∴∠EBF =45°=∠BEF ,∴BF =EF ,∵BE =EF 2+BF 2=2EF =2,∴EF =BF =2,∴CF =BF +BC =92,∴CE =EF 2+CF 2=241,由(2)同理可证△EBC ∽△DAC ,∴EC DC =BC AC=2,即241DC =2,∴DC =82.【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键在于正确寻找全等三角形或相似三角形.5(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC 和△AEF 中,AB =AC ,AE =AF ,∠BAC =∠EAF =30°,连接BE ,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.【答案】(1)BE=CF,30(2)BE=CF,∠BDC=60°,证明见解析(3)BF=CF+2AM(4)7+74或7-74【分析】(1)根据已知得出∠BAE=∠CAF,即可证明△BAE≌△CAF,得出BE=CF,∠ABE=∠ACF,进而根据三角形的外角的性质即可求解;(2)同(1)的方法即可得证;(3)同(1)的方法证明△BAE≌△CAF SAS,根据等腰直角三角形的性质得出AM=12EF=EM=MF,即可得出结论;(4)根据题意画出图形,连接BD,以BD为直径,BD的中点为圆心作圆,以D点为圆心,1为半径作圆,两圆交于点P,P1,延长BP至M,使得PM=DP=1,证明△ADP∽△BDM,得出PA=22BM,勾股定理求得PB,进而求得BM,根据相似三角形的性质即可得出PA=221+7=2+142,勾股定理求得BQ,PQ,进而根据三角形的面积公式即可求解.【详解】(1)解:∵∠BAC=∠EAF=30°,∴∠BAE=∠CAF,又∵AB=AC,AE=AF,∴△BAE≌△CAF,∴BE=CF,∠ABE=∠ACF设AC,BD交于点O,∵∠AOD=∠ACF+∠BDC=∠ABE+∠BAO∴∠BDC=∠BAO=∠BAC=30°,故答案为:BE= CF,30.(2)结论:BE=CF,∠BDC=60°;证明:∵∠BAC=∠EAF=120°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵AB=AC,AE=AF,∴△BAE≌△CAF∴BE=CF,∠AEB=∠AFC∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF-∠EFD=∠AEB+30°-∠AFC-30°=60°,(3)BF=CF+2AM,理由如下,∵∠BAC=∠EAF=90°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF均为等腰直角三角形∴AB=AC,AE=AF,∴△BAE≌△CAF SAS,∴BE= CF,在Rt △AEF 中,AM ⊥BF ,∴AM =12EF =EM =MF ,∴BF =BE +EF =CF +2AM ;(4)解:如图所示,连接BD ,以BD 为直径,BD 的中点为圆心作圆,以D 点为圆心,1为半径作圆,两圆交于点P ,P 1,延长BP 至M ,使得PM =DP =1,则△MDP 是等腰直角三角形,∠MDP =45°∵∠CDB =45°,∴∠MDB =∠MDP +∠PDC +∠CDB =90°+∠PDC =∠ADP ,∵AD DB =12,DP DM =12,∴△ADP ∽△BDM ∴PA BM =12=22,∴PA =22BM ,∵AB =2,在Rt △DPB 中,PB =DB 2-DP 2=22 2-12=7,∴BM =BP +PM =7+1∴PA =221+7 =2+142过点P 作PQ ⊥AB 于点Q ,设QB =x ,则AQ =2-x ,在Rt △APQ 中,PQ 2=AP 2-AQ 2,在Rt △PBQ 中,PQ 2=PB 2-BQ 2∴AP 2-AQ 2=PB 2-BQ 2∴2+142 2-2-x 2=7 2-x 2解得:x =7-74,则BQ =7-74,设PQ ,BD 交于点G ,则△BQG 是等腰直角三角形,∴QG =QB =7-74在Rt △DPB ,Rt △DP 1B 中,DP =DP 1DB =DB ∴Rt △DPB ≌Rt △DP 1B ∴∠PDB =∠P 1DB又PD =P 1D =1,DG =DG ∴△PGD ≌△P 1DG ∴∠PGD =∠P 1GD =45°∴∠PGP 1=90°,∴P 1G ∥AB ∴S △ABP 1=12AB ×QG =12×2×7-74=7-74,在Rt △PQB 中,PQ =PB 2-BQ 2=7 2-7-74 2=7+74∴S△ABP =12AB ×PQ =12×2×7+74=7+74,综上所述,S△ABP=7+74或7-74故答案为:7+74或7-74.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,正方形的性质,勾股定理,直径所对的圆周角是直角,熟练运用已知模型是解题的关键.6(2023·山东济南·九年级统考期中)问题背景:一次小组合作探究课上,小明将一个正方形ABCD和等腰Rt△CEF按如图1所示的位置摆放(点B、C、E在同一条直线上),其中∠ECF=90°.小组同学进行了如下探究,请你帮助解答:初步探究(1)如图2,将等腰Rt△CEF绕点C按顺时针方向旋转,连接BF,DE.请直接写出BF与DE的关系;(2)如图3,将(1)中的正方形ABCD和等腰Rt△CEF分别改成菱形ABCD和等腰△CEF,其中CE=CF,∠BCD=∠FCE,其他条件不变,求证:BF=DE;深入探究:(3)如图4,将(1)中的正方形ABCD和等腰Rt△CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°且CECF =CDBC=34,其它条件不变.①探索线段BF与DE的关系,说明理由;②连接DF,BE若CE=6,AB=12,直接写出DF2+BE2=.【答案】(1)BF=DE,BF⊥DE;(2)见解析;(3)①DEBF=34,DE⊥BF,见解析;②500【分析】(1)由正方形的性质,等腰直角三角形的性质,得到BC=CD,CE=CF,证明△BCF≌DCE,得到BF=DE,∠CBF=∠CDE,结合对顶角相等,即可得到BF⊥DE;(2)由菱形的性质,旋转的性质,先证明ΔBCF≌ΔDCE,即可得到结论成立;(3)①由矩形的性质,直角三角形的性质,先证明ΔBCF∽ΔDCE,得到BF与DE的数量关系,再由余角的性质证明位置关系即可;②连接BD,先求出矩形的边长,直角三角形的边长,与(1)同理先证明BF⊥DE,然后利用勾股定理,等量代换,即可得到DF2+BE2=500.【详解】解:(1)如图:∵正方形ABCD和等腰Rt△CEF中,∴BC=CD,CE=CF,∠BCD=∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,即∠BCF=∠DCE,∴△BCF≌DCE,∴BF=DE,∠CBF=∠CDE,∵∠BGC=∠DGF,∴∠BCG=∠DFG=90°∴BF⊥DE.(2)证明:如图:∵∠BCD=∠FCE,∴∠BCF=∠DCE,∵四边形ABCD为菱形∴BC=CD,又∵CE=CF∴△BCF≌△DCE(SAS),∴BF=DE;(3)①∵在矩形ABCD中,∠BCD=90°,∴∠BCD=∠FCE∴∠BCF=∠DCE,又∵CECF=CDBC=34∴△BCF∽△DCE,∴DEBF=CECF=34;∴∠CBF=∠CDE,设CD与BF交于点G∵∠BGC=∠DGF∴180°-∠CBF-∠BGC=180°-∠CDE-∠DGF,∴∠DQB=∠BCD=90°∴DE⊥BF.②如图:连接BD在矩形ABCD中,CD=AB=12,∵CE=6,6CF =12BC=34,∴CF=8,BC=16,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵∠BGC=∠DGF,∴∠BCG=∠DQG=90°,∴BF⊥DE;在直角△BCD中,有BD2=BC2+CD2=162+122=400,在直角△BDQ中,BD2=BQ2+DQ2=400;在直角△CEF中,EF2=CE2+CF2=62+82=100,在直角△EFQ中,EF2=EQ2+FQ2=100;∴BQ2+DQ2+EQ2+FQ2=400+100=500;在直角△BEQ和直角△DFQ中,由勾股定理,则∵BQ2+EQ2=BE2,DQ2+FQ2=DF2,∴DF2+BE2=BQ2+DQ2+EQ2+FQ2=500;故答案为:500.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,以及等腰直角三角形的性质等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,找到证明三角形相似和三角形全等的条件进行解题.7(2023春·广东·九年级专题练习)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC =90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.【答案】(1)AE=CF;(2)成立,证明见解析;(3)511 3【分析】(1)结论AE=CF.证明ΔAOE≅ΔCOF(SAS),可得结论.(2)结论成立.证明方法类似(1).(3)首先证明∠AED=90°,再利用相似三角形的性质求出AE,利用勾股定理求出DE即可.【详解】解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴ΔAOE≅ΔCOF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴ΔAOE≅ΔCOF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE =OA ,∵OA =OD ,∴OE =OA =OD =5,∴∠AED =90°,∵OA =OE ,OC =OF ,∠AOE =∠COF ,∴OA OC =OE OF ,∴ΔAOE ∽ΔCOF ,∴AE CF =OA OC,∵CF =OA =5,∴AE 5=53,∴AE =253,∴DE =AD 2-AE 2=102-253 2=5113.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.课后专项训练1(2023秋·北京顺义·九年级校考期中)如图,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .则BD CE的值为()A.12B.22C.2D.2【答案】B 【分析】由等腰直角三角形的性质可推出∠DAE =∠BAC =45°,AE =2AD ,AC =2AB ,从而可得出∠EAC =∠DAB ,AE AD =AC AB=2,证明△DAB ∽△EAC 即可得出结论.【详解】解:∵△ABC 和△ADE 都是等腰直角三角形,∴∠DAE =∠BAC =45°,AE =2AD ,AC =2AB ,∴∠EAC =∠DAB ,AE AD =AC AB =2,∴△DAB ∽△EAC ,∴BD CE =AD AE=22.故选B .【点睛】本题考查等腰直角三角形的性质,勾股定理,相似三角形的判定和性质.掌握三角形相似的判定条件是解题关键.2(2023春·浙江金华·九年级校考期中)如图,在Rt △ABC 中,∠ABC =90°,以AB ,AC 为边分别向外作正方形ABFG 和正方形ACDE ,CG 交AB 于点M ,BD 交AC 于点N .若GM CM =12,则CG BD=() A.12 B.34 C.255 D.13013【答案】D【分析】设AG =a =AB ,BC =2a ,由“AAS ”可证△ABC ≌△CHD ,可得AB =CH =a ,DH =BC =2a ,利用勾股定理分别求出CG ,BD 的长,即可求解.【详解】解:如图,过点D 作DP ⊥BC ,交AC 的延长线于点P,交BC 的延长线于点H ,∵AG ∥BF ,∴△AGM ∽△BCM ,∴AG BC =GM CM=12,∴设AG =a =AB ,BC =2a ,∴CG =GF 2+FC 2=a 2+(3a )2=10a ,∵DH ⊥BC ,AB ⊥BC ,∴∠DHC =∠ABC =∠ACD =90°,AB ∥DH ,∴∠DCH +∠ACB =90°=∠ACB +∠BAC ,∴∠DCH =∠BAC ,在△ABC 和△CHD 中,∠ABC =∠DHC ∠BAC =∠DCH AC =CD,∴△ABC ≌△CHD (AAS ),∴AB =CH =a ,DH =BC =2a ,∴BD =BH 2+DH 2=(3a )2+(2a )2=13a ,∴CG BD =10a 13a =13013.故选:D .【点睛】本题考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.3(2023春·浙江丽水·九年级专题练习)如图,在△ABC 中,过点C 作CD ⊥AB ,垂足为点D ,过点D 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =22,CD =32,则EO ⋅FO 的值为( ).A.63B.4C.56D.6【答案】B【分析】由题意易得出∠DEC=∠DFC=90°,即说明点C,E,D,F四点共圆,得出∠DEO=∠FCO,从而易证△DOE∽△FOC,得出EOCO=DOFO.由题意可求出DO=CD-CO=2,即可求出EO⋅FO=CO⋅DO=4.【详解】解:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∴点C,E,D,F四点共圆,∴∠DEF=∠FCD,即∠DEO=∠FCO.又∵∠DOE=∠FOC,∴△DOE∽△FOC,∴EOCO=DOFO,∴EO⋅FO=CO⋅DO.∵CO=22,CD=32,∴DO=CD-CO=2,∴EO⋅FO=CO⋅DO=22×2=4.故选B.【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C,E,D,F四点共圆,从而可得出证明△DOE∽△FOC的条件是解题关键.4(2022·广西梧州·统考一模)如图,在△ABC中,∠C=45°,将△ABC绕着点B逆时针方向旋转,使点C的对应点C′落在CA的延长线上,得到△A′BC′,连接AA′,交BC′于点O.下列结论:①∠AC′A′= 90°;②AA′=BC′;③∠A′BC′=∠A′AC′;④△A′OC′∽△BOA.其中正确结论的个数是()A.1B.2C.3D.4【答案】C【分析】利用旋转的性质和等腰三角形的性质推出∠AC A =90°,即可判断①的正确性;通过点A 、B、A、C 四点共圆可以判断出②③④的正确性.【详解】解:由题意可得:BC=BC ,∠C=∠A C B∵∠C=45°∴∠BC A=45°∵∠AC A =∠A C B+∠BC A∴∠AC A =90°,故①正确;∵∠BC A=∠C=45°∴∠C BC=90°∵∠ABC=∠A BC ∴∠A BA=90°∴∠A BA+∠AC A =180°,∠C AB+∠C A B=180°∴点A 、B、A、C 四点共圆∵∠AC A =90°,∠BAC ≠90°∴A A是直径,BC 不是直径∴A A≠BC ,故②错误;∵点A 、B、A、C 四点共圆∴∠A BC =∠A AC ,故③正确;∵点A 、B、A、C 四点共圆∴∠AA C =∠ABC ,∠A C B=∠A AB∴△A OC ∽△BOA,故④正确;∴正确结论的个数是3个故选C.【点睛】本题考查了图形的旋转、等腰三角形的性质、四点共圆、圆周角定理的推论以及相似的判定等知识点,灵活运用这些知识点是解题的关键.5(2023·广东深圳·校联考模拟预测)如图,已知▱ABCD ,AB =3,AD =8,将▱ABCD 绕点A 顺时针旋转得到▱AEFG ,且点G 落在对角线AC 上,延长AB 交EF 于点H ,则FH 的长为.【答案】558【分析】先利用平行四边形的性质得到CD =AB =3,BC =AD =8,∠D =∠ABC ,再根据旋转的性质得到∠DAG =∠BAE ,AE =AB =3,EF =BC =8,∠E =∠ABC ,接着证明△ADC ∽△AEH ,然后利用相似比求出EH ,从而得到FH 的长.【详解】解:∵四边形ABCD 为平行四边形,∴CD =AB =3,BC =AD =8,∠D =∠ABC ,∵将▱ABCD 绕点A 顺时针旋转得到▱AEFG ,且点G 落在对角线AC 上,∴∠DAG =∠BAE ,AE =AB =3,EF =BC =8,∠E =∠ABC ,∴∠E =∠D ,∵∠DAC =∠HAE ,∴△ADC ∽△AEH ,∴AD AE =DC EH ,∴83=3EH ,∴EH =98,∴FH =EF -EH =8-98=558,故答案为:558.【点睛】本题考查了平行四边形的性质,旋转、三角形相似的判定利用三角形相似比求线段的长,根据旋转的性质得到∠DAG =∠BAE ,然后根据两组对应角分别相等的两三角形相似得出AD AE=DC EH 是本题的关键.6(2022·安徽·模拟预测)如图,将边长为3的菱形ABCD 绕点A 逆时针旋转到菱形AB C D 的位置,使点B 落在BC 上,B C 与CD 交于点E .若BB =1,则CE 的长为.【答案】34/0.75【分析】延长D D 交BC 的延长线于点M ,过点C 作CN ∥DM 交B C 于点N ,根据菱形的性质和旋转的性质证明△ABB ≌△ADD ≌△DCM ≌B C M ,求得C D =B C =2,CM =C M =1,再根据CN ∥DM ,得CN MC =B C B M ,CN DC=CE DE ,代入即可求解.【详解】解:如图,延长D D 交BC 的延长线于点M ,过点C 作CN ∥DN 交B C 于点N ,∵四边形ABCD是菱形∴AB=BC=CD=AD=3,∠B=∠ADC=∠D ,AB∥CD∴∠DCM=∠B由旋转的性质得:AB =AB=3,AD =AD=3,∠BAB =∠DAD =∠MB C ,B C =D C =3,∠ADC=∠D ,∴△ABB ≌△ADD ∴DD =BB =1∴DC =D C -DD =2∵∠CDM+∠ADC=∠DAD +∠D ∴∠BAB =∠DAD =∠CDM∴△ABB ≌△DCM≌B C M,∴DM=AB =3,∠M=∠AB B∴C M=CM=3-2=1∵CN∥DM∴△B CN∽△B MC ∴CNMC =B CB M∵B C=BC-BB =2∴CN1=23∴CN=23∵CN∥DM∴△CNE∽△DC E∴CNDC =CEDE∴232=CE3-CE∴CE=34故答案为:34【点睛】本题考查菱形的性质,旋转的性质,全等三角形的判定与性质,相似三角形的判定与性质,综合性较强,作辅助线构造全等三角形和相似三角形是解题的关键.7(2021·湖南益阳·统考中考真题)如图,Rt△ABC中,∠BAC=90°,tan∠ABC=32,将△ABC绕A点顺时针方向旋转角α(0°<α<90°)得到△AB C ,连接BB ,CC ,则△CAC 与△BAB 的面积之比等于.【答案】9:4【分析】先根据正切三角函数的定义可得ACAB=32,再根据旋转的性质可得AB=AB,AC=AC ,∠BAB=∠CAC =α,从而可得ACAC =ABAB=1,然后根据相似三角形的判定可得△CAC ∼△BAB ,最后根据相似三角形的性质即可得.【详解】解:∵在Rt△ABC中,∠BAC=90°,tan∠ABC=32,∴ACAB=32,由旋转的性质得:AB=AB ,AC=AC ,∠BAB =∠CAC =α,∴ACAC=ABAB=1,在△CAC 和△BAB 中,ACAC=ABAB∠CAC =∠BAB,∴△CAC ∼△BAB ,∴S△CACS△BAB=ACAB2=94,即△CAC 与△BAB 的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.8(2023秋·山东济南·九年级校考阶段练习)如图,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°.(1)求证:△ACD∽△BCE;(2)若AC=3,AE=8,求AD.【答案】(1)见详解(2)AD=103 3【分析】(1)根据30°的正切值得ACBC=DCEC,即可证明相似.(2)先证明∠BAE=90°,进而求出BE=10,再根据△ACD∽△BCE得出ADBE=ACBC=DCEC=33,即可求出AD=33BE=1033.【详解】(1)∵∠ACB=∠DCE=90°∴∠ACD=∠BCE∵∠ABC=∠CED=∠CAE=30°∴tan∠ABC=ACBC =33,tan∠CED=DCEC=33∴AC BC =DCEC∴△ACD∽△BCE(2)∵由(1),△ACD∽△BCE∴ADBE =ACBC=DCEC=33∵∠ABC=∠CED=∠CAE=30°∴∠BAC=60°∴∠BAE=90°∵AC=3,∠ABC=30°∴AB=2AC=6∵AE=8∴BE=10∴AD=33BE=1033【点睛】本题考查相似三角形的判定、特殊角三角函数值及勾股定理,根据特殊角得出对应线段成比例是解题关键.9(2023·安徽滁州·九年级校考阶段练习)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P、M.求证:(1)△BAE∽△CAD;(2)MP⋅MD=MA⋅ME.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得AC=2AB,AD=2AE,∠BAE=∠CAD=135°,即可证△BAE∽△CAD;(2)由△BAE∽△CAD可得∠BEA=∠CDA,即可证△PME∽△AMD,可得MP⋅MD=MA⋅ME.【详解】(1)证明:∵等腰Rt △ABC 和等腰Rt △ADE ,∴AB =BC ,AE =DE ,∠BAC =∠DAE =45°,∴AC =2AB ,AD =2AE ,∠BAE =∠CAD =135°,∴AC AB =AD AE=2,∴△BAE ∽△CAD ,(2)∵△BAE ∽△CAD ,∴∠BEA =∠CDA ,且∠PME =∠AMD ,∴△PME ∽△AMD ,∴ME MD =MP AM,∴MP ⋅MD =MA ⋅ME .【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形性质,勾股定理的应用,熟练运用相似三角形的判定是本题的关键.10(2023秋·湖北孝感·九年级校联考阶段练习)问题背景:如图1,在△ABC 中,∠ACB =90°,AC =BC ,AD 是BC 边上的中线,E 是AD 上一点,将△CAE 绕点C 逆时针旋转90°得到△CBF ,AD 的延长线交BF 于点P .问题探究:(1)当点P 在线段BF 上时,证明EP +FP =2BP .①先将问题特殊化,如图2,当CE ⊥AD 时,证明:EP +FP =2BP ;②再探究一般情形,如图1,当CE 不垂直AD 时,证明:EP +FP =2BP ;拓展探究:(2)如图3,若AD 的延长线交BF 的延长线于点P 时,直接写出一个等式,表示EP ,FP ,BP 之间的数量关系.【答案】(1)①见解析,②见解析(2)EP -FP =2PB【分析】①结论:PE +PF =2PB .根据旋转的性质△ACE ≌△BCF ,再证明四边形CEPF 是正方形,可得结论.②结论不变,如图2中,过点C 作CG ⊥AD 于点G ,过点C 作CH ⊥BF 交BF 的延长线于点H .证明△CHF ≌△CGE ,可以推出FH =EG ,再利用正方形的性质解决问题即可.(2)结论:EP -FP =2PB ,证明方法类似②.【详解】(1)①证明:∵CE ⊥AD ,∴∠AEC =∠PEC =90°,在△ABC 中,∠ACB =90°,AC =AB ,∵将△CAE 绕点C 逆时针旋转90°得到△CBF ,∴△ACE ≌△BCF ,CF =CE ,∠ECF =90°,∠BFC =∠AEC =90°,∴∠BFC =∠ECF =∠PEC =90°,∴四边形CEPF 是矩形,∵CE =CF ,∴四边形CEPF 是正方形,∴CE =EP =FP =CF ,∠EPF =90°,∴∠BPD =90°=∠CED ,∵AD 是△ABC 中BC 边上的中线,∴BD =CD =12BC ,在△CED 和△BPD 中,∴∠CED =∠BPD∠CDE =∠BDP CD =BD,∴△CED ≌△BPD (AAS ),∴CE =BP ,∴BP =EP =CE =FP ,∴EP +FP =2BP②结论成立,证明:过点C 作CG ⊥AD 于点G ,过点C 作CH ⊥BF 交BF 的延长线于点H .则∠CGE =∠CGD =∠CHF =90°.由旋转性质可知,△CBF≌△CAE,∴CF=CE,∠CFB=∠CEA,∠ACE=∠BCF,∵∠CFH=180°-∠CFB,∠CEG=180°-∠CEA,∴∠CFH=∠CEG,∴△CHF≌△CGE,∴∠FCH=∠ECG,CH=CG,FH=EG.∴∠FCH+∠BCF+∠DCG=∠ECG+∠ACF+∠DCG=90°.∴∠HCG=90°.∴四边形CGPH是正方形.∴CG=GP=PH,∴EP+FP=GP+PH=2CG.∵CD=BD,∠CGD=∠BPD=90°,∠CDG=∠BDP,∴△CDG≌△BDP.∴CG=BP.∴EP+FP=2PB.(2)解:EP-FP=2PB.理由:如下图所示,过C作CN∥BP交AP于点N,CM∥DP交BP的延长线于点M,则四边形CNPM是平行四边形,△BPD∽△BMC,∴CN=PM,CM=PN,BPBM =BDBC=12,∴BM=2BP,∴PM=BP,∵∠APB=90°,∴∠NPM=90°,∴四边形CNPM是矩形,∴∠M=∠CNE=∠CNP=90°,在△CFM和△CEN中,∠H=∠CNE=90°∠CFH=∠CEN CF=CE,∴△CFM≌△CEN(AAS),∴CM=CN,FM=EN,∴四边形CNPM是正方形,∴PM=CN=PN,∴EP-FP=PN+EN-FP=PN+FM-FP=PN +PM=2PM,∴EP-FP=2BP.【点睛】本题属于几何变换综合题,考查相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考压轴题.11(2022·河南·九年级专题练习)规定:有一角重合,且角的两边叠合在一起的两个相似四边形叫做“嵌套四边形”,如图,四边形ABCD和AMPN就是嵌套四边形.(1)问题联想:如图①,嵌套四边形ABCD,AMPN都是正方形,现把正方形AMPN以A为中心顺时针旋转150°得到正方形AM'P'N',连接BM',DN'交于点O,则BM'与DN'的数量关系为,位置关系为;(2)类比探究:如图②,将(1)中的正方形换成菱形,∠BAD=∠MAN=60,其他条件不变,则(1)中的结论还成立吗?若成立,请说明理由;若不成立,请给出正确的结论,并说明理由;(3)拓展延伸:如图3,将(1)中的嵌套四边形ABCD和AMPN换成是长和宽之比为2:1的矩形,旋转角换成α(90°<α<180°),其他条件不变,请直接写出BM'与DN'的数量关系和位置关系.【答案】(1)BM =DN ,BM ⊥DN ;(2)BM =DN 成立,BM ⊥DN 不成立,BM 与DN 相交,且夹角为60°.理由见解析;(3)BM =2DN ,BM ⊥DN .【分析】(1)根据SAS证明△ABM'≌△AND',进而得到BM =DN ,∠ABM'=∠ADN',再利用三角形内角和可推出∠BOD=90°,即BM ⊥DN ;(2)根据旋转和菱形的性质证明ΔABM ≌ΔADN ,再推出∠BOD=∠BAD=60°,故可求解;(3)根据旋转和矩形的性质证明ΔABM ∼ΔADN ,得到BM =2DN ,再推出∠BOD=∠BAD=90°即可求解.【详解】(1)如图设AB,DN 交于点H,,∵四边形ABCD,AMPN都是正方形,把正方形AMPN以A为中心顺时针旋转150°得到正方形AM'P'N',∴AB=AD,AM'=AD', ∠BAM =∠DAN =150°∴△ABM'≌△AND',∴BM =DN ,∠ABM'=∠ADN',∵∠ADN'+∠DHA+∠DAH=180°,∠ABM'+∠BHO+∠BOD=180°,又∠DHA=∠BHO∴∠BOD=∠BAD=90°,即BM ⊥DN 故答案为:BM =DN ,BM ⊥DN ;(2)BM =DN 成立,BM ⊥DN 不成立,BM 与DN 相交,且夹角为60°.理由:设AB,DN 交于点E,由旋转的性质可得∠BAM =∠DAN =150°.∵四边形ABCD,AM P N 都是菱形,∴AB=AD,AM =AN ,∴ΔABM ≌ΔADN ,∴BM =DN ,∠ABM =∠ADN .。

2024年九年级中考数学复习专项复习 手拉手模型课件

2024年九年级中考数学复习专项复习 手拉手模型课件
.4
2.(2023·肥城模拟)如图,△ABC和△ECD都是等边三角形,且点B,C,D在一条直


线上,连接BE,AD,点M,N分别是线段BE,AD上的两点,且BM= BE,AN=

AD,则△CMN的形状是(

C)
A.等腰三角形
B.直角三角形
C.等边三角形
D.不等边三角形
3.(2022·遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC,GA,


∴AH⊥BC,AF⊥DE,AH=CH= BC,AF=EF= DE,∴∠CAH=∠EAF=45°,






∴∠HAF=∠EAC, = = ,∴△AHF∽△ACE,∴ = = ,∴CE=





∵点F,G分别是DE,DC的中点,∴CE=2FG,∴FH= FG.
FH.
(2)若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③,其他
条件不变,判断FH和FG之间的数量关系,写出你的猜想,并证明.
解:(2)FH=FG.证明:如图②,连接AH,CE,AF.∵△ABC和△ADE都是等腰三
角形,且∠BAC=∠DAE=120°,∴∠AED=∠ADE=∠ACB=∠B=30°.
6.(2022·烟台)【问题呈现】(1)如图①,△ABC和△ADE都是等边三角形,连接
BD,CE.求证:BD=CE.
(1)证明:∵△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE-∠BAE=∠BAC-∠BAE,∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),∴BD=CE.

初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自如

初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自如

初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自

一、模型一:手拉手模型----旋转型全等
(1)等边三角形
手拉手-等边旋转
【条件】:△OAB和△OCD均为等边三角形;
【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED
(2)等腰直角三角形
手拉手-等腰直角旋转
【条件】:△OAB和△OCD均为等腰直角三角形;
【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED
(3)顶角相等的两任意等腰三角形
手拉手-等腰旋转
【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB
【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED
二、模型二:手拉手模型----旋转型相似
(1)一般情况
【条件】:CD∥AB,将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA
(2)特殊情况
【条件】:CD∥AB,∠AOB=90° 将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA;
③BD/AC=OD/OC=OB/OA=tan∠OCD;
④BD⊥AC;
⑤连接AD、BC,必有AD2+BC2=AB2+CD2;
⑥S△BCD=1/2AC×BD。

初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)

初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)

专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。

1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论【详解】(1)∵ABC,ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE在△ADB和△AEC中,AD=AE∠BAD=∠CAE AB=AC∴ABD ≅ACE (SAS );(2)当D ,E ,C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°,∴∠AEC =180°-∠AED =120°,由(1)可知,△ADB ≅△AEC ,∴∠ADB =∠AEC =120°,∴∠EDB =∠ADB -∠ADE =120°-60°=60°②当点E 在线段CD 的延长线上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°∴∠ADC =180°-∠ADE =120°,由(1)可知,△ADB ≅△AEC∴∠ADB =∠AEC =60°,∴∠EDB =∠ADB +∠ADE =60°+60°=120°综上所述,∠EDB 的大小为60°或120°(3)过点A 作AF ⊥BC 于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3∴AF =AB 2-BF 2=62-32=33∴DF =33-4此时S .DBC =12BC ⋅DF =12×6×(33-4)=93-12;当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3,∴AF =AB 2-BF 2=62-32=33∵AD =4∴DF =AF +AD =33+4此时,S .DBC =12BC ⋅DF =12×6×(33+4)=93+12;综上所述,△DBC 的面积S 取值是93-12≤5≤93+12【点评】 利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键2已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E 在线段AD 的延长线上时,请判断∠AFC 和∠FAC 的数量关系,并证明你的结论;(3)拓展延伸:若点E 在直线AD 上运动,若存在一个位置,使得ΔACF 是等腰直角三角形,请直接写出此时∠EBC 的度数.【答案】(1)55°;(2)∠AFC +∠FAC =90°,见解析;(3)15°或75°【解析】(1)55°,理由:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;∵∠AFC =35°,∴∠FAC =55°;(2)结论:∠AFC +∠FAC =90°,理由如下:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;(3)∠EBC =15°或75°分两种情况:①点E 在点A 的下方时,如图:∵ΔACF 是等腰直角三角形,∴AC =CF ,由(2)得ΔABE ≌ΔCBF ,∴CF =AE ,∴AC =AE =AB ,∴∠ABE =180°-30°2=75°,∴∠EBC =∠ABE -∠ABC =75°-60°=15°;②点E 在和点A 的上方时,如图:同理可得∠EBC =∠ABE +∠ABC =75°.2已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(0°<α<90°),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF 的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF 的度数;(3)联结AF ,求证:DE =2AF .【答案】(1)30°;(2)不变;45°;(3)见解析【解析】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE=CD,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=180°-α2=90°-α2,在△CEB中,CE=CB,∠BCE=90°-α,∴∠CEB=∠CBE=180°-∠BCE2=45°+α2,∴∠BEF=180°-∠CED-∠CEB=45°.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。

中考数学压轴题-手拉手模型

中考数学压轴题-手拉手模型

学习目标:
1.理解手拉手模型。

2.会对手拉手模型改造的旋转型全等与旋转型
相似进行识别和构造,并掌握一些基本结论。

3.会利用手拉手模型解决几何问题。

手拉手模型定义
手拉手模型的主要特征就是两个形状
一样(或相似)的图形,它们有着共同
的顶点,可以旋转到任意角度,就像两
个人手拉手一样,所以被称为手拉手。

手拉手模型分类
模型1 手拉手全等模型
模型构建
顶角相等,且共顶点的两个等腰三角形,经旋转后得到的两个三角形都可根据“边角边”之间的关系进行推理判断。

(简记:双等腰,共顶角,绕共顶点旋转得全等) 模型1一基本图形.gsp
手拉手模型分类
模型2 手拉手相似模型
模型构建
两个相似的非等腰三角形对应顶点重合,经
旋转后可以产生新的相似三角形。

(简记:非等腰,共顶角,绕共顶点旋转得相似)模型2-基本图形.gsp
特殊常考题型:
手拉手模型的应用
手拉手模型的应用 习题4.gsp
习题5.gsp
课堂小结
1、手拉手模型的识别、构造、应用。

2、你运用到了哪些数学方法?
请相信数学会为你的未来带来更多的可能!。

中考数学几何模型复习 专题 手拉手模型(学生版+解析版)

中考数学几何模型复习 专题 手拉手模型(学生版+解析版)

中考数学几何模型复习手拉手模型一、方法突破问题一:构成手拉手的必要条件.当对一个几何图形记忆并不深刻的时候,可以尝试用文字取总结要点,比如手拉手:四线共点,两两相等,夹角相等.条件:如图,OA=OB,OC=OD(四线共点,两两相等),∠AOB=∠COD(夹角相等)结论:△OAC≌△OBD(SAS)证明无需赘述,关于条件中的OA=OB,OC=OD,有时候会直接以特殊几何图形的形式给出,比如我们都很熟悉的等边三角形和正方形.1.等边三角形手拉手(1)如图,B、C、D三点共线,△ABC和△CDE是等边三角形,连接AD、BE,交于点P:结论一:△ACD≌△BCE证明:AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩→ △ACD≌△BCE(SAS)ABCDOD(2)记AC 、BE 交点为M ,AD 、CE 交点为N :结论二:△ACN ≌△BCM ;△MCE ≌△NCD证明:MBC NAC BC AC BCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △ACN ≌△BCM (SAS );MCE NCD CE CDCEM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △MCE ≌△NCD (ASA ) (3)连接MN :结论三:△MNC 是等边三角形.证明:60CM CNMCN =⎧⎨∠=︒⎩→△MCN 是等边三角形.(4)记AD 、BE 交点为P ,连接PC :结论四:PC 平分∠BPD证明:△BCE ≌△ACD → CG =CH → PC 平分∠BPD .DDHG ααEDCBAP(5)结论五:∠APB =∠BPC =∠CPD =∠DPE =60°.(6)连接AE :结论六:P 点是△ACE 的费马点(P A +PC +PE 值最小)2.正方形手拉手如图,四边形ABCD 和四边形CEFG 均为正方形,连接BE 、DG :结论一:△BCE ≌△DCG证明:CB CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩→ △BCE ≌△DCG (SAS )结论二:BE =DG ,BE ⊥DG证明:△BCE ≌△DCG → BE =DG ;∠CBE =∠CDG → ∠DHB =∠BCD =90°(旋转角都相等)【重点概述】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.60°60°60°60°PABCDEEDCBAPF问题二:条件与结论如何设计?设计一:我们可以给出手拉手模型条件,得到一组全等来解决问题,就像问题一中所得出的结论那样; 设计二:如果题目已知△ABC ≌△ADE 外,则还可得△ABD 和△ACE 均为等腰三角形,且有△ABD ∽△ACE ,AB AD BDAC AE CE==.问题三:如何构造手拉手?如何构造手拉手?换句话说,如何构造旋转?当我们在思考这个问题的时候,不妨先问一句,旋转能带来什么?图形位置的改变,这一点就够了,因为,若有数量关系,则先有位置关系.二、典例精析例一:如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBEBDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4例二:如图,点P 在等边ABC ∆的内部,且6PC =,8PA =,10PB =,将线段PC 绕点C 顺时针旋转60︒得到P C ',连接AP ',则sin PAP '∠的值为 .EDCBAC例三:如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为 .例四:如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若6AP =,8BP =,10CP =.则ABP BPC S S ∆∆+= .例五:如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则ABC∆的面积为( )A.9 B.9 C.18+D.18 例六:在Rt △ABC 中,AB =AC ,点P 是三角形内一点且∠APB =135°,PC =AC 的最大值为_________.QPABCPABCPABCABCP三、中考真题演练1.(2021•日照)问题背景:如图1,在矩形ABCD中,AB=30ABD∠=︒,点E是边AB的中点,过点E作EF AB⊥交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的BEF∆绕点B按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将BEF∆绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF∆旋转至D、E、F三点共线时,则ADE∆的面积为.2.(2021•贵港)已知在ABC∆中,O为BC边的中点,连接AO,将AOC∆绕点O顺时针方向旋转(旋转角为钝角),得到EOF∆,连接AE,CF.(1)如图1,当90=;=时,则AE与CF满足的数量关系是AE CF∠=︒且AB ACBAC(2)如图2,当90≠时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若∠=︒且AB ACBAC不成立,请说明理由.(3)如图3,延长AO到点D,使OD OABC=时,求DE的长.=,连接DE,当5==,6AO CF3.(2021•黑龙江)在等腰ADE ∆中,AE DE =,ABC ∆是直角三角形,90CAB ∠=︒,12ABC AED ∠=∠,连接CD 、BD ,点F 是BD 的中点,连接EF .(1)当45EAD ∠=︒,点B 在边AE 上时,如图①所示,求证:12EF CD =;(2)当45EAD ∠=︒,把ABC ∆绕点A 逆时针旋转,顶点B 落在边AD 上时,如图②所示,当60EAD ∠=︒,点B 在边AE 上时,如图③所示,猜想图②、图③中线段EF 和CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.4.(2021•通辽)已知AOB ∆和MON ∆都是等腰直角三角形)OM OA <<,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON ∆绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.5.(2021•十堰)已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60︒得到CQ,连QB.(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP AC=时,求证:直线PB垂直平分线段CQ;∆,(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且APQ求线段AP的长度.6.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC . (1)如图1,当60α=︒时, ①求证:PA DC =; ②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,BP D 到CP 的距离为 .中考数学几何模型复习手拉手模型一、方法突破问题一:构成手拉手的必要条件.当对一个几何图形记忆并不深刻的时候,可以尝试用文字取总结要点,比如手拉手:四线共点,两两相等,夹角相等.条件:如图,OA=OB,OC=OD(四线共点,两两相等),∠AOB=∠COD(夹角相等)结论:△OAC≌△OBD(SAS)证明无需赘述,关于条件中的OA=OB,OC=OD,有时候会直接以特殊几何图形的形式给出,比如我们都很熟悉的等边三角形和正方形.3.等边三角形手拉手(1)如图,B、C、D三点共线,△ABC和△CDE是等边三角形,连接AD、BE,交于点P:结论一:△ACD≌△BCE证明:AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩→ △ACD≌△BCE(SAS)ABCDOD(2)记AC 、BE 交点为M ,AD 、CE 交点为N :结论二:△ACN ≌△BCM ;△MCE ≌△NCD证明:MBC NAC BC AC BCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △ACN ≌△BCM (SAS );MCE NCD CE CDCEM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △MCE ≌△NCD (ASA ) (3)连接MN :结论三:△MNC 是等边三角形.证明:60CM CNMCN =⎧⎨∠=︒⎩→△MCN 是等边三角形.(4)记AD 、BE 交点为P ,连接PC :结论四:PC 平分∠BPD证明:△BCE ≌△ACD → CG =CH → PC 平分∠BPD .DDDHG ααEDCBAP(5)结论五:∠APB =∠BPC =∠CPD =∠DPE =60°.(6)连接AE :结论六:P 点是△ACE 的费马点(P A +PC +PE 值最小)4.正方形手拉手如图,四边形ABCD 和四边形CEFG 均为正方形,连接BE 、DG :结论一:△BCE ≌△DCG证明:CB CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩→ △BCE ≌△DCG (SAS )结论二:BE =DG ,BE ⊥DG证明:△BCE ≌△DCG → BE =DG ;∠CBE =∠CDG → ∠DHB =∠BCD =90°(旋转角都相等)【重点概述】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.60°60°60°60°PAB CDEEDCBAPF问题二:条件与结论如何设计?设计一:我们可以给出手拉手模型条件,得到一组全等来解决问题,就像问题一中所得出的结论那样; 设计二:如果题目已知△ABC ≌△ADE 外,则还可得△ABD 和△ACE 均为等腰三角形,且有△ABD ∽△ACE ,AB AD BDAC AE CE==.问题三:如何构造手拉手?如何构造手拉手?换句话说,如何构造旋转?当我们在思考这个问题的时候,不妨先问一句,旋转能带来什么?图形位置的改变,这一点就够了,因为,若有数量关系,则先有位置关系.二、典例精析例一:如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBEBDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4 【分析】等边三角形中的旋转型全等连接OB 、OC ,易证△OBD ≌△OCE ,∴OD =OE ,结论①正确;考虑∠FOG 是可以旋转的,△ODE 面积和△BDE 面积并非始终相等,故结论②错误;ECBACC∵△OBD ≌△OCE ,∴四边形ODBE 的面积等于△OBC的面积,142OBCS=⨯=,故结论③正确;考虑BD =CE ,∴BD +BE =CE +BE =4,只要DE 最小,△BDE 周长就最小,△ODE 是顶角为120°的等腰三角形,故OD 最小,DE 便最小, 当OD ⊥AB 时,OD此时2DE ==,∴周长最小值为6,故结论④正确. 综上,选C ,正确的有①③④.【小结】所谓全等,实际就是将△ODB 绕点O 旋转到△OEC 的位置.等等,好像和某个图有点神似,如下:当然这个图形还可以简化一下,毕竟和D 点及F 点并没有什么关系.结论与证明不多赘述,题型可以换,但旋转是一样的旋转.例二:如图,点P 在等边ABC ∆的内部,且6PC =,8PA =,10PB =,将线段PC 绕点C 顺时针旋转60︒得到P C ',连接AP ',则sin PAP '∠的值为 .【分析】连接PP ',则CPP '△是等边三角形,故6PP PC '==,易证△CPB ≌CP A '△,∴10AP BP '==, 又AP =8,∴APP '△是直角三角形,∴3sin 5PAP '∠=.D例三:如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为 .【分析】分四边形为三角形.连接PQ ,易证△APQ 是等边三角形,△BPQ 是直角三角形,26APQS=168242BPQS =⨯⨯=, ∴四边形APBQ的面积为(.例四:如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若6AP =,8BP =,10CP =.则ABP BPC S S ∆∆+= .【分析】构造旋转.如图,将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP , 可得△AEP 是直角三角形,△BEP 是等边三角形,21688242APBBPCAEPBEPSSSS+=+=⨯⨯+=+ 所以本题答案为24+QPABCQPABCPABCC搭配一:若222PA PB PC+=,则可任意旋转,得等边+直角.且两条较短边夹角(∠APB)为150°.搭配二:若∠APB=150°,则有222PA PB PC+=.例五:如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则ABC∆的面积为()A.9B.9C.18+D.18【分析】(3,4,5)是一组勾股数,通过旋转构造直角三角形.法一:如图,将三个小三角形面积分别123S S S、、考虑到△ABC是等边三角形,可将△APB 旋转到△ADC位置,可得:21331334642ADP PCDS S S S+=+=+⨯⨯=,同理可得:212143462S S++⨯⨯=,223153462S S+=+⨯⨯=,∴()123218S S S++,∴1239S S S++,故选A.CC CPABCS3S2S1PAB CC法二:如图,易证∠APB =150°,过点A 作BP 的垂线交BP 延长线于点H ,则1322AH AP ==,PH,4BH =)2229271625944S AH BH ==+=+++=+=⎝. 【思考】如果放在正方形里,条件与结论又该如何搭配?作旋转之后,可得△AEP 是等腰直角三角形,若使△PEB 也为直角三角形, 则原∠APD =135°,而线段PA 、PB 、PD 之间的关系为:2222PA PD PB +=.搭配一:若∠APD =135°,则2222PA PD PB +=;搭配二:若2222PA PD PB +=,则∠APD =135°.另外,其实这个图和点C 并没有什么关系,所以也可以将正方形换成等腰直角三角形. 大概如下图:抓主要条件,舍弃无用条件,也是理解几何图形的一种方式.例六:在Rt △ABC 中,AB =AC ,点P 是三角形内一点且∠APB =135°,PC =AC 的最大值为_________.【分析】显然根据∠APB =135,构造旋转.可得:△APQ 是等腰直角三角形,△PQC 是直角三角形,且∠PQC =90°,另外还有条件PC =HPABC EAB CDEPABCPC重新梳理下条件,(1)有一条线段PC =(2)∠PQC =90°,则Q 点轨迹是个圆弧,(3)以PQ 为斜边在PC 异侧作等腰直角三角形,点A 是直角顶点.∴A 点轨迹是什么?瓜豆原理啦,也是个圆弧:∴AC22=.三、中考真题演练1.(2021•日照)问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小王同学将图1中的BEF ∆绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF= ;②直线AE 与DF 所夹锐角的度数为 . (2)小王同学继续将BEF ∆绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:在以上探究中,当BEF ∆旋转至D 、E 、F 三点共线时,则ADE ∆的面积为 .CPP PCCC【解答】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠==, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒,,30︒;(2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又BE AB BF DB ==, ABE DBF ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠, 又DOH AOB ∠=∠,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,2AB =30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,BE ∴2AD =,4DB =,30EBF ∠=︒,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,DE ∴30DEA ∠=︒,12DG DE ∴==由(2)可得:AE BE DF BF ==,∴=AE ∴,ADE ∴∆的面积1122AE DG =⨯⨯==; 如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积1122AE DG =⨯⨯==2.(2021•贵港)已知在ABC ∆中,O 为BC 边的中点,连接AO ,将AOC ∆绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ∆,连接AE ,CF .(1)如图1,当90BAC ∠=︒且AB AC =时,则AE 与CF 满足的数量关系是 ;(2)如图2,当90BAC ∠=︒且AB AC ≠时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO 到点D ,使OD OA =,连接DE ,当5AO CF ==,6BC =时,求DE 的长.【解答】解:(1)结论:AE CF=.理由:如图1中,=,∠=︒,OC OB AB ACBAC=,90⊥,∴==,AO BCOA OC OB∠=∠=︒,AOC EOF90∴∠=∠,AOE COF=,=,OE OFOA OCAOE COF SAS∴∆≅∆,()∴=.AE CF(2)结论成立.理由:如图2中,=,∠=︒,OC OBBAC90∴==,OA OC OB∠=∠,AOC EOF∴∠=∠,AOE COF=,=,OE OFOA OC∴∆≅∆,AOE COF SAS()∴=.AE CF(3)如图3中,由旋转的性质可知OE OA=,OA OD=,5OE OA OD∴===,90AED∴∠=︒,OA OE=,OC OF=,AOE COF∠=∠,∴OA OEOC OF=,AOE COF∴∆∆∽,∴AE OACF OC=,5 CF OA==,∴5 53 AE=,253 AE∴=,DE∴=.3.(2021•黑龙江)在等腰ADE ∆中,AE DE =,ABC ∆是直角三角形,90CAB ∠=︒,12ABC AED ∠=∠,连接CD 、BD ,点F 是BD 的中点,连接EF .(1)当45EAD ∠=︒,点B 在边AE 上时,如图①所示,求证:12EF CD =; (2)当45EAD ∠=︒,把ABC ∆绕点A 逆时针旋转,顶点B 落在边AD 上时,如图②所示,当60EAD ∠=︒,点B 在边AE 上时,如图③所示,猜想图②、图③中线段EF 和CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.【解答】(1)证明:如图①中,EA ED =,45EAD ∠=︒,45EAD EDA ∴∠=∠=︒,90AED ∴∠=︒,BF FD =,12EF DB ∴=, 90CAB ∠=︒,45CAD BAD ∴∠=∠=︒,1452ABC AED ∠=∠=︒, 45ACB ABC ∴∠=∠=︒,AC AB ∴=,AD ∴垂直平分线段BC ,DC DB ∴=,12EF CD ∴=. (2)解:如图②中,结论:12EF CD =.理由:取CD 的中点T ,连接AT ,TF ,ET ,TE 交AD 于点O . 90CAD ∠=︒,CT DT =,AT CT DT ∴==,EA ED =,ET ∴垂直平分线段AD ,AO OD ∴=,90AED ∠=︒,OE OA OD ∴==,CT TD =,BF DF =,//BC FT ∴,45ABC OFT ∴∠=∠=︒,90TOF ∠=︒,45OTF OFT ∴∠=∠=︒,OT OF ∴=,AF ET ∴=,FT TF =,AFT ETF ∠=∠,FA TE =,()AFT ETF SAS ∴∆≅∆,EF AT ∴=,12EF CD ∴=.如图③中,结论:EF =.理由:取AD 的中点O ,连接OF ,OE .EA ED =,60AED ∠=︒,ADE ∴∆是等边三角形,AO OD =,OE AD ∴⊥,30AEO OED ∠=∠=︒,tan AO AEO OE ∴∠==∴OEAD =1302ABC AED ∠=∠=︒,90BAC ∠=︒,AB ∴,AO OD =,BF FD =,12OF AB ∴=,∴OF AC =, ∴OE OFAD AC =,//OF AB ,DOF DAB ∴∠=∠,90DOF EOF ∠+∠=︒,90DAB DAC ∠+∠=︒,EOF DAC ∴∠=∠,EOF DAC ∴∆∆∽,∴EFOECD AD =,EF ∴.4.(2021•通辽)已知AOB ∆和MON ∆都是等腰直角三角形)OM OA <<,90AOB MON ∠=∠=︒. (1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON ∆绕点O 顺时针旋转. ①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=; ②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.【解答】(1)证明:90AOB MON ∠=∠=︒, AOB AON MON AON ∴∠+∠=∠+∠,即AOM BON ∠=∠,AOB ∆和MON ∆都是等腰直角三角形,OA OB ∴=,OM ON =,()AOM BON SAS ∴∆≅∆,AM BN ∴=;(2)①证明:连接BN ,90AOB MON ∠=∠=︒,AOB BOM MON BOM ∴∠-∠=∠-∠,即AOM BON ∠=∠,AOB ∆和MON ∆都是等腰直角三角形,OA OB ∴=,OM ON =,()AOM BON SAS ∴∆≅∆,45MAO NBO ∴∠=∠=︒,AM BN =,90MBN ∴∠=︒,222MB BN MN ∴+=,MON ∆都是等腰直角三角形,222MN ON ∴=,2222AM BM OM ∴+=;②解:如图3,当点N 在线段AM 上时,连接BN ,设BN x =, 由(1)可知AOM BON ∆≅∆,可得AM BN =且AM BN ⊥, 在Rt ABN ∆中,222AN BN AB +=,AOB ∆和MON ∆都是等腰直角三角形,4OA =,3OM =,MN ∴=,AB =222(x x ∴-+=,解得:x =,AM BN ∴= 如图4,当点M 在线段AN 上时,连接BN ,设BN x =, 由(1)可知AOM BON ∆≅∆,可得AM BN =且AM BN ⊥, 在Rt ABN ∆中,222AN BN AB +=,AOB ∆和MON ∆都是等腰直角三角形,4OA =,3OM =,MN ∴=,AB =222(x x ∴++=,解得:x =,AM BN ∴=,综上所述,线段AM . 5.(2021•十堰)已知等边三角形ABC ,过A 点作AC 的垂线l ,点P 为l 上一动点(不与点A 重合),连接CP ,把线段CP 绕点C 逆时针方向旋转60︒得到CQ ,连QB .(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P 、B 在AC 同侧且AP AC =时,求证:直线PB 垂直平分线段CQ ;(3)如图3,若等边三角形ABC 的边长为4,点P 、B 分别位于直线AC 异侧,且APQ ∆,求线段AP 的长度.【解答】解:(1)在等边ABC ∆中,AC BC =,60ACB ∠=︒, 由旋转可得,CP CQ =,60PCQ ∠=︒, ACB PCQ ∴∠=∠,ACB PCB PCQ PCB ∴∠-∠=∠-∠,即ACP BCQ ∠=∠, ()ACP BCQ SAS ∴∆≅∆,AP BQ ∴=.(2)在等边ABC ∆中,AC BC =,60ACB ∠=︒, 由旋转可得,CP CQ =,60PCQ ∠=︒,ACB PCQ ∴∠=∠,ACB PCB PCQ PCB ∴∠-∠=∠-∠,即ACP BCQ ∠=∠, ()ACP BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒;BQ AP AC BC ∴===,AP AC =,90CAP ∠=︒,30BAP ∴∠=︒,75ABP APB ∠=∠=︒,135CBP ABC ABP ∴∠=∠+∠=︒,45CBD ∴∠=︒,45QBD ∴∠=︒,CBD QBD ∴∠=∠,即BD 平分CBQ ∠,BD CQ ∴⊥且点D 是CQ 的中点,即直线PB 垂直平分线段CQ .(3)①当点Q 在直线l 上方时,如图所示,延长BQ 交l 于点E ,过点Q 作QF l ⊥于点F ,由题意可得AC BC =,PC CQ =,60PCQ ACB ∠=∠=︒, ACP BCQ ∴∠=∠,()APC BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒,60CAB ABC ∠=∠=︒,30BAE ABE ∴∠=∠=︒,4AB AC ==,AE BE ∴=, 60BEF ∴∠=︒,设AP t =,则BQ t =,EQ t ∴=-,在Rt EFQ ∆中,)QF t =-,12APQ S AP QF ∆∴=⋅=,即1)2t ⋅-=,解得t =t .即AP . ②当点Q 在直线l 下方时,如图所示,设BQ 交l 于点E ,过点Q 作QF l ⊥于点F ,由题意可得AC BC =,PC CQ =,60PCQ ACB ∠=∠=︒,ACP BCQ ∴∠=∠,()APC BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒,60CAB ABC ∠=∠=︒,30BAE ABE ∴∠=∠=︒,120BEF ∴∠=︒,60QEF ∠=︒,4AB AC ==,AE BE ∴=, 设AP m =,则BQ m =,EQ m ∴=-,在Rt EFQ ∆中,QF m =,12APQ S AP QF ∆∴=⋅=,即12m m ⋅-解得m m ==.综上可得,AP 6.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,BP D 到CP 的距离为 .【解答】(1)①证明:如图1中,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , PB PD ∴=,AB AC =,PB PD =,60BAC BPD ∠=∠=︒, ABC ∴∆,PBD ∆是等边三角形,60ABC PBD ∴∠=∠=︒,PBA DBC ∴∠=∠,BP BD =,BA BC =,()PBA DBC SAS ∴∆≅∆,PA DC ∴=.②解:如图1中,设BD 交PC 于点O .PBA DBC ∆≅∆,BPA BDC ∴∠=∠,BOP COD ∠=∠,60OBP OCD ∴∠=∠=︒,即60DCP ∠=︒.(2)解:结论:CD =.理由:如图2中,AB AC =,PB PD =,120BAC BPD ∠=∠=︒,2cos30BC AB ∴=⋅⋅︒,2cos30BD BP =⋅︒=,∴BC BD BA BP= 30ABC PBD ∠=∠=︒,ABP CBD ∴∠=∠,CBD ABP ∴∆∆∽,∴CD BC PA AB=CD ∴=.(3)过点D 作DM PC ⊥于M ,过点B 作BN CP ⊥交CP 的延长线于N . 如图31-中,当PBA ∆是钝角三角形时,在Rt ABN ∆中,90N ∠=︒,6AB =,60BAN ∠=︒,cos603AN AB ∴=⋅︒=,sin 60BN AB =⋅︒=2PN PB ==, 321PA ∴=-=,由(2)可知,CD = BPA BDC ∠=∠,30DCA PBD ∴∠=∠=︒, DM PC ⊥,12DM CD ∴=如图32-中,当ABP ∆是锐角三角形时,同法可得235PA =+=,CD =12DM CD ==综上所述,满足条件的DM ..。

2024年中考数学常见几何模型全归纳(全国通用)专题15 全等与相似模型-手拉手模型(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题15 全等与相似模型-手拉手模型(解析版)

专题15全等与相似模型-手拉手模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。

本专题就手拉手模型进行梳理及对应试题分析,方便掌握。

模型1.手拉手模型【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。

1)双等边三角形型条件:如图1,△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

图1图22)双等腰直角三角形型条件:如图2,△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠AFD。

图3图44)双正方形形型条件:△ABCFD和△CEFG都是正方形,C为公共点;连接BG,ED交于点N。

结论:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。

例1.(2022·北京东城·九年级期末)如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到 AP ,连接PP BP ,.(1)用等式表示BP 与CP 的数量关系,并证明;(2)当∠BPC =120°时,①直接写出P BP 的度数为;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP的数量关系,并证明.∵M 为BC 的中点,∴BM 在△PCM 和△NBM 中PMC∴CP =BN ,∠PCM =∠NBM ∵∠BPC =120°,∴∠PBC ∵∠ABC +∠ACB =120°,∴∠ABP +∠ABP '=60°.即在△PNB 和P B P 中NBP 例2.(2022·黑龙江·中考真题)ABC 和ADE 都是等边三角形.(1)将ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC (或PA PC PB )成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:PB PA PC ,证明见解析(3)图③结论:PA PB PC【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP ,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ,再证明CAP BAF ≌△△(SAS ),得CAP BAF ,AF AP ,然后证明AFP 是等边三角形,得PF AP ,即可得出结论;(3)在CP 上截取CF BP ,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ,AP AF ,然后证明AFP 是等边三角形,得PF AP ,即可得出结论:PA PB PF CF PC .(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC 或PA PC PB ;(2)解:图②结论:PB PA PC证明:在BP 上截取BF CP ,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC ,AD AE ,60BAC DAE∴BAC CAD DAE CAD ,∴BAD CAE ,∴BAD CAE ≌(SAS ),∴ABD ACE ,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ,AF AP ,∴CAP CAF BAF CAF ,∴60FAP BAC ,∴AFP 是等边三角形,∴PF AP ,∴PA PC PF BF PB ;(3)解:图③结论:PA PB PC ,理由:在CP 上截取CF BP ,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC ,AD AE ,60BAC DAE∴BAC BAE DAE BAE ,∴BAD CAE ,∴BAD CAE ≌(SAS ),∴ABD ACE ,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ,AP AF ,∴BAF BAP BAF CAF ,∴60FAP BAC ,∴AFP 是等边三角形,∴PF AP ,∴PA PB PF CF PC ,即PA PB PC .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例3.(2022·湖北·襄阳市九年级阶段练习)如图,已知 AOB 和 MON 都是等腰直角三角形<OM =ON ),∠AOB =∠MON =90°.(1)如图①,连接AM ,BN ,求证: AOM ≌ BON ;(2)若将 MON 绕点O 顺时针旋转,①如图②,当点N 恰好在AB 边上时,求证:22220BN AN N ;②当点A ,M ,N 在同一条直线上时,若OB =4,ON =3,请直接写出线段BN 的长.②46322 或46322∵△AOB 和△MON 都是等腰直角三角形,OB =4,ON =3∴42,32AB MN .当点N 在线段AM 上时,如图,连接BN ,设BN x ,例4.(2022·重庆忠县·九年级期末)已知等腰直角ABC 与ADE 有公共顶点,90,4,6A BAC DAE AB AC AD AE .(1)如图①,当点,,B A E 在同一直线上时,点F 为DE 的中点,求BF 的长;(2)如图②,将ADE 绕点A 旋转 0360 ,点G H 、分别是AB AD 、的中点,CE 交GH 于M ,交AD于N.①猜想GH与CE的数量关系和位置关系,并证明你猜想的结论;②参考图③,若K为AC的中点,连接KM,在ADE旋转过程中,线段KM的最小值是多少(直接写出结果).例5.(2022·山西大同·九年级期中)综合与实践:已知ABC 是等腰三角形,AB AC .(1)特殊情形:如图1,当DE ∥BC 时,DB ______EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的ADE 绕点A 顺时针旋转 (0180 )到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,90BAC ,且1BP ,2AP ,3CP ,求BPA 的度数”时,小明发现可以利用旋转的知识,将BAP △绕点A 顺时针旋转90°得到CAE V ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出BPA 的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA =135°.【分析】(1)由DE ∥BC ,得到∠ADE =∠B ,∠AED =∠C ,结合AB =AC ,得到DB =EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB =CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,故答案为:=;(2)成立.证明:由①易知AD =AE ,∴由旋转性质可知∠DAB =∠EAC ,将△APB 绕点A 旋转90°∴AE =AP =2,EC =BP =1例6.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC 和ADE 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE ;(2)解决问题:如图2,若ACB △和DCE 均为等腰直角三角形,90ACB DCE ,点A ,D ,E 在同一条直线上,CM 为DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1图2【答案】(1)见解析(2)90DCE ;2AE AD DE BE CM【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC 和ADE 是顶角相等的等腰三角形,∴AB AC ,AD AE ,BAC DAE ,∴BAC CAD DAE CAD ,∴BAD CAE .在BAD 和CAE V 中,AB AC BAD CAE AD AE,∴ BAD CAE SAS ≌△△,∴BD CE .(2)解:90AEB ∠,2AE BE CM ,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE ,ADC BEC ,∵CDE △是等腰直角三角形,∴45CDE CED ,∴180135ADC CDE ,∴135BEC ADC ,∴1354590AEB BEC CED .∵CD CE ,CM DE ,∴DM ME .∵90DCE ,∴DM ME CM ,∴2DE CM .∴2AE AD DE BE CM .【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.例7.(2022·广东广州市·八年级期中)如图,两个正方形ABCD 与DEFG ,连结AG ,CE ,二者相交于点H .(1)证明:△ADG ≌△CDE ;(2)请说明AG 和CE 的位置和数量关系,并给予证明;(3)连结AE 和CG ,请问△ADE 的面积和△CDG 的面积有怎样的数量关系?并说明理由.【答案】(1)答案见解析;(2)AG=CE ,AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积【分析】(1)利用SAS 证明△ADG ≌△CDE ;(2)利用△ADG ≌△CDE 得到AG=CE ,∠DAG=∠DCE ,利用∠DAG+∠AMD=90°得到∠DCE+∠CMG=90°,即可推出AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积,作GP ⊥CD 于P ,EN ⊥AD 交AD 的延长线于N ,证明△DPG ≌△DNE ,得到PG=EN ,再利用三角形的面积公式分别表示出△ADE 的面积,△CDG 的面积,即可得到结论△ADE 的面积=△CDG 的面积.【详解】(1)∵四边形ABCD 与DEFG 都是正方形,∴AD=CD ,DG=DE ,∠ADC=∠EDG=90°,∴∠ADC+∠CDG=∠EDG+∠CDG ,∴∠ADG=∠CDE ,∴△ADG ≌△CDE (SAS ),(2)AG=CE ,AG ⊥CE ,∵△ADG ≌△CDE ,∴AG=CE ,∠DAG=∠DCE ,∵∠DAG+∠AMD=90°,∠AMD=∠CMG ,∴∠DCE+∠CMG=90°,∴∠CHA=90°,∴AG ⊥CE ;(3)△ADE 的面积=△CDG 的面积,作GP ⊥CD 于P ,EN ⊥AD 交AD 的延长线于N ,则∠DPG=∠DNE=90°,∵∠GDE=90°,∴∠EDN+∠GDN=90°,∵∠PDG+∠GDN=90°,∴∠EDN=∠PDG ,∵DE=DG ,∴△DPG ≌△DNE ,∴PG=EN ,∵△ADE 的面积=12AD EN ,△CDG 的面积=12CD GP ,∴△ADE 的面积=△CDG 的面积.【点睛】此题考查正方形的性质,三角形全等的判定及性质,利用三角形面积公式求解,根据图形得到三角形全等的条件是解题的关键.例8.(2023·福建福州市·九年级月考)如图,ABD 和AEC 均为等边三角形,连接BE 、CD .(1)请判断:线段BE 与CD 的大小关系是;(2)观察图,当ABD 和AEC 分别绕点A 旋转时,BE 、CD 之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD 、DEFG 都是正方形,猜想类似的结论是___________,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB 1与EE 1的关系是;它们分别在哪两个全等三角形中;请在如图中标出较小的正六边形AB 1C 1D 1E 1F 1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?【答案】(1)BE=CD (2)线段BE 与CD 的大小关系不会改变(3)AE =CG ,证明见解析(4)这些结论可以推广到任意正多边形.如图5,BB 1=EE 1,它们分别在△AE 1E 和△AB 1B 中,如图6,连接FF 1,可证△AB 1B ≌△AF 1F .图形见解析.【分析】本题是变式拓展题,图形由简单到复杂,需要从简单图形中探讨解题方法,并借鉴用到复杂图形中;证明三角形全等时,用旋转变换寻找三角形全等的条件.【详解】(1)线段BE 与CD 的大小关系是BE=CD ;(2)线段BE 与CD 的大小关系不会改变;(3)AE=CG .证明:如图4,正方形ABCD 与正方形DEFG 中,∵AD=CD ,DE=DG ,∠ADC=∠GDE=90°,又∠CDG=90°+∠ADG=∠ADE ,∴△ADE ≌△CDG ,∴AE=CG .(4)这些结论可以推广到任意正多边形.如图5,BB 1=EE 1,它们分别在△AE 1E 和△AB 1B 中,如图6,连接FF 1,可证△AB 1B ≌△AF 1F .【点睛】本题综合考查全等三角形、等边三角形和多边形有关知识.注意对三角形全等的证明方法的发散.模型2.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型)展开全文模型可以让同学更快的进入到几何之中,产生兴趣。

也是近来学习初中几何不可或缺的一种重要方法。

下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。

手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。

2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。

(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°.求证:BD=CE.分析:要证BD=CE可转化为证明△BAE≌△CAD,由已知可证AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS),∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。

(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS证明△ABD≌△CBE 得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论;②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE,∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°,∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°,∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,∵AF=AG GF,∴AF=BF CF.类型三共顶点正方形中的手拉手例3:如图,两个正方形ABCD与DEFG,连结CE、AG,二者相交于点H。

1. 中考几何模型--共顶点(手拉手)

1. 中考几何模型--共顶点(手拉手)

中考数学几何模型—共顶点(手拉手)模型共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似.寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点;(2)列出两组相等的边或者对应成比例的边;(3)将两组相等的边分别分散到两个三角形中去,证明全等或者相似即可.【1】常见全等模型常见结论:(自己归纳)(1)△AON≌△MOB;(2)AN=MB;(3)直线AN和直线BN的夹角特征;(4)OG平分∠AGB(5)(6)特例研究:(等边三角形)11个结论的证明:(1)△AOD≌△COB;(2)AD=CB;(3)∠AGC=60°(定值);(4)OM=ON;(5)△OMN是等边三角形;(6)MN//AB;(7)PO 是∠APB的角平分线;(8)存在多组三角形相似;(9)存在3组4点共圆;O(10)存在3组的线段和数量关系;(AG=OG+CG)(11)OG2=DG·CG;(12)两个等边三角形在运动时,有些结论是能够保持不变的【2】手拉手相似模型例1以点A为顶点作等腰Rt△ABC,等腰Rt三角形ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F,试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.变式1已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.例2如图,等边△ABC,等边△ADE,等边三角形DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF相互平分.变式2如图,等边△ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边△PCD,等边△QAE 和等边△RAB,求证:P、Q、R是等边三角形的三个顶点.例3【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系;(不必证明)【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;【拓展应用】(4)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.例4如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示)【同步巩固练习】1.如图,在正方形ABCD内任取一点E,连接AE、BE,在△ABE外分别以AE、BE为边作正方形AEMN 和EBFG.(1)按题意,在图中补全符合条件的图形;(2)在补全的图形中,求证:AN∥CF.2.等腰Rt△ABC与等腰Rt△DCE中,∠ACB=∠DCE=90°,连接AD,BE,求证:AB2+DE2=AD2+BE2.3.如图,在△ABC中,AD=DC=10,∠ADC=45°,以AC为腰在△ACD外部作等腰Rt△ACD,∠BAD=90°,连接BD,求BD的长.4.【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.5.已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,求CF.【中考真题】1.(2016广州中考25题)如图,点C为△ABD的外接圆上的一动点(点C不在弧BAD上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连接CD,求证:2AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.2.(2017淮安中考27题)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).。

中考手拉手模型专题知识解读

中考手拉手模型专题知识解读

手拉手模型专题知识解读【专题说明】手拉手模型是指有共同顶点的两个等腰三角形,顶角相等。

因为过共同顶点的四条边,像人的两双手,所以通常称为手拉手模型。

手拉手模型常和旋转结合,在考试中作为几何综合题目出现。

【方法技巧】类型一:等边三角形手拉手(1)如图,B 、C 、D 三点共线,▲ABC 和▲CDE 是等边三角形,连接AD 、BE ,交于点P(2)记AC 、BE 交点为M ,AD 、CE 交点为N(2)连接MN结论一:△ACD ≌△BCE证明:AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩→△ACD ≌△BCE (SAS)结论二:△ACN ≌△BCM ;△MCE ≌△NCD证明:MBC NAC BC AC BCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩→△ACN ≌△BCM (SAS );MCE NCD CE CDCEM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩→△MCE ≌△NCD (ASA)(4)记AD 、BE 交点为P ,连接PC :(5)结论五:∠APB=∠BPC=∠CPD=∠DPE=60°(6)连AE:结论六:P 点是▲ACE 的费马点(PA+PC+PE 值最小)类型二:正方形手拉手如图,四边形ABCD 和四边形CEFG 均为正方形,连接BE 、DG结论三:△MNC 是等边三角形.证明:60CM CNMCN =⎧⎨∠=︒⎩→△MCN是等边三角形.结论四:PC 平分∠BPD证明:△BCE ≌△ACD →CG =CH →PC 平分∠BPD.【典例分析】【类型一:等边三角形手拉手】【典例1】(2021春•西安期末)如图,在△ABC 中,BC =5,以AC 为边向外作等边△ACD ,以AB 为边向外作等边△ABE ,连接CE 、BD . (1)若AC =4,∠ACB =30°,求CE 的长; (2)若∠ABC =60°,AB =3,求BD 的长.【解答】解:(1)∵△ABE 与△ACD 是等边三角形, ∴AC =AD ,AB =AE ,∴∠DCA =∠CAD =∠EAB =60°, ∴∠EAB +∠BAC =∠CAD +∠BAC , 即∠EAC =∠BAD . 在△EAC 和△BAD 中,,∴△EAC ≌△BAD (SAS ), ∴EC =BD , 又∵∠ACB =30°,∴∠DCB =∠ACB +∠DCA =90°, ∵CD =AC =4,BC =5, ∴BD ===,结论一:△BCE ≌△DCG证明:CB CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩→△BCE ≌△DCG (SAS )结论二:BE =DG ,BE ⊥DG 证明:△BCE ≌△DCG →BE =DG ;∠CBE =∠CDG →∠DHB =∠BCD =90°(旋转角都相等)【重点概述】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.∴CE=;(2)如图,作EK垂直于CB延长线于点K.∵△ABE与△ACD是等边三角形,∴AC=AD,AB=AE,∴∠DCA=∠CAD=∠EAB=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD.在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴EC=BD,∵∠ABC=60°,∠ABE=60°,∴∠EBK=60°,∴∠BEK=30°,∴BK=BE=,∴EK===,∴EC===7,∴BD=EC=7.【变式1-1】(2021九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=√6,点D,E分别在边AC,BC上,且CD=CE=√2,此时AD=BE,AD⊥BE成立.(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.【答案】(1)解:如图所示,BE=2√2;(2)解:AD=BE,AD⊥BE仍然成立.证明:延长AD交BE于点H,∵∠ACB=∠DCE=90°,∠ACD=∠ACB−∠BCD,∠BCE=∠DCE−∠BCD,∴∠ACD=∠BCE,又∵CD=CE,AC=BC,∴△ACD≅△BCE,∴AD=BE,∠1=∠2,在Rt△ABC中,∠1+∠3+∠4=90°,∴∠2+∠3+∠4=90°,∴∠AHB=90°,∴AD⊥BE.(3)AD=√5−1或AD=√5+1【变式1-2】(2021九上·宜春期末)如图(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠ACB的度数为;②线段BE,CE与AE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上.若CE=√2,BE=2,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E 不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【解答】(1)①∵△ABC是等边三角形,∴∠ACB=60°,故答案为:60°;②∵△ACB和△DCE均为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ADC≅△BEC(SAS),∴AD=BE,∵△DCE为等边三角形,∴CE=DE,∴BE+CE=AD+DE=AE,故答案为:BE+CE=AE(2)解:∵△ACB和△DCE均为等腰直角三角形,∴AC=CB,∠CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ADC≅△BEC(SAS),∴AD=BE=2,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,CD=CE=√2,DE=√CD2+CE2=√(√2)2+(√2)2=2,∴∠CEB=∠CDA=180°−45°=135°,AE=AD+DE=2+2=4,∴∠AEB=∠CEB−∠CED=135°−45°=90°,∴△AEB是直角三角形,∴AB=√AE2+BE2=√42+22=2√5(3)如图3,由(1)知△ADC≅△BEC,∴∠CAD=∠CBE,∵∠CAB=∠ABC=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°−120°=60°,如图4,同理求得:∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.【变式1-3】(2021春•金牛区校级期中)类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.【解答】解:(1)如图1,将△APB绕着点A逆时针旋转60°得到△ACP′,∴△ACP′≌△ABP,∴AP′=AP=8、CP′=BP=15、∠AP′C=∠APB,由题意知旋转角∠P A P′=60°,∴△AP P′为等边三角形,∴P P′=AP=8,∠A P′P=60°,∵PP′2+P′C2=82+152=172=PC2,∴∠PP′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°(2)如图2,把△ABE绕着点A逆时针旋转90°得到△ACE′,则AE′=AE,CE′=CE,∠CAE′=∠BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=∠CAF+∠CAE′=∠F AE′=45°,∴∠EAF=∠E′AF,且AE=AE',AF=AF,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠B+∠ACB=90°,∴∠ACB+∠ACE′=90°,∴∠FCE′=90°,∴E′F2=CF2+CE′2,∴EF2=BE2+CF2;(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC==,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C==,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【典例2】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD =5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,又∵,∴△ACD∽△BCE;(2)解:过A作AG⊥CD于G,由(1)知,∠ACD=∠DCB=∠BCE=45°,∴AG=CG,在Rt△ACG中,由勾股定理得:∴CG=AG=3,∴S==.【变式2-1】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.【解答】解:(1)∵△ABC与△BDE都是等腰直角三角形,∴DE∥AC,∴,∴,∵∠B=45°,∴直线AE,CD相交形成的较小角的度数为45°,故答案为:;45;(2)无变化,理由如下:延长AE,CD交于点F,CF交AB于点G,∵△ABC与△BDE都是等腰直角三角形,∴∠ABC=∠DBE=45°,,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠CBD=∠ABE,又∵,∴△ABE∽△CBD,∴,∠BAE=∠BCD,∴∠F=180°﹣∠BAE﹣∠AGF=180°﹣∠BCD﹣∠BGC=∠ABC=45°;(3)如图,当DE在AB上方时,作AH⊥CD于H,由A,D,E三点在同一条直线上知,∠ADB=90°,∴AD=,由(2)知∠ADH=45°,,∴AH==,CD=,∴S△ACD=CD×AH==12+,当DE在AB下方时,同理可得S△ACD=×CD×AH==12﹣,【类型二:正方形手拉手】【典例3】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.【解答】解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500【变式3】(2021秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.【解答】解:(1)CD=BF且CD⊥BF,理由如下:∵四边形ABED和四边形ACGF都是正方形,∴AD=AB,AC=AF,∠DAB=∠CAF=90°,又∵∠DAC=∠DAB+∠BAC,∠BAF=∠CAF+∠BAC,∴∠DAC=∠BAF,在△DAC与△BAF中,,∴△DAC≌△BAF(SAS),∴DC=BF,∴∠AFB=∠ACD,又∵∠AFN+∠ANF=90°,∠ANF=∠CNM,∴∠ACD+∠CNM=90°,∴∠NMC=90°,∴BF⊥CD;(2)∵AD=AB,AC=AF,CD=BF,∠DAB=∠CAF=90°,∴△ADC可看成是△ABF绕点A顺时针旋转90°得到的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
A D
B
C E A
D B C
E D C B A 图3图21图
O
H G A B C D
M P
D
E C B
A 手拉手模型
模型 手拉手
如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。

结论:△BAD ≌△CAE 。

模型分析
手拉手模型常和旋转结合,在考试中作为几何综合题目出现。

模型实例
例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等?
(2)AG 与CB 之间的夹角为多少度?
3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE
和AD 的中点。

求证:△CPM 是等边三角形。

F
E
C
B A
H
D
E
C
B A
1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在
BC上,且AE=CF。

(1)求证:BE=BF;
(2)若∠CAE=30°,求∠ACF度数。

2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明:
(1)AE=DC;
(2)∠AHD=60°;
(3)连接HB,HB平分∠AHC。

B A D
C P E 3图B
D A
E C 图21
图P D
E C B
A
3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。

将△ADE
绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。

(1)如图②,证明:BD=CE ,BD ⊥CE ;
(2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

F G H
D E C B
A 4.如图,直线A
B 的同一侧作△ABD 和△BCE 都为等边三角形,连接AE 、CD ,二者交点为H 。

求证:
(1)△ABE ≌△DBC ; (2)AE=DC ;
(3)∠DHA=60°; (4)△AGB ≌△DFB ;
(5)△EGB ≌△CFB ;
(6)连接GF ,GF ∥AC ; (7)连接HB ,HB 平分∠AHC 。

相关文档
最新文档