人教版高中数学教案 等差数列复习
人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
人教版高三数学必修五《等差数列》教案及教学反思
人教版高三数学必修五《等差数列》教案及教学反思一、引言等差数列是高中数学中的重要内容,它在数学中的运用十分广泛。
在教学过程中,我们需要注重培养学生的思维能力和解决问题的能力,让他们能够灵活地运用所学知识,提高数学应用能力。
本文将会介绍人教版高三数学必修五《等差数列》的教学反思和教案。
二、教学反思1. 教学目标通过本次授课,我们的教学目标是:•掌握等差数列的概念,理解等差数列的性质和运用;•能够分析等差数列的通项公式和求和公式,灵活掌握运用;•培养学生的数学思维能力和解决实际问题的能力。
2. 教学内容本次授课的教学内容包括:•等差数列的定义、通项公式和求和公式;•等差数列的性质和运用;•等差中项和等差数列的应用。
3. 教学方法我们采用了多种教学方法,包括:•讲授法:通过精心准备的PPT和示例,向学生讲解等差数列的定义、通项公式和求和公式,并阐述等差数列的性质和运用;•互动式教学法:通过提问、举例和解题过程中的互动讨论,培养学生的思考能力和分析问题的能力;•组织小组讨论:通过小组讨论,让学生自主探索等差数列的应用,培养学生的团队合作精神和创新精神。
4. 教学效果经过本次教学,我们发现学生的数学知识水平有了明显的提高。
在讲解等差数列的性质和运用时,学生能够将数学知识与实际问题结合起来,灵活掌握应用技巧。
在解题过程中,学生能够主动思考和分析问题,掌握解题方法,并能够独立解答一些复杂题目。
三、教案设计1. 教学目标通过本节课的教学,让学生掌握等差数列的相关概念、性质和运用,并能够通过实际问题,灵活运用所学知识,提高数学应用能力。
2. 教学内容和教学步骤:第一步:引入通过实际问题导入,引发学生兴趣,激发学生对等差数列的认识和探索欲望。
第二步:讲授•定义等差数列的概念,并介绍等差数列的通项公式和求和公式。
•阐述等差数列的性质和运用,主要包括公差、项、数列取值等。
•介绍等差中项的概念,引入等差中项的应用。
第三步:练习通过练习巩固所学知识,提高学生的运用能力。
等差数列与等比数列复习教案
课题:等差数列与等比数列『三维目标』1.知识与能力:①掌握等差、等比数列的概念、通项公式、前n项和公式及其他性质公式;②进一步渗透方程思想、分类讨论思想、等价转化思想以及体会类比与归纳的数学方法。
2.过程与方法:通过典例剖析进一步提高学生研究问题、分析问题与解决问题能力。
3.情感态度与价值观:通过公式的简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。
『教学重点』等差、等比数列的概念、通项公式、前n项和公式及应用『教学难点』等差、等比数列的通项公式、前n项和公式及应用『课型』复习课『教学过程』一、基础知识巩固二、例题分析◆例1.(2011辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式◇练一练(2011福建)等比数列{a n }的公比q=3,前3项和S 3=133(I )求数列{a n }的通项公式; ◆例2.(2009北京)若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = ;8S =◇练一练(2012合肥三模)已知数列{}n a 满足122n n n a a a ++=-(*n N ∈)2151,75a S =-=,则5a =_______◆例3. (2011浙江)已知公差不为0的等差数列{}n a 的首项1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (I )求数列{}n a 的通项公式及nS1.(2010重庆)在等差数列{}n a 中,1910a a +=,则5a 的值为________2.(2009湖南)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于______3.(2010全国Ⅰ)已知各项均为正数的等比数列{}n a ,1235a a a =,78910a a a =,则456a a a =_______4.(2009江西)设等比数列{}n a 的前n 项和为n S ,若63S S =3,则96SS =______ 5.(2010安徽)设数列{}n a 的前n 项和2n S n =,则8a 的值为________ 1.数列{}n a 中,若满足11a =,1112n n a a +-=,则数列1n a ⎧⎫⎨⎬⎩⎭是_______数列, 数列{}n a 的通项公式n a =________2. 数列{}n a 中,若11a =,121n n a a +=+,求数列{}n a 通项公式n a三、归纳小结:等差、等比数列是数列的基础内容,也是高中数学重点内容。
等差数列复习教案人教课标版
等差数列复习教案人教课标版.docx课题:数列、等差数列复习教学目标(1)知识与技能目标1知识的网络结构;2重点内容和重要方法的归纳(2)过程与能力目标1熟练掌握数列、等差数列及等差数列前项和等知识的网络结构及相互关系.2理解本小节的数学思想和数学方法(3)情感与态度目标培养学生归纳、整理所学知识的能力,从而激发学生的学习兴趣、求知欲望,并培养良好的学习品质教学重点1.本章知识的网络结构,及知识间的相互关系;2.掌握两种基本题型教学难点知识间的相互关系及应用教学过程一、知识框架图基本概念定义分类数列般数列通项公式递推公式图象法特殊函数一一等差数列定义通项公式等差中项前项和公式性质基本题型.题型一:求数列通项公式的问题例.已知数列的首项,其递推公式为2anan2(nWN*且n2).求其前五项,并归纳出通项公式.2a1解法一:,a2=a122a2a22a32,a5二52a4a42an解法二:an12anan21又a1二0,.an=0一an211= ana113,a1=22a2=23a3=24an4.=2na1(n一、一.一一.(nwN且n2),求此数列的通项公式.解:,anann1(nwN*且n之2)且a1=1,二a2annai,3a14a15anjn1把这个式子两边分别相乘可得an2一,一“,而n=1也适合.n1故的通项公式为an2.2an=n(n至2,且nwN).而a1=1也适合an=n.故数列的通项公式为.题型二:等差数列的证明与计算例.设为数列。
的前项和,已知,且Sn1Sn=2Sn,Sn1(n之2),求证1g1解:,一=1 (n1)M2=2n1.1SnSnan12n1)(2n2),(n=1),(2n3)(n1=XXX二、n2.1an=n2nanana0又01,02n1=2,,an0.故。
的通项公式证明:.an由一an=n1(n(n1)212n1.(n1)21,n211an1an.二数列。
为的单调递增数列.生活不是等待风暴过去,而是学会在雨中翩翩起舞,不要去考虑自己能够走多快,只要知道自己在不断努力向前就行,路对了,成功就不远了。
高中数学教学课例《等差数列复习课》课程思政核心素养教学设计及总结反思
【评析:这题比上一题略难,但方法是一样的。通
过刚才知识的整理,大多数学生很快解出,此时课堂气
氛融融,师生关系和谐】
六、小结:
师:今天,大家学得不错。下面我们再来回顾一下
本堂课的内容?
生:总结
(1)概念的复习和利用方程思想进行计算;
(2)利用等差数列通项公式求前 n 项和的最值;
(3)借助函数思想,利用等差数列前 n 项和公式求
解:由题知 a1=33>0,d=-3< 0,an=33-3(n-1)=36-3n,等差数列单调递减,且易得 a11>0,
a12=0,a13<0,因此,前 11 或 12 项和最大。所以, Smax=S11=33×11+=165。
师:是否有其它方法?可否利用二次函数求最值? 生:思考,探究... 师:巡视,并提示 生:讨论,动笔 最后,师生形成解法如下(投影仪展示): 解:充分利用二次函数求最值(投影仪展示:函数 S(x)=-1.5x2+34.5x 的图像如下) S(x)=33x+=-1.5x2+34.5x,对称轴是 x=-=11.5, (Sn,n)为其上的散点。所以由图像知,当 n=11 或 12 时 Smax=S11=S12。 生:补充修正,心情很愉快,学习积极性高涨 【评析:这道题是与上题对比而设计的一题,它们 一个是 a1<0,d>0,一个是 a1>0,d<0,通过合作探 究问题,激发了学生学习的兴趣和欲望,树立了学生钻 研的精神,增强学生学好数学的信念,产生热爱数学的 情感,体验在学习中获得成功】 师:启发学生以后碰到这样的题怎么办?
高中教案数学等差数列
高中教案数学等差数列
教学目标:学生能够理解等差数列的概念,掌握等差数列的性质、通项公式和求和公式,
能够解决相关问题。
教学重点:等差数列的概念和性质,通项公式和求和公式的运用。
教学难点:对等差数列通项公式和求和公式的理解和应用。
教学准备:教材《高中数学》,黑板、粉笔、教案PPT。
教学过程:
一、导入(5分钟)
1.引入等差数列的概念,简单介绍等差数列的性质。
2.通过一个例子,让学生理解等差数列的特点。
二、讲解等差数列的概念和性质(15分钟)
1.定义等差数列,并介绍等差数列的特点。
2.讲解等差数列的通项公式和求和公式,说明其推导过程和应用方法。
三、练习(20分钟)
1.进行一些简单的例题演练,让学生掌握等差数列的解题方法。
2.提供一些挑战性的题目,培养学生的解决问题的能力。
四、总结和拓展(10分钟)
1.总结等差数列的知识点和解题方法。
2.拓展讨论等比数列与等差数列之间的关系。
五、作业布置(5分钟)
布置相关的练习题,巩固等差数列的知识点。
教学反思:本节课主要讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握解
题方法和应用技巧。
通过丰富的练习题目,培养学生的思维能力和解决问题的能力。
同时,通过拓展讨论等比数列与等差数列之间的关系,拓宽学生的数学视野,提高他们的学习兴趣。
人教版高中数学《数列》全部教案
人教版高中数学《数列》全部教案人教版高中数学《数列》全部教案一、教学目标1、理解数列的概念,掌握数列的通项公式及其求解方法。
2、掌握等差数列和等比数列的特点及其求解方法。
3、能够根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
二、教学内容1、数列的概念及通项公式2、等差数列的特点及求解方法3、等比数列的特点及求解方法4、数列在实际问题中的应用三、教学方法1、讲授数列的概念及通项公式,通过例题和练习题加深学生对数列的理解。
2、通过实例和练习题,让学生掌握等差数列和等比数列的特点及求解方法。
3、通过案例分析和实际问题,让学生了解如何根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
四、教学步骤1、导入新课:通过一些简单的练习题,让学生了解数列的概念及通项公式。
2、讲授新课:(1)数列的概念及通项公式(2)等差数列的特点及求解方法(3)等比数列的特点及求解方法(4)数列在实际问题中的应用3、课堂练习:通过一些例题和练习题,让学生进一步掌握数列的概念及通项公式、等差数列和等比数列的特点及求解方法。
4、课堂小结:对本节课的内容进行总结,强调数列在实际问题中的应用。
5、布置作业:让学生进一步巩固本节课所学内容,提高对数列的理解和应用能力。
五、教学重点难点1、数列的概念及通项公式的理解。
2、等差数列和等比数列的求解方法。
3、如何根据实际问题中的数据特点,建立相应的数列模型。
六、教学评价1、通过课堂练习和作业,检查学生对数列的理解和应用能力。
2、通过实际问题的解决,评价学生对数列的应用能力。
3、通过学生之间的交流和讨论,了解学生对数列的理解情况。
七、教学建议1、加强对数列概念的理解,注重数列的实际应用。
2、练习等差数列和等比数列的求解方法,掌握其特点。
3、注重数列在实际问题中的应用,提高学生的数学应用能力。
4、提倡学生之间的合作学习,通过交流和讨论,加深对数列的理解。
八、教学实例例1:已知某品牌汽车的价格为20万元,每年按发票金额的10%递增,求5年后该汽车的价格。
人教高中数学必修5等差数列复习
例6、已知下列各数列的前n项和Sn的 公式,求通项公式 (1)Sn=2n2-3n; (2)Sn=3n-2 例7、在等差数列中,分别按下列要求 计算 (1)若a1=5,a10=95,求S10 (2)若a1=100,d=-2,求S50 (3)若a1=20,an=54,Sn=999,求n,d (4)若d=2,S100=10000,求a1,an
5、在等差数列中,已知an-5=-11,a1=1, d=-2,求项数n和a2012 6、已知三个数成等差数列,其和为15, 首末两项的积为9,求这三个数 7、在等差数列中,若a4+a5+a6+a7=56, a4a7=187,求通项公式 在数列 a n 中,如果 a 1 2 , a 2 1, 2 a n 1 a n 1 8、
a n a n 1 1 a n a n 1 , 试判断 an 是否是等差
数列,并求出通项公式
五、等差数列的前n项和公式
1、 S n na 1 n ( a1 a n ) 2 n ( n 1) 2 d
2、倒序相加法 3、从函数角度理解和公式
2+Bn Sn=An
六、等差数列的性质 1、 d
an am n m
2、若m+n=P+q,则am+an=ap+aq 若m+n=2p,则am+an=2ap 5、“片段和”性质
七、等差数列前n项和的最值 1、存在性 (1)若a1>0,d<0,Sn存在最小值 (2)若a1<0,d>0,Sn存在最大值 2、求法 (1)根据项的正负变化决定 (2)根据二次函数的最值求法
四、等差数列的通项公式 1、an=a1+(n-1)d an=am+(n-m)d 2、累加法 3、从函数角度理解通项公式
数学等差数列教案(优秀5篇)
数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
高三数学必修五教案等差数列优秀4篇
高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
(新人教)高三数学第一轮复习教案3.2.1等差数列1
一.课题:等差数列(1)二.教学目标:1.能准确叙述等差数列的定义;2.能用定义判断数列是否为等差数列;3.会求等差数列的公差及通项公式。
三.教学重、难点:等差数列的定义及等差数列的通项公式。
四.教学过程:(一)复习:1.观察下列数列,这些数列有何共同特征:4,5,6,7,8,9,10,……; ①3,0,3-,6-,……, ②110,210,310,410,…… ③ 对于数列①,从第2项起,每一项与前一项的差都等于1;对于数列②,从第2项起,每一项与前一项的差都等于3-;对于数列③,从第2项起,每一项与前一项的差都等于110; 规律:从第2项起,每一项与前一项的差都等于同一常数。
(二)新课讲解:1.等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥. 2.等差数列的通项公式:已知等差数列{}n a 的首项是1a ,公差是d ,求n a .Q 由等差数列的定义:21a a d -=,32a a d -=,43a a d -=,……∴21a a d =+,3212a a d a d =+=+,413a a d =+,……所以,该等差数列的通项公式:1(1)n a a n d =+-.说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d <为递减数列。
3.例题分析:例1.(1)求等差数列8,5,2,……的第20项;(2)401-是不是5-,9-,13-,……的项?如果是,是第几项?解:(1)由18a =,3d =-,20n =得 208(201)(3)49a =+-⨯-=-(2)由15a =-,4d =-得这个数列的通项公式:54(1)n a n =---,由题意知,本题是要回答是否存在正整数n ,使得40154(1)n -=---成立,解得100n =,即401-是这个数列的第100项。
高中数学优质课程《等差数列》教案
高中数学优质课程《等差数列》教案数学《等差数列》教案1【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金某(1+利率某存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列教师:以上三个问题中的数蕴涵着三列数.学生:1:0,5,10,15,20,25,….2:18,15.5,13,10.5,8,5.5.3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10360.思考1上述数列有什么共同特点思考2根据上数列的共同特点,你能给出等差数列的一般定义吗思考3你能将上述的文字语言转换成数学符号语言吗教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,-1,-2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗为什么(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项如果是,是第几项2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.数学《等差数列》教案2[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
等差数列复习教案
等差数列复习教案教案标题:等差数列复习教案教学目标:1. 理解等差数列的概念和性质。
2. 能够识别等差数列中的公差和首项。
3. 掌握等差数列的通项公式和求和公式。
4. 能够应用等差数列的知识解决问题。
教学准备:1. 教师准备:白板、黑板笔、教学课件、教学素材、练习题。
2. 学生准备:课本、笔记本、笔。
教学过程:一、导入(5分钟)1. 引入等差数列概念:回顾上一节课学习的内容,提问学生对等差数列的理解和特点。
2. 引导学生思考:列举几个实际生活中的等差数列例子,让学生发现等差数列的应用。
二、概念解释和性质讲解(10分钟)1. 教师通过教学课件或板书,给出等差数列的定义和符号表示。
2. 解释等差数列的公差和首项的含义,并强调它们在等差数列中的作用。
3. 讲解等差数列的性质,如相邻项之差相等等。
三、求解等差数列的公式(15分钟)1. 教师通过示例和解题步骤,引导学生推导等差数列的通项公式和求和公式。
2. 强调公式的应用方法和注意事项,如确定已知条件、代入公式计算等。
四、练习与巩固(20分钟)1. 分发练习题,让学生独立完成练习。
2. 教师巡视指导学生解题过程,及时纠正错误和解答疑惑。
3. 收集学生的练习答案,进行讲解和订正。
五、拓展与应用(10分钟)1. 提供一些拓展题目,让学生运用等差数列的知识解决问题。
2. 鼓励学生思考等差数列在实际生活中的应用场景,并展示他们的解决方案。
六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,强调等差数列的重要性和应用价值。
2. 学生对本节课的学习进行反思,提出问题和困惑,教师进行解答和引导。
教学延伸:1. 鼓励学生通过自主学习和合作学习,进一步巩固和拓展等差数列的知识。
2. 提供更多的练习题和挑战题,让学生在解决问题中发现等差数列的应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、合作与思考能力等。
2. 教师收集学生完成的练习题和拓展题答案,进行评价和订正。
等差数列教案(优秀)
等差数列教案(优秀)数学等差数列教案篇一教学目标:1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2、过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3、情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:等差数列的概念及通项公式。
教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:多媒体、实物投影仪教学过程:一、复习引入:1、回忆上一节课学习数列的定义,请举出一个具体的例子。
表示数列有哪几种方法,列举法、通项公式、递推公式。
我们这节课接着学习一类特殊的数列,等差数列。
2、由生活中具体的数列实例引入(1)。
国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2二、新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为0.20,-2在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。
[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。
高三数学数列知识点复习 等差数列二教案 新人教A版
高三数学数列知识点复习 等差数列二教案 新人教A 版——热点考点题型探析一、复习目标:1、理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;2、理解等差中项的概念,掌握等差数列的性质并能灵活运用。
二、重难点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质,灵活运用等差数列的性质解题.会求等差数列的公差、求项、求值、求和、求n S 最值等通常运用等差数列的有关公式及其性质. 三、教学方法:讲练结合,探析归纳,强化运用。
四、教学过程 (一)、热点考点题型探析考点1等差数列的通项与前n 项和 题型1已知等差数列的某些项,求某项【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a 【解题思路】可以考虑基本量法,或利用等差数列的性质【解析】方法1: 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 方法2:1544582015601560=-=--=a a d ,∴241541520)6075(6075=⨯+=-+=d a a 方法3: {}n a 为等差数列,∴7560453015,,,,a a a a a 也成等差数列,设其公差为1d ,则15a 为首项,60a 为第4项. ∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a【反思归纳】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法. 题型2已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; ⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ;⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n . 【解析】⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n ⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a∴39780207802)(1=⇒=⇒=+=n n a a n S n n 【反思归纳】解决等差数列的问题时,通常考虑两种方法:⑴基本量法;⑵利用等差数列的性质.题型3求等差数列的前n 项和【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=。
等差数列教案(5篇)
等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。
高中数学必修5《等差数列》精品教案第1课时
此部分内容让学生在课前完成,让学生对本节课中所涉及的知识点和所考查的数学方法有一个全面的了解.
知识梳理
1.等差数列的有关概念
(1)定义:如果一个数列从第项起,每一项与它的前一项的差等于,那么这个数列就叫做等差数列,这个常数叫做等差数列的,通常用字母表示,定义的表达式为.
(2)等差中项:数列 成等差数列的充要条件是,其中 叫做 的.
.
巩固练习
1.(2011全国)设是等差数列 的前n项和,若 ,公差 , ,则 .
2.等差数列 中, .
3.已知数列 中, ,若 为等差数列,则 .
4.在等差数列 中, ,则此数列的前13项的和为.
5.已知递减的等差数列 满足 ,则数列 的前n项和 取最大值时 .
6.(选做题)(2008安徽)在数列 中,
【教学难点】熟练应用以上知识分析、解决相关问题.
【教学过程】
学生活动
设计意图
热身练习
1.在等差数列 中, ,则 ()
A.12 B.14 C.16 D.18
考查
2.数列 满足 ( ), , 是 的前 项和,则 =
考查
3.设 为等差数列,公差d=-2, 为其前n项和.若 ,则
考查
4.设 为等差数列,已知 则
并通过体验1-2,了解等差数列的通项公式和前n项和公式的函数形式.
二、等差数列的通项公式与前n项和公式综合应用
体验2:设 是一个公差为 的等差数列,它的前10项和 且 成等比数列,求数列 的通项公式.
练习:设等差数列 的前n项和为 ,已知 ,则 .
【课后思考】若求 ?这个题有哪些方法可解?
小结:
学生板书解题过程,教师适当点评
,其中 为常数,则 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列复习
知识归纳
1. 等差数列这单元学习了哪些内容?
2. 等差数列的定义、用途及使用时需注意的问题:n ≥2,a n -a n -1=d (常数)
3. 等差数列的通项公式如何?结构有什么特点?
a n =a 1+(n -1) d a n =An +B (d =A ∈R )
4. 等差数列图象有什么特点?单调性如何确定?
5. 用什么方法推导等差数列前n 项和公式的?公式内容? 使用时需注意的问题? 前n
项和公式结构有什么特点?
2
)1(2)(11d
n n na a a n S n n -+=+=
S n =An 2+Bn (A ∈R) 注意: d =2A !6. 你知道等差数列的哪些性质?等差数列{a n }中,(m 、 n 、p 、q ∈N+):
①a n =a m +(n -m )d ;
②若 m +n =p +q ,则a m +a n =a p +a q ;
③由项数成等差数列的项组成的数列仍是等差数列;④ 每n 项和S n , S 2n -S n , S 3n -S 2n …组成的数列仍是等差数列.
知识运用 1.下列说法:
(1)若{a n }为等差数列,则{a n 2}也为等差数列 (2)若{a n } 为等差数列,则{a n +a n +1}也为等差数列 (3)若a n =1-3n ,则{a n }为等差数列.
(4)若{a n }的前n 和S n =n 2+2n +1, 则{a n }为等差数列.
等差数列
定义
通项
前n 项和
主要性质
n
a n
d <0n
a n
d >0
其中正确的有( (2)(3) )
2. 等差数列{a n}前三项分别为a-1,a+2, 2a+3, 则a n= 3n-2 .
3.等差数列{an}中, a1+a4+a7=39, a2+a5+a8=33, 则a3+a6+a9=27 .
4.等差数列{a n}中, a5=10, a10=5, a15=0 .
5.等差数列{a n}, a1-a5+a9-a13+a17=10, a3+a15= 20 .
6. 等差数列{a n}, S15=90, a8= 6 .
7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为 ( A )
A. a11
B. a10
C. a9
D. a8
8.等差数列{a n}, Sn=3n-2n2, 则( B )
A. na1<S n<na n
B. na n<S n<na1
C. na n<na1<S n
D. S n<na n<na1
能力提高
1. 等差数列{a n}中, S10=100, S100=10, 求S110.
2. 等差数列{a n}中, a1>0, S12>0, S13<0, S1、S2、…S12哪一个最大?
课后作业《习案》作业十九.。