测试技术实验指导书

合集下载

工程测量实验指导书

工程测量实验指导书

工程测量实验指导书摘要:一、实验目的二、实验原理三、实验仪器与设备四、实验步骤1.准备工作2.测量过程3.数据处理与分析五、实验报告要求六、注意事项正文:【实验目的】本实验旨在使学生掌握工程测量的基本原理和方法,熟练使用测量仪器,培养学生的动手能力和实际操作技能。

【实验原理】工程测量是研究和应用测量理论与技术,对各种工程项目的几何形状、大小、位置及物理特性进行测量、描述和评价的一门学科。

实验中将涉及到测量误差的计算与分析,以及全站仪、经纬仪、水准仪等测量仪器的使用。

【实验仪器与设备】1.全站仪2.经纬仪3.水准仪4.测距仪5.测量标尺6.其他辅助工具【实验步骤】【准备工作】1.检查实验仪器,确保仪器状态良好,功能正常。

2.熟悉实验流程,了解各步骤的操作要点。

3.确定实验场地,做好安全措施。

【测量过程】1.使用经纬仪进行角度测量。

2.使用水准仪进行高差测量。

3.使用全站仪进行距离测量。

4.记录测量数据,整理测量成果。

【数据处理与分析】1.计算测量误差,分析误差来源。

2.对测量数据进行处理,得出最终测量结果。

3.分析实验过程中存在的问题,提出改进措施。

【实验报告要求】1.详细记录实验过程,包括测量数据、计算过程和分析结果。

2.绘制实验成果图,清晰展示测量结果。

3.撰写实验报告,对实验过程和结果进行总结,并提出建议。

【注意事项】1.严格遵守实验纪律,确保实验安全。

2.爱护实验仪器,正确使用和存放。

3.注重实际操作,培养良好的动手能力。

汽车传感器与测试技术实验指导书(2个实验)

汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验一、实验目的:1、、了解电涡流传感器原理;2、掌握电涡流传感器的应用方法;二、基本原理:电涡流传感器的基本原理通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

三、需用器件与单元:电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。

四、实验步骤:测微头的组成与使用测微头组成和读数如图8-2测微头读数图图8-2 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

电涡流传感器测位移1)电涡流传感器和测微头的安装、使用参阅图8-5。

高电压试验技术实验指导书

高电压试验技术实验指导书

高电压试验技术实验高电压试验技术的实验是在具体的试验设备上研究高电压及冲击大电流的产生和测量。

通过有关实验,了解各种试验装置的类型、具体结构及操作方法;掌握各种测量装置和仪器、仪表的使用方法。

一般来说,工频高电压、直流高电压、冲击高电压和冲击大电流的产生和测量,都可以在实验室现有的试验设备上进行。

开展教学实验时,如果受客观条件的限制,可采用模拟实验装置。

高电压试验技术中涉及的设备是实现绝缘强度试验的主要设备。

本章以工频高压的产生和测量、冲击电压的产生和测量和避雷器阀片实验为例介绍了电气设备的高电压和大电流的试验方法。

掌握这些试验方法,对巩固理论知识和指导今后的工作都具有实际意义。

实验一工频高压的产生和测量一、实验目的:1、掌握高压试验变压器的试验接线与操作方法。

2、掌握高压试验变压器校正曲线的制定方法。

3、掌握工频高压的几种测量方法:用测量球隙进行测量、用高压静电电压表进行测量和用工频分压器(电容式分压器)配合低压仪表进行测量。

二、实验装置及线路图:工频实验装置如图1所示。

2R 1R 2G图1工频高压试验线路图T 1—调压器,220V/450V/56KVA ;T 2—高压试验变压器,50KV/280V/50KVA ;V l —交流电压表,75/150/300V ,0.5级;V 2—静电电压表,20KV/5OKV ,1.5级;V 3—交流电压表或示波器;R 1—变压器保护电阻,10~20K ;R 2—球隙保护电阻;Cx —试品三、实验说明工频高电压试验装置通常由调压器、试验变压器、保护电阻、分压器和静电电压表以及球隙等组成。

试验变压器的工作原理与电力变压器相同,但由于工作条件和工作任务的不同,试验变压器具有工作电压高、变比大、漏抗大、绝缘裕度小、容量小、工作时间短等特点。

其主要类型有单套管金属外壳型试验变压器、双套管金属外壳型试验变压器、绝缘外壳型试验变压器和串级试验变压器。

进行工频高电压试验时,要求试验电压从零开始,均匀升压,因此必须使用调压设备。

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书机械工程测试技术实验指导书——传感器与检测技术罗烈雷编机械工程系机械工程测试技术实验指导书——传感器与检测技术一、测试技术实验的地位和作用《传感器与检测技术》课程,在高等理工科院校机械类各专业的教学打算中,是一门重要的专业基础课,而实验课是完成本课程教学的重要环节。

其要紧任务是通过实验巩固和消化课堂所讲授理论内容的明白得,把握常用传感器的工作原理和使用方法,提高学生的动手能力和学习爱好。

其目的是使学生把握非电量检测的差不多方法和选用传感器的原则,培养学生独立处理问题和解决问题的能力。

二、应达到的实验能力标准1、通过应变式传感器实验,把握理论课上所讲授的应变片的工作原理,并验证单臂、半桥、全桥的性能及相互之间关系。

2、通过差动变压器静态位移性能测试和差动变压器零点残余电压的补偿电路设计,把握理论课上所讲授的差动变压器的工作原理和零点残余电压的补偿措施。

3、通过电涡流式传感器的静态标定和被测体材料对电涡流式传感器特性的阻碍实验,把握理论课上所讲授的电涡流式传感器的原理及工作性能,验证不同性质被测体材料对电涡流式传感器性能的阻碍。

4、通过差动面积式电容传感器的静态及动态特性测试,了解差动面积式电容传感器的工作原理及其特性。

5、通过磁电感应式传感器的性能和霍尔式传感器直流静态位移特性的测试方法,把握磁电感应式传感器的工作原理及其性能和霍尔式传感器的工作原理及其特能。

6、通过压电式传感器的动态响应和引线电容对电压放大器与电荷放大器的阻碍实验,把握压电式传感器的原理、结构及应用和验证引线电容对电压放大器的阻碍,了解电荷放大器的原理和使用方法。

7、通过光敏三极管和光敏电阻的性能测试,把握光电传感器的原理与应用方法。

8、热电偶和热敏电阻的性能测试的方法,把握热电偶的原理和 NTC 热敏电阻的工作原理和使用方法,并对传感器灵敏度线性度进行分析。

9、通过差动放大器和低通滤波器设计和测试,把握差动放大器和滤波器的设计方法和性能测试方法。

软件测试技术实验指导书

软件测试技术实验指导书

软件测试技术实验指导书公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-《软件测试技术》实验指导书实验1、自由测试一、实验目的1.理解软件测试的概念。

2.提高反向思维的能力。

二、实验任务针对某产品Beta的版本,对照其竞争对手的产品,进行测试,以发现该软件产品潜在的任何问题,记录下来。

Discuz! X beta 对比 PHPWind实验2、黑盒测试方法:等价类划分法+边界值分析方法一、实验目的1.掌握等价类、有效等价类、无效等价类、边界值等概念。

2.掌握边界值分析法、等价类划分法的测试用例设计方法。

3.能够将这两种方法结合起来,灵活运用二、实验任务以下三个任务、至少完成一个1、对三角问题综合运用边界值分析方法、等价类划分方法设计测试用例。

三角形问题:void Triangle (int a, int b, int c)函数规定输入三个整数a、b、c分别作为三边的边长构成三角形。

通过程序判定所构成的三角形的类型(等边三角形、等腰三角形、一般三角形、构不成三角形),并在屏幕上输出。

1<=a,b,c<=200。

实验步骤:①划分等价类,得到等价类表。

等价类表格式如下:②综合运用这两种方法设测试用例,得到测试用例表:③综合运用这两种方法设测试用例,得到测试用例表:④根据上述测试用例表,能否进行优化,获得最小测试用例集合:2、对于找零钱最佳组合问题运用边界值分析法设计测试用例。

实验步骤:①分析边界值。

②运用健壮性边界条件法设计测试用例,得到测试用例表(测试用例表格式同实验1)。

③执行测试,填写软件缺陷报告(软件缺陷报告格式同实验1)。

3、现有一个程序int CheckTel(char *rc, char *n)执行电话号码有效性检查功能,中国的固定电话号码由两部分组成。

这两部分的名称和内容分别是:地区码(rc):以0开头的三位或者四位数字(包括0)。

电话号码(n):以非0、非1开头的七位或者八位数字。

《测试技术》实验指导书

《测试技术》实验指导书
以标准重量进行标定。测试已有应变片测力传感器在加静载重量下应变及 应力计算。要在不同配重下作多次测试和分析。
测试在冲击载荷下的受力最大值及变化过程。 三、实验原理
LC1004 动态应变仪为八通道采用电子自动平衡技术,其主要技术指标处于 国际领先水平,配接不同类型的应变片及应变式传感器,除了测量结构和材料 的应变外,还可以测量力、压力、扭矩、温度、加速度、速度、位移等多种物 理量。桥路零点自动平衡 测试方便快捷;自动修正长电缆测量时引入的误差。 1、 测量系统方框图:
2
实验一 电阻应变片的粘贴技术
实验项目性质:验证性实验 实验计划学时:2 学时 一、实验目的
1、初步掌握常温用电阻应变片的粘贴技术。 2、为后续电阻应变测量的实验做好在试件上粘贴应变片、接线、防潮、检查等 准备工作。 二、实验内容 掌握应变片的粘贴方法与技巧。 三、实验方法和步骤 1、选片:
在确定采用那种类型的应变计后,用肉眼或放大镜检查丝栅是否平行,有 否霉点、锈点、用数字式万用表测量各应变片电阻值,选择电阻值差在土 0.5 欧姆内的 8~10 枚应变片供粘贴用。 2、测点表面的清洁处理:
图为 一应变片方式 2 线系统
图为二应变片方式 2 线系统
6
图为四应变片方式 在连接成三种接线方式时,必须使用 120 的应变测量片,为防止电磁干扰, 特别是 50Hz 干扰,桥盒与应变片之间的连线要用屏蔽线,并且屏蔽网要做好接 地处理。
四、实验仪器设备 1、悬臂梁 ,加载砝码。 2、应变片、数字万用电表、502 胶水等贴片材料及在补偿块一个。 3、 LC1004 动态应变仪。
为防止在导线被拉动时应变计引出线被拉坏,可使用接线端子,接线端子相 当于接线柱,使用时先用胶水把它粘在应变计引出线前端,然后把应变计引出线 及导线分别焊于接线端子的两端,以保护应变计,如上图所示。 6、防潮处理:

软件测试技术实验指导书—2016.pdf(终稿)

软件测试技术实验指导书—2016.pdf(终稿)

软件测试技术实验指导书谢红薇、崔冬华、宋晓涛、兰方鹏编写2016 年9 月16 日实验名称实验二黑盒测试方法实验地点实验时间一、实验目的和要求⑴熟练掌握黑盒测试方法中的等价类测试方法和边界值测试方法。

⑵通过实验掌握如何应用黑盒测试方法设计测试用例。

⑶运用所学理论,完成实验研究的基本训练过程。

二、实验内容和原理1.用你熟悉的语言编写一个判断三角形问题的程序。

要求:读入代表三角形边长的三个整数,判断它们能否组成三角形。

如果能够,则输出三角形是等边、等腰或一般三角形的识别信息;如何不能构成三角形,则输出相应提示信息。

2.使用等价类方法和边界值方法设计测试用例。

三、主要仪器设备笔记本电脑四、操作方法与实验步骤⑴先用等价类和边界值方法设计测试用例,然后用白盒法进行检验与补充。

⑵判断三角形问题的程序流程图和程序流图如图1和图2所示。

用你熟悉的语言编写源程序。

⑶使用等价类方法设计测试用例,并填写完成表2和表3。

⑷输入设计好的测试用例,执行源程序,记录输出结果。

表2. 等价类划分表输入条件有效等价类无效等价类是否构成三角形是否等腰三角形是否等边三角形表3. 测试用例表用例编号测试数据(A, B, C)等价类覆盖情况输出五、实验数据记录和处理六、实验结果与分析七、讨论、心得图3⑶在弹出的“Record and Run Settings”对话框中切换至“Windows Applications”标签,如图4所示:图4⑷在弹出的对话框中,选择“Application details:”中右边的“+”标签,如图5所示:图5⑸在弹出的对话框中按照默认选项选择,然后点击“ok”按钮,如图6所示:图6⑹在弹出的“Login”界面中输入用户名和密码,如图7所示。

注意:用户名至少是4个字符,密码是“mercury”。

图7⑺在弹出的“Flight Reservation”窗口中选择订票日期、出发地和目的地,然后选择“Flight”图标选择航班,如图8所示。

机械工程测试实验

机械工程测试实验

《机械工程测试技术》实验指导书实验一、霍尔传感器的直流激励特性一、实验目的加深对霍尔传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制霍尔传感器静态特性特性曲线,掌握数据处理方法。

二、实验原理当保持元件的控制电流恒定时,元件的输出正比于磁感应强度。

本实验仪为霍尔位移传感器。

在极性相反、磁场强度相同的两个钢的气隙中放置一块霍尔片,当霍尔元件控制电流I不变时,Vh与B成正比。

若磁场在一定范围内沿X方向的变化梯度dB/dX为一常数,则当霍尔元件沿X方向移动时dV/dX=RhXIXdB/dX=K,K为位移传感器输出灵敏度。

霍尔电动势与位移量X成线性关系,霍尔电动势的极性,反映了霍尔元件位移的方向。

三、实验步骤1.有关旋钮初始位置:差动放大器增益打到最小,电压表置2V档,直流稳压电源置±2V档。

2..RD、r为电桥单元中的直流平衡网络。

3.差动放大器调零,按图6-1接好线,装好测微头。

4.使霍尔片处于梯度磁场中间位置,调整RD使电压表指示为零。

5.上、下旋动测微头,以电压表指示为零的位置向上、向下能够移动5mm,从离开电压表指示为零向上5mm的位置开始向下移动,建议每0.5mm读一数,记下电压表指示并填入数据记录表。

6.用以上的位移和输出电压数据,绘出霍尔传感器静态特性的位移和输出电压特性V-X曲线, 指出线性范围。

7.将位移和输出电压数据分成两组,用“点系中心法”对数据进行处理,并计算两点联线的斜率,即得到灵敏度值。

实验可见:本实验测出的实际是磁场的分布情况,它的线性越好,位移测量的线性度也越好,它们的变化越陡,位移测量的灵敏度也就越大。

数据记录表四、思考题1.为什么霍尔元件位于磁钢中间位置时,霍尔电动势为0。

2.在直流激励中当位移量较大时,差动放大器的输出波形如何?实验二、电容传感器的直流特性实验内容:加深对电容传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制电容传感器静态特性曲线,掌握数据处理方法。

测试技术实验指导书(实验三悬臂梁应变综合实验)

测试技术实验指导书(实验三悬臂梁应变综合实验)

实验三悬臂梁应变综合实验一、试验目的1)掌握电阻应变片的粘贴工艺过程及方法。

2)掌握应变传感单元(电桥)测量的工作原理。

3)通过对悬臂梁的应变测量,掌握动静态应变测量的基本方法。

二、实验原理电阻应变测量技术是一种确定构件表面应力状态的实验应力分析方法。

其原理是将电阻应变片粘贴在被测构件表面上,当构件受力变形时.应变片的电阻值发生相应的变化。

通过电阻应变仪测定应变片中电阻值的改变,井换算成应变值或者输出与应变成正比的电信号,用模拟或数字记录设备记录信号,就可得到被测量的应变或应力。

目前,电阻应变测量技术已成为实验应力分析中广泛应用的一种方法,具有如下特点:应变片尺寸小、重量轻.一股不影响构件的工作状态和应力分布。

测量灵敏度、精度高。

应变最小分辨率可达1微应变。

测量应变的范围广。

可由1微应变到几万微应变。

频率响应好。

可测量0 ~ 10万赫的动应变。

可在高温、低温、高速旋转及强磁场等环境下进行测量。

由于测量过程中输出的是电信号,因此容易实现自动化、数字化,并能进行远距离测量和无线电遥测。

通用性好。

不但适用于测量应变,而且可制成各种高精度传感器,用于测量载荷、位移、加速度、扭矩等力学量。

不过该测量方法也有它的缺点,主要表现在只能测量构件表面某一方向的应变,应变计有一定栅长,只能测定栅长范围内的平均应变。

在应力集中的部位,若应力梯皮很陡,则测量误差较大。

电阻应变片由于构件变形而发生的电阻变化ΔR用惠斯顿电桥来测量,如图所示。

电阻应变片是将被测点的应变量转换为电阻变化率ΔR/R(以应变片的灵敏度S g来衡量)。

电阻应变仪是将这电参量,经放大处理后再转换成应变量。

电阻应变测量分析系统(仪),主要由传感单元(应变计与电桥)、信号放大/调理器、数据采集和输出(显示/记录)三部分所组成。

电桥的输出电压u y与各桥臂上应变片的应变(ε1、ε2、ε3、ε4)代数和成线性关系,计算公式如下:其中:S g — 应变片的灵敏度 u 0 — 供桥电压(V) 上式表明:相邻桥臂的电阻变化率(或应变)相减,相对桥臂的电阻变化率(或应变)相加。

电子测量实验指导书

电子测量实验指导书
信号源频率(KHz)
0.113
0.226
0.554
1.1
2.2
测量值(cm)
计算值(周期)(mS)
计算值(频率)(KHz)
误差
五 实验报告及总结
1.根据实验测量的结果,分别分析测试误差,并填入表中;
2.分析误差产生的原因;
3.此次实验的结果的置信度如何?并说明实验的目的是什么?
一、实验目的
1.熟悉数字存储示波器的工作原理;
示波器能把非常抽象的,眼睛看不到的电过程,变换成具体的看得见的图像。因此,使用示波器测量电压和电流时,可在显示被测电压或电流幅值的同时,还可显示波形、频率、相位。这是其它电压测量仪表,如电压表等无法做到的。一般电压表的读数与被测电压波形有关,而用示波器测量时,其精度可不受被测电压和电流波形形状的影响。另外,示波器的响应速度极快,也没有指针式仪表所具有的惯性。但是,示波器作定量测试时,测试值是以屏面上波形幅值所占的垂直刻度值乘Y 轴偏转灵敏度得出的,而屏面上波形幅值所占的垂直刻度值将受到光迹宽度、视差及示波器固有误差和工作误差等因素的影响,往往不易精确读出测试值,这就决定了示波器的测试精度不可能太高。
图2.1 用示波器进行周期测量 图2.2 用示波器进行幅度峰峰值测量
周期的波形测量:周期T=△T格*扫描档位ms/格;如果△T包含3格完整周期,周期T=(△T格*扫描档位ms/格)/3,可以减少视在误差。
幅度测量(峰峰值):Vpp=B格*Y轴档位mV/格
表1
输入正弦波
示波器测周期T
示波器测Vpp
万用表测有效值
实测电压值(计算值V)
误差
4.重复上述步骤,测量Y2的偏转灵敏度;并将测量结果填入表2中。
表2 Y2偏转灵敏度的测定(用万用表直流电压档测直流电压设定2V)

CVI实验指导书2012版

CVI实验指导书2012版

现代测试技术实验指导书西安交通大学测控教研室2012年3月目录实验一 熟悉LabWindows/CVI集成软件开发环境 2 实验二 虚拟波形发生器演示仪 20 实验三 模拟信号的采集及其信号频率的计算 41 实验四 虚拟频谱分析演示仪 46 实验五 温度的测量 52 实验六 电量测量的研究 57 实验七 磁性材料磁特性测量的研究 65现代测试系统软件平台基础训练实验一熟悉LabWindows/CVI集成软件开发环境一、实验目的1.掌握工程项目窗口(Project Window)中各菜单选择项的使用方法。

2.掌握用户接口编辑窗口(User Interface Editor window)的使用和功能3.掌握源代码窗口(Source window)的使用和功能4.了解函数面板(Fuction Panel)的使用和功能二、实验原理LabWindows/CVI是一个ANSI C的集成开发环境。

它包含了32位的编译、链接器,以及先进的编辑与调试工具。

LabWindows/CVI编写的虚拟仪器软件基本组成框图,如图1-8所示。

图1-1 LabWindows/CVI编写的虚拟仪器软件基本组成框图LabWindows/CVI开发环境有4个主要的界面窗口(window):¾工程项目窗口(Project Window) ——生成*.prj文件¾用户接口编辑窗口(User Interface Editor window) ——设计*.uir文件¾源代码窗口(Source window)——编辑*.c文件¾函数面板窗口(Function Panel)。

其中:9*.prj文件:工程文件,它是最终的运行文件。

由*.uir、*.c和*.h文件组成。

9*.c文件:源程序文件,用户编写的程序代码就在此文件中,是标准的C语言程序。

9*.uir文件:用户接口文件,该文件为虚拟仪器的面板文件,类似VB或VC中的窗口体文件,包含如旋钮、开关等各类控件。

超声波测量实验指导书

超声波测量实验指导书
小误差? 五、附录 C JDUT-2 型超声波实验仪操作说明 1 仪器连接
图5 仪器连接示意图 如图5所示 , 当采用单探头工作方式时 , 利用三通线把发射接收 接头连接起来 ,
然后与探头连接。示波器采用外触发工作方式 , 连接超声仪触发接头与示波器外触发 输入口。分别把信号检波输出和射频输出与示波器第一、第二通道输入口相连 , 或则 根据需要只接其中一种输出方式。
L C(t2 t1) 2
(4)
其中 ,C 是试块的声速 , t1 是第一界面反射回波的传播时间, t2 是第二界面反射回波
的传播时间。
对于规则几何形状的物体 , 如被测试块 , 其宽度方向和厚度方向的界面可以产生
多 次反射回波。相邻两个回波之间的传播时间为声波在界面之间传播时间的两倍。
图4 表面波测长示意图 表面波测量也弧面的长度方法如图4所示 , 出现的两个反射回波分别对应于表 面波传播路径上两个突变点B1和 B2 。 四、 思考题: 五、 1.超声波探头与被测物体之间为何要加偶合剂?耦合剂的选择应遵从什么原则? 2.本次实验中,超声声速的测量误差主要是哪些因素引起的,应采取哪些措施来减
(2) 超声仪的输出信号被限幅在 5V 左右 , 因此示波器在测量过 程中,一般要求被 测信号幅度不超过 2V 。
( 3) 利用 CSK-IB 钢试块时 , 可以用水或则机油作为耦合剂 : 利用 CSK-IC 铝试 块时 , 必须用机油作为耦合剂。实验完成后 ,必须擦干净试块上残余的耦合剂, 否则 会损坏试块。
超声波检测技术,就是利用超声波的高频率和短波长所决定的传播特性。即: (1)具有束射性(又叫指向性),如同一束光在介质中是直线传播的,可以定向控 制。 (2)具有穿透性,频率越高,波长越短,穿透能力越强,因此可以探测很深(尺寸 大)的零件。穿透的介质超致密,能量衰减越小,所以可用于探测金属零件的缺陷。 (3)具有界面反射性、折射性,对质量稀疏的空气将发生全反射。声波频率越高, 它的传播特性越和光的传播特性接近。如超声波的反射、折射规律完全符合光的反射、 折射规律。 利用超声波在零件中的匀速传播以及在传播中遇到界面时发生反射、折射等特性, 即可以发现工件中的缺陷。因为缺陷处介质不再连续,缺陷与金属的界面就要发生反射 等。如图1所示超声波在工件中传播,没有伤时,如图1a,声波直达工件底面,遇界面 全反射回来。当工件中有垂直于声波传播方向的伤,声波遇到伤界面也反射回来,如图 1b。当伤的形状和位置决定界面与声波传播方向有角度时,将按光的反射规律产生声波 的反射传播。

《岩土原位测试技术实验指导书》

《岩土原位测试技术实验指导书》

岩土原位测试技术实验指导书中南大学地学与环境工程学院勘察与基础工程研究所2005年10月目录实验一动力触探实验 (3)实验二平板载荷实验 (6)实验三旁压实验 (11)实验四静力触探—十字板剪切联合实验 (19)附录 (25)实验一动力触探实验一、实验目的1.熟悉动力触探仪的使用方法;2.掌握动力触探仪的工作原理;3.掌握动力触探实验实验成果的应用;4.培养学生分析问题和解决问题的能力。

二、实验原理利用一定的锤击动能,将一定规格的圆锥探头打入土中,然后根据打入土中的难以易程度来判断土的性质。

(根据能量平衡的原理进行分析)三、实验方法圆锥动力触探实验技术要求应符合下列规定:1. 采用自动落锤装置;(重型以上)2. 触探杆最大偏斜度不应超过2%,锤击贯入应连续进行;同时防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度;锤击速率每分钟宜为15~30 击;3. 每贯入1m,宜将探杆转动一圈半;当贯入深度超过10m,每贯入20cm 宜转动探杆一次;4. 对轻型动力触探当N10>100 或贯入15cm 锤击数超过50 时,可停止实验;对重型动力触探,当连续三次N63.5>50 时,可停止实验或改用超重型动力触探。

四、实验仪器设备动力触探仪包括导向杆、穿心锤、锤垫、探杆及探头。

五、实验步骤1.先用钻具钻至试验深度;2.将重锤提至一定高度自由落下,记录贯入一定深度的锤击数;3.完成某一深度的动力触探试验,上提钻具。

六、实验数据处理1.数据处理圆锥动力触探实验成果分析应包括下列内容:1 )单孔连续圆锥动力触探实验应绘制锤击数与贯入深度关系曲线;2 )计算单孔分层贯入指标平均值时,应剔除临界深度以内的数值、超前和滞后影响范围内的异常值;3) 根据各孔分层的贯入指标平均值,用厚度加权平均法计算场地分层贯入指标平均值和变异系数。

2.动力触探实验成果应用根据圆锥动力触探实验指标和地区经验,可进行力学分层,评定土的均匀性和物理性质(状态、密实度)、土的强度、变形参数、地基承载力、单桩承载力、查明土洞、滑动面、软硬土层界面,检测地基处理效果等。

山东大学测试技术实验指导书

山东大学测试技术实验指导书

实验一信号分析一、实验目的1.掌握信号时域参数的识别方法,学会从信号时域波形中观察和获取信号信息。

2.加深理解傅立叶变换的基本思想和物理意义,熟悉典型信号的频谱特征,掌握使用频谱分析提取测量信号特征的方法。

3.理解信号的合成原理,观察和分析由多个频率、幅值和相位成一定关系的正弦波叠加的合成波形。

4. 初步了解虚拟仪器的概念。

二、实验原理1.信号时域分析信号时域分析又称为波形分析或时域统计分析,它是通过信号的时域波形计算信号的均值、均方值、方差等统计参数。

信号的时域分析很简单,用示波器、万用表等普通仪器就可以进行分析。

通过本实验熟悉时域参数的识别方法,能够从信号波形中观测和读取所需的信息,也就是具备读波形图的能力。

2信号频谱分析信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。

频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,揭示了信号的频率信息。

信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。

工程上习惯将计算结果用图形方式表示,以频率f为横坐标,X(f)的实部和虚部为纵坐标画图,称为时频-虚频谱图;以频率f为横坐标,X(f)的幅值。

和相位为纵坐标画图,则称为幅值-相位谱。

附:软件介绍机械工程测试实验程序是以LabVIEW为平台开发的虚拟仪器软件,程序包含了信号分析、信号合成、采样定理、窗函数、相关分析等子程序。

程序可以按照设定的信号类型、频率、相位等参数生成仿真信号,并可以对生成的信号进行频谱分析、信号合成、滤波等操作。

波形可以通过显示窗口中呈现出来(如图1-1所示)。

图1-1波形显示缩放的操作坊法在显示窗口中的工具栏,可以对窗口中的波形现实进行调整。

1 拖动工具:用来对波形进行拖动;2 缩放工具:来实现对波形的多种形式的缩放,此包括图1-2所示的选择项。

《电子测量与检测》实验指导书

《电子测量与检测》实验指导书

《电子测量与检测》实验指导书一、电子测量与检测实验须知电子测量与检测实验的目的是使学生了解一些电气设备和各种非电量电测传感元件,理解一定的非电量电测技术,学会使用常用的测量仪器仪表,掌握基本的非电量电测方法。

要求学生通过实际操作,培养独立思考、独立分析和独立实验的能力。

为使实验正确、顺利地进行,并保证实验设备、仪器仪表和人身的安全,在做检测与转换技术实验时,需知以下内容。

1.实验预习实验前,学生必须进行认真预习,掌握每次实验的目的、内容、线路、实验设备和仪器仪表、测量和记录项目等,做到心中有数,减少实验盲目性,提高实验效率。

2.电源(1)实验桌上通常设有单相(或三相)交流电源开关和直流电源开关,由实验室统一供电,实验前应弄清各输出端点间的电压数值。

(2)实验桌(或仪器)上配有直流稳压电源,在接入线路之前应调节好输出电压数值,使之符合实验线路要求。

特别是在实验线路中,严禁将超过规定电压数值的电源接入线路运行。

(3)在进行实验线路的接线、改线或拆线之前,必须断开电源开关,严禁带电操作,避免在接线或拆线过程中,造成电源设备或部分实验线路短路而损坏设备或实验线路元器件。

3.实验线路(1)认真熟悉实验线路原理图,能识图并能按图接好实验线路。

(2)实验线路接线要准确、可靠和有条理,接线柱要拧紧,插头与线路中的插孔的结合要插准插紧,以免接触不良引起部分线路断开。

(3)线路中不要接活动裸接头,线头过长的铜丝应剪去,以免因操作不慎或偶然原因而触电,或使线路造成意想不到的后果。

(4)线路接好后,应先由同组同学相互检查,然后请实验指导教师检查同意后,才能接通电源开关,进行实验。

4.仪器仪表(1)认真掌握每次实验所用仪器仪表的使用方法、放置方式(水平或垂直),并要清楚仪表的型号规格和精度等级等。

(2)仪器仪表与实验线路板(或设备)的位置应合理布置,以方便实验操作和测量。

(3)仪器仪表上的旋钮有起止位置,旋转时用力要适度,到头时严禁强制用力旋转,以免损坏旋钮内部的轴及其连接部分,影响实验进行。

测试技术实验指导书

测试技术实验指导书

实验一光电感测传感器性能实验一、实验目的了解光敏晶体管、光遮断器的特性二、实验仪器设备1、KL-62001 实验器。

2、模板KL-64001,KL-64002,KL-64003。

3、连接线2mm-0.65mm。

4、附件:小磁铁三、实验电路原理说明(一)、光电晶体光控电路本电路由光电晶体所构成的光控开关电路。

当光电晶体不受光时,C、E 两端为截止状态,因此输出端为高电位。

当受光时,受光强度的大小,输出电压随之做大小变化。

(二)、光遮断器当光遮断器的检测口没有物体通过时,发光二极管加一偏压,产生一光源,此一光源,照射光电晶体,集电极电流变大,使集电极电位(Vo)下降。

一旦光束被检测物阻断时,光电晶体的集电极电路下降,集电极电压(Vo)上升。

利用集电极电压的高低变化,并将输出波形加以调整,即可侦测物体的有无。

四、实验步骤与记录(一)、光电晶体1、依图所示,取出KL-64001 模板的PHOTO TRANSISTOR 区域。

2、输出Vo1 端接KL-62001 STATUS DISPLAY & DCV INPUT 正端,接地接INPUT 负端。

3、KL-62001 接线图4、将KL-62001 主机的电源打开,此时显示器应亮。

5、将KL-62001 STATUS DISPLAY & DCV MODE 选在DCV,RANGE 定在20V。

6、当光电晶体不受光时(用手将光电晶体的受光面遮住),量测Vo1 端的电压值,记录。

7、当光电晶体受光时(以日光灯直射时),量测Vo1 端的电压值,记录。

8、光源打开,移动光电晶体与光源的距离,记录。

距离 0cm 5cm 10cm 15cm 20cm 30cm 40cm 50cmVo1(二)、光遮断器1、依图所示,找出KL-64001 模板的PHOTO INTERRUPTOR 区域。

Vo2 端接至KL-62001 STATUS DISPLAY & DCV INPUT 正端,接地端接至INPUT 负端。

《光学测试技术》实验指导书-深圳大学光电工程学院

《光学测试技术》实验指导书-深圳大学光电工程学院
斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究 它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、 对比度和散斑运动规律等特点的认识。
图1
光散斑的产生(图中为透射式,也可以是反射式的情形)
图 1 说明激光散斑具体的产生过程。当激光照射在粗糙表面上时,表面上的每 一点都要散射光。因此在空间各点都要接受到来自物体上各个点散射的光,这些光 虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。来自粗糙表面 上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。颗粒的 大小,可用它的平均直径来表示,而颗粒尺寸的严格定义是两相邻亮斑间距离 的
铜片散斑图
铝片散斑图
3
实验二 面内位移的散斑测量实验
一、 实验目的 1. 掌握散斑测量平面位移的基本原理 2. 进行面内位移的散斑测量, 二、 实验原理 当物体发生位移时,引起前方空间散斑场分布的变化,通过测量散斑场的变 化,从而得 到物体位移的相关信息。测量面内位移的原理见图 1。实际测量时, 以单束激光 S 照射物体 U 的表面,在物体前方空间将充满散斑,取相机靶面平行 物平面的位置。当物体发生位移时,空间散斑颗粒也发生位移,则空间散斑在数字 相机靶面上也同样发生位移,在电脑中分别记录下物体位移前后的空间散斑图。在 位移前散斑图上,取散斑某子区,将其在位移后的数字散斑图上进行相关搜索,由 相关系数的最大值求出位移值。 对散斑测量形成定性认识
1
统计平均值。 此值由产生散斑的激光波长λ及粗糙表面圆形照明区域对该散斑的孔 径角 u’所决定,即 若经过一个光学系统,在它的像平面上形成的散斑,称为成像散斑,则
在斑干涉技术中,常常应用成像散斑来进行测量。 散斑的基本性质: 1. 散斑与均匀场的相干结合,散斑图与相应的单独散斑图分布差别不大,只 是全暗光斑较少一些 2. 散斑与均匀场的不相干叠加,没有全暗散斑 3. 两个散斑场的相干相加,散斑的大小没有明显变化 4. 两个散斑场的非相干相加,没有全暗光斑 三、 实验器材 光电实验平台、电脑 四、 实验光路图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试技术实验指导书赵爱琼编付俊庆审长沙理工大学测控教研室07 年3 月前言测试技术是一门实践非常强的技术基础课,通过实验,了解测试系统中各环节(包括传感器、信号变换与放大、仪表显示与记录装置、实验数据的计算机分析与处理)的作用与特点,加深同学们对测试技术基本内容和基本概念的理解。

本实验指导书适用于交通运输、机电、机制、测控、自控、车辆工程,汽车服务工程、电子信息等专业的测试技术课、检测与传感器技术课、传感器与自动检测课、传感器原理及应用等课的实验。

各专业可根据课时的需要适当取舍,要求同学们在实验中要动脑动手,以达到提高实验动手能力的目的。

本实验指导书由赵爱琼老师编写,付俊庆教授审稿,并经测控教研室全体老师讨论定稿由于编写仓促,水平有限,书中缺点错误在所难免,恳请读者批评指正测控教研室07年3月目录实验一霍尔传感器特性实验实验二电涡流传感器特性实验实验三电容传感器特性实验实验四压电式传感器特性实验与振动实验实验五电阻应变片及电桥性能实验实验六动应力测量实验七振动测量实验八应变式传感器测量系统的设计附一:CSY——2000系列传感器与检测技术实验台组成附二:实验报告格式与要求霍尔传感器特性实验一、实验目的:1、掌握霍尔传感器的工作原理及特性2、掌握霍尔传感器的静态标定方法3、了解霍尔传感器在振幅测量中的应用二、实验器材:1、CSY-2000传感器与检测技术实验台,其中所取单元:霍尔传感器实验模板、霍尔传感器、直流源±4v、±15v、测微头、数显单元、低频振荡器2、电子示波器、工控机数据采集系统三、实验原理:根据霍尔效应,霍尔电势U=KIBsinα。

若保持霍尔元件的激励电流I不变,而使其在一均匀梯度磁场中移动时,则输出霍尔电势值U只决定于它在磁场B中的位移量。

本实验即通过对U大小的测量来得其位移。

四、实验内容及步骤:1、将霍尔传感器按图1安装。

霍尔传感器与实验模板的连接见图2进行。

1、3为电源±4v,2、4为输出图1图22、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R w1使数显表指示为零。

3、旋转测微头向轴向的一个方向推进,每转动0.2mm记下一个读数,直到读数近似不变,然后返回原来的位置,沿轴向的另一个方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入下表中+X+V-X-V4、实验模板的输出端V01接示波器或工控机数据采集系统。

将霍尔传感器安装在台面三源板的振动源单元上。

如图3所示,调节传感器连接支架高度,使V01输出在零点附近。

5、将主控箱低频振荡器输出端与振动源低频输入相接,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察显示的波形图3五、注意事项:1、激励电压不能任意打得过大,以免损坏霍尔片,本实验为±4v。

2、模块上的±15v电源与主控箱上的±15v电源连线要一一对应,不要接错,否则将烧坏仪器。

六、思考题:1、作出V—X曲线,指出线性范围,求出灵敏度电涡流传感器特性实验一、实验目的:1、掌握电涡流传感器的原理及工作性能;2、掌握电涡流传感器的静态标定法;3、了解电涡流传感器在振幅测量中的应用。

二、实验器材:1、CSY-2000传感器与检测技术实验台,其中所取单元:电涡流传感器实验模板、电涡流传感器、测微头、数显单元、铁圆片、低频振荡器、直流稳压电源2、电子示波器、工控机数据采集系统三、实验原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可用来测量传感器与被测体的距离。

四、实验步骤:1、根据图1安装电涡流传感器。

图1图22、观察传感器结构,这是一个扁平线圈。

3、电涡流传感器与实验模板的连接见图2进行:4、将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件(传感器屏蔽层接地);在测微头端部装铝质金属圆片,作为电涡流传感器的被测体;将实验模板输出端V0与数显单元输入端V i相接。

数显表量程切换开关选择电压20V档5、用连接导线从主控台接入+15V直流电源接到模板上标有+15V的插孔中6、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止。

将数据记入下表中X(mm)V(v)7、将实验模板的输出端V0接示波器或工控机数据采集系统,将电涡流传感器按图2,安装在台面三源板的振动源单元上,调整好支架的高图3度。

使传感器端面与被测体振动台面之间的安装距离在线性区域内。

8、振荡器的输出引入振动源的低频输入。

调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察显示的波形。

五、思考题:作出V—X曲线,指出线性范围,求出灵敏度。

电容传感器特性实验一、实验目的:1、掌握电容式传感器的原理及工作性能。

2、掌握电容式传感器的静态标定方法3、了解电容式传感器在振幅测量中的运用二、实验器材:(部分实验设备实物图片见附二和附三)1、CSY-2000传感器与检测技术实验台,其中所取单元:电容传感器实验模板、电容传感器、相敏检波、滤波模板、测微头、数显单元、低频振荡器、直流稳压电源2、电子示波器、工控机数据采集系统三、实验原理:电容式传感器是将被测物理量转换为电容量变化的装置,它由静片和动片组成。

利用电容C=εA/d,保持ε、d两个参数不变,当改变A时,电容也随之变化。

通过相应的结构和测量电路,测量电压就可得到传感器与被测体的距离四、实验步骤:1、按图1将电容传感器装于电容传感器实验模板上,判别C x1和C x2时注意动极板接地,接法正确则动极板左右移动时,有正负输出。

不然需调换接线。

一般接线:动极板为3号引线、二个静片分别是1号和2号引线,可作参考。

图1图22、将电容传感器电容C x1和C x2的静片连线分别插入电容传感器实验模板C x1、C x2插孔上,动极板(连)线接地插孔。

见图23、将电容传感器实验模板的输出端V o1数显表单元V i相接(插入主控箱Vi孔),R w调节到中间位置。

4、接入±15V电源,旋转测微头推进电容传感器动极板位置,使输出为零,分别左右移动测微头,步进0.2mm记下位移X与输出电压值。

将读数记入下表X(mm)V (mm)5、将电容传感器按图3,安装在台面三源板的振动源单元上。

接线仍按图1,实验模板输出端V o1接滤波器输入端,滤波器输出端V0接示波器或工控机数据采集系统。

调节传感器连接支架高度,使V o1输出在零点附近。

图36、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12HZ之间,幅度旋钮初始置0。

7、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋振动台振动幅度适中,注意观察显示的波形。

五、注意事项模块上的±15v电源与主控箱上的±15v电源连线要一一对应,不要接错,否则将烧坏仪器。

六、思考题作出V—X曲线,指出线性范围,求出灵敏度。

压电式传感器特性实验与振动实验一、 实验目的:1、掌握压电传感器的工作原理2、掌握压电传感器动态标定方法3、掌握压电传感器的测量振动的原理和方法。

二、 基本原理:1、 压电式传感器由惯性质量块和受压的压电片等组成。

(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

2、 压电式传感器的标定(绝对标定法)图1三、 需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、存储示波器、加速度校准仪、电荷放大器四、 实验步骤:1、 按图1组织振动测量系统,并对其进行标定。

(演示)2、 将压电传感器已装在振动台面上。

(已装好)3、 将低频振荡器信号接入到台面三源板振动源的激励源插孔。

电荷放大器存储示波器加速度校准仪压电式传感器图2压电式传感器性能实验接线图4、将压电传感器输出两端插入到压电传感器实验模板两输入端,见图2,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端V o1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

5、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。

6、改变低频振荡器的频率,观察输出波形变化。

7、用存储示波器的两个通道同时观察低通滤波器输入端和输出端波形。

并用存储示波器记录输入输出的幅值、波形频率。

(10个数据)。

五、思考题1、压电式传感器为什么不能进行静态标定?2、对压电式传感器进行动态标定的方法有哪些?并分别画出标定系统结构框图.3、应用所记录的幅值和频率数据作出其幅频特性图电阻应变片及电桥性能实验一、实验目的:1了解金属箔式应变片的应变效应,全桥、半桥、单臂电桥工作原理和性能。

2比较全桥、半桥与单臂电桥的不同性能、了解其特点。

实验内容一金属箔式应变片――单臂电桥性能实验一基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR /R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

,对单臂电桥输出电压 U o1= EKε/4。

二、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

三实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验内容三为止)。

3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。

相关文档
最新文档