第十二章 微分方程(习题及解答)
第十二章-微分方程(习题及解答)
第十二章 微分方程§12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程一、单项选择题1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=;(C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ).(A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =;(C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D).4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=;(C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=;(C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D).二、填空题1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .2.微分方程3d d 0,4x x y y y x=+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:3252x x y C =++.4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =.5'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cxy e x=.三、解答题1.求下列微分方程的通解.(1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解:(3)d 10d x y y x +=; (4) 23d (1)0.d yy x x++= 解: 解:2.求下列微分方程满足所给初始条件的特解:(1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==;解: 解:(3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y yx+=. 解: 解:3*.设连续函数20()d ln 22x t f x f t ⎛⎫=+ ⎪⎝⎭⎰,求()f x 的非积分表达式. 答:()ln 2x f x e =⋅.§12.2 一阶线性微分方程、全微分方程一、单项选择题1. 下列所给方程中,是一阶微分方程的是( ).2d (A)3(ln )d y y x y x x+=; 52d 2(B)(1)d 1y y x x x -=++ 2d (C)()d y x y x=+; (D)()d ()d 0x y x x y y -++=. 答(B).2. 微分方程2()d 2d 0x y x xy y ++=的方程类型是( ). (A) 齐次微分方程; (B)一阶线性微分方程;(C) 可分离变量的微分方程; (D)全微分方程. 答(D).3. 方程y y x y x ++='22是( ).(A)齐次方程; (B)一阶线性方程;(C)伯努利方程; (D)可分离变量方程. 答(A).二、填空题1.微分方程d d x yy e x-+=的通解为 . 答:x x y Ce xe --=+. 2.微分方程2()d d 0x y x x y --=的通解为 . 答:33x xy C -=.3.方程()(d d )d d x y x y x y +-=+的通解为 . 答:ln()x y x y C --+=.三、简答题1.求下列微分方程的通解:(1) sin cos x y y x e -'+=; (2) d ln d y y x y x x=; 解: 解:(3) 232xy y x x '+=++; (4) tan sin 2y y x x '+=; 解: 解:(5) 2d (6)20d yy x y x-+=; (6) (2)d 0y y e xe y y +-=; 解: 解:(7) 222(2)d ()d 0a xy y x x y y ---+=. 解:2.求下列微分方程满足所给初始条件的特解.(1) 0d 38,2d x yy y x=+==; (2) d sin ,1d x y y x y x x x π=+==. 解: 解:3*.求伯努利方程2d 3d yxy xy x-=的通解. 解:§12.3 可降阶的高阶微分方程、二阶线性微分方程一、单项选择题1. 方程x y sin ='''的通解是( ).(A)322121cos C x C x C x y +++=; (B)1cos C x y +=;(C)322121sin C x C x C x y +++=; (D)x y 2sin 2=. 答(A)2. 微分方程y y xy '''''+=满足条件21x y ='=,21x y ==的解是( ).(A)2(1)y x =-; (B)212124y x ⎛⎫=+- ⎪⎝⎭;(C)211(1)22y x =-+; (D)21524y x ⎛⎫=-- ⎪⎝⎭. 答(C).3. 对方程2y y y '''=+,以下做法正确的是( ).(A)令()y p x '=,y p '''=代入求解; (B)令()y p y '=,y p p '''=代入求解; (C)按可分离变量的方程求解; (D)按伯努利方程求解. 答(B). 4. 下列函数组线性相关的().是(A)22,3x x e e ; (B)23,x xe e ;(C)sin ,cos x x ; (D)22,x x e xe . 答(A).5. 下列方程中,二阶线性微分方程是( ).(A)32()0y y y '''-=; (B)2x y yy xy e '''++=;(C)2223y x y y x '''++=; (D)222x y xy x y e '''++=. 答(D). 6. 12,y y 是0y py qy '''++=的两个解,则其通解是( ). (A)112y C y y =+; (B)1122y C y C y =+; (C)1122y C y C y =+,其中1y 与2y 线性相关;(D)1122y C y C y =+,其中1y 与2y 线性无关. 答(D). 7. 下列函数组线性相关的().是22(A),3x x e e ; 23(B),x x e e ;(C)sin ,cos x x ; 22(D),x x e xe . 答(A).二、填空题1.微分方程sin y x x ''=+的通解为. 答: 312sin .6x y x C x C =-++2.微分方程y y x '''=+的通解为. 答: 212.2xx y C e x C =--+三、简答题1.求下列微分方程的通解.(1) 21()y y '''=+; (2) 21()2y y '''=.解: 解:2.求方程2()0y x y '''+=满足条件12x y ='=,11x y ==-的特解. 解:§12.4 二阶常系数线性齐次微分方程一、单项选择题1. 下列函数中,不是微分方程0y y ''+=的解的是( ).(A)sin y x =; (B)cos y x =;(C)x y e =; (D)sin cos y x x =+. 答(C).2. 下列微分方程中,通解是312x x y C e C e -=+的方程是( ). (A)230y y y '''--=; (B)250y y y '''-+=;(C)20y y y '''+-=; (D)20y y y '''-+=. 答(A).3. 下列微分方程中,通解是12x x y C e C xe =+的方程是( ). (A)20y y y '''--=; (B)20y y y '''-+=;(C)20y y y '''++=; (D)240y y y '''-+=. 答(B).4. 下列微分方程中,通解是12(cos2sin 2)x y e C x C x =+的方程是( ). (A)240y y y '''--=; (B)240y y y '''-+=(C)250y y y '''++=; (D)250y y y '''-+=. 答(D). 5. 若方程0y py qy '''++=的系数满足10p q ++=,则方程的一个解是( ).(A)x ; (B)x e ; (C)x e -; (D)sin x . 答(B).6*. 设()y f x =是方程220y y y '''-+=的一个解,若00()0,()0f x f x '>=,则()f x 在0x x =处( ).(A)0x 的某邻域内单调减少; (B)0x 的某邻域内单调增加;(C) 取极大值; (D) 取极小值. 答(C).二、填空题1.微分方程的通解为40y y '''-=的通解为 . 答:412x y C C e =+.2.微分方程20y y y '''+-=的通解为 . 答:212x x y C e C e -=+. 3.微分方程440y y y '''-+=的通解为 . 答:2212x x y C e C xe =+.4.微分方程40y y ''+=的通解为 . 答:12cos2sin 2y C x C x =+. 5.方程6130y y y '''++=的通解为 . 答:312(cos2sin 2)x y e C x C x -=+.三、简答题1.求下列微分方程的通解:(1) 20y y y '''--=; (2) 22d d 420250d d x xx t t-+=.解: 解:2.求下列方程满足初始条件的特解.(1) 00430,10,6x x y y y y y ==''''-+===; (2) 0250,5,2x x y y y y=='''+===.解: 解:§12.5 二阶常系数线性非齐次微分方程一、单项选择题1. 微分方程2y y x ''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C). 2. 微分方程2y y x '''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).3. 微分方程256x y y y xe -'''-+=的一个特解应具有形式( ).2(A)x Axe -; 2(B)()x Ax B e -+;22(C)()x Ax Bx C e -++; 2(D)()x x Ax B e -+. 答(B). 4. 微分方程22x y y y x e '''+-=的一个特解应具有形式( ).2(A)x Ax e ; 2(B)()x Ax Bx e +;2(C)()x x Ax Bx C e ++; 2(D)()x Ax Bx C e ++. 答(C).5. 微分方程23sin x y y y e x '''+-=的一个特解应具有形式( ).(A)(cos sin )x e A x B x +; (B)sin x Ae x ;(C)(sin cos )x xe A x B x +; (D)sin x Axe x 答(A).二、填空题1.微分方程34y y x x ''+=+的一个特解形式为答:3*48x xy =-.2.微分方程2y y x '''+=的一个特解形式为 . 答:*()y x Ax B =+. 3.微分方程56x y y y xe '''-+=的一个特解形式为 . 答:*()x y Ax B e =+. 4.微分方程356x y y y xe '''-+=的一个特解形式为 . 答:3*()x y x Ax B e =+. 5.微分方程sin y y x ''-=的一个特解形式为 . 答:*sin y A x =. 6.微分方程sin y y x ''+=的一个特解形式为 . 答:*(cos sin )y x A x B x =+.三、简答题1.求下列微分方程的通解.:(1) 22x y y y e '''+-=; (2) 5432y y y x '''++=-; 解: 解:(3) 269(1)x y y y x e '''-+=+. 解:(注:可编辑下载,若有不当之处,请指正,谢谢!)。
微分方程(习题及解答)0001
2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。
微分方程习题及答案
微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解(1)0 ,sec tan 0==-'=x yx x y y ;(2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xyy +-='§4 可降阶的高阶方程1.求下列方程通解。
高等数学 第十二章 常微分方程 习题课
1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y
高等数学科学出版社下册课后答案第十二章 微分方程 习题简答
习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。
习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。
第十二章 微分方程习题课 (一)(二)
(3) y′ =
3x + y − 6x + 3 2x y − 2 y
2 2
d y 3( x − 1)2 + y2 = 化方程为 dx 2y( x − 1)
dy dy dt dy = = 令t=x–1,则 dx d t dx d t dy 3t 2 + y2 (齐次方程 齐次方程) 齐次方程 = dt 2t y 令y=ut
y 方法 1 这是一个齐次方程 . 令 u = x 方法 2 化为微分形式
( 6x3 + 3x y2 )dx + ( 3x2 y + 2y3 )dy = 0
∂P ∂Q ∵ = 6x y = ∂y ∂x
故这是一个全微分方程 故这是一个全微分方程 .
5
求下列方程的通解: 例2. 求下列方程的通解 (1) x y′ + y = y( ln x + ln y )
22
为通解的微分方程 .
提示: 提示 由通解式可知特征方程的根为
(7) y′′ + 2 y′ + 5y = sin2x
特征根: 特征根 齐次方程通解 通解: 齐次方程通解 Y = e−x (C1 cos 2x + C2 sin 2x ) 令非齐次方程特解为 令非齐次方程特解为 特解 代入方程可得 A题1,2,3(1), (2), (3), (4), (5), (9), (10) , ,
(题3只考虑方法及步骤 题 只考虑方法及步骤 只考虑方法及步骤)
P326 题2 求以 为通解的微分方程. 为通解的微分方程 ( x + C )2 + y2 = 1 消去 C 得 提示: 提示 2( x + C )+ 2 y y′ = 0 P327 题3 求下列微分方程的通解 求下列微分方程的通解: 提示: 提示 令 u = x y , 化成可分离变量方程 : 提示: 提示 这是一阶线性方程 , 其中
第12章 微分方程 习题 12- (3)
1 = − sin x + Ce x . y (2)
方程化为
y
−
1 2
y′ −
4 2 y = x, x
6
1
令z=
1 y2
, 方程化为 z′ − 2 x z= , 2 x
求解此线性方程, 得
z=e ∫ x dx
2
x − ∫ dx 1 [ ∫ e x dx + C ] = x 2 ( ln x + C ) , 2 2
解此方程, 得
1 − ln 1 − 2u 3 = ln x + C , 2
3
x3 − 2 y 3 = Cx . (8)
方程化为
dy y y = + tan , x dx x
令
du y = u, y ′ = u + x , 方程化为 x dx u+x du = u + tan u , dx dx , x
解此方程, 得
− ln 1 − u 2 + ln C = ln x , y 2 = x( x − C ) . (5)
方程化为
2
dy 1 y y = [2 − ( ) 2 ] , x dx 2 x
令
du y = u, y ′ = u + x , 方程化为 x dx u+x du u = (2 − u 2 ) , dx 2 2du dx , − 3 = x u
(4)
(1) 方程化为
( xy )′ = y ln xy ,
令 u = xy , 方程化为
u ln u , x du dx = , u ln u x u′ =
求解此微分方程, 得
ln ln u = ln x + ln C , xy = eCx . (2)
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
微分方程习题(附答案)
微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等27. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y(4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。
第十二章 微分方程习题课
它的特征方程 解得两个不同的实根
故齐次方程的通解为
r 2 3r 2 0
r1 1, r2 2
Y C1e x C2e2 x
x 由于 f ( x) 5 是Pm ( x)e 型(其中 Pm ( x) 5, 0 ),且 0
0 y * ae a ,求出 不是特征方程根,所以应设特解
y y 2 y (1 2 x)e x
y Y y C1e x C2e2 x xe x
【例5】求方程 y 3 y 2 y 5 满足初始条件 y(0) 1 , y(0) 2 的特解。
分析:此为二阶常系数非齐次线性微分方程,由解的结 构,先求出对应齐次的通解,再求出其本身的一个特解. 解:所给的方程是二阶常系数非齐次线性微分方程,
1.定义
y py qy 0 (2)二阶常系数线性非齐次微分方程: y py qy f ( x )
(1)二阶常系数线性齐次微分方程: 2.解的结构性质 (1)若 y1 和 y2 是齐次方程的解,则 C1 y1 C2 y2是齐次方程的解。 (2)若 y1 和 y2 是齐次方程的线性无关解,则 C1 y1 C2 y2 是齐次 方程的通解。
解题方法流程图
求 y py qy f ( x ) 通解 特征方程:r 2 pr q 0 Yes 有实根 No
Yes
r1 r2
No
r1,2 i
Y C1er1x C2er2 x
f ( x ) 的类型
Yes 混合型 No
Y (C1 C2 x)e r1 x
可降阶的高阶微分方程
解题方法流程图
No
Yes
y ( n) f ( x)
常微分方程习题及答案
第十二章常微分方程(A)7. y=-所满足的微分方程是x、是非题 1•任意微分方程都有通解。
() 2.微分方程的通解中包含了它所有的解。
() 3.函数y =3sinx —4cosx 是微分方程y" + y=0的解。
( ) 4.函数y=x 2 ■e x 是微分方程y"-2y ,+y=0的解。
()1 25.微分方程xy'-1 n X = 0的通解是j In x ) +C (C 为任意常数)。
() 6.y' 7. y'8. y 9. dydx 、填空题=sin y 是一阶线性微分方程。
() = x 3y 3+xy 不是一阶线性微分方程。
() -2/ +5y=0 的特征方程为 r 2-2 r + 5=0。
(= 1+x + y 2 +xy 2是可分离变量的微分方程。
() 1.在横线上填上方程的名称 ①(y -3 H n xdx-xdy =0 是 ②(xy 2 +x dx + (y - X 2y dy = 0是 2. 3.4. 5. ③x —.ln y 是 dx x ④ xy’ = y +x 2sinx 是y ^+sin xy’—x =cosx 的通解中应含y =sin2x -cosx 的通解是 xy'" + 2x 2y"2 +x 3y = x 4 +1是6.微分方程yry"-(y '6 =0是个独立常数。
阶微分方程。
阶微分方程。
12. 3阶微分方程yJx 3的通解为三、选择题1 .微分方程xyy "+x (y ,3-y 4y = 0的阶数是() A. 3 B . 4 C . 5 D . 22 .微分方程 厂-x 2y"-x 5=1的通解中应含的独立常数的个数为()。
A. 3 B . 5 C . 4 DA . y = 2xB . y = X 2C .24 .微分方程y'=3y 3的一个特解是()。
微分方程习题及答案
(2);
(3);
(4).
2、求连续函数,使得时有。
3、求以为通解得二阶微分方程、
4。某个三阶常系数微分方程有两个解与,求。
5、设有一个解为,对应齐次方程有一特解,试求:
(1)得表达式;
(2)该微分方程得通解.
6、已知可导函数满足关系式:
求。
7.已知曲线上原点处得切线垂直于直线,且满足微分方程,求此曲线方程.
5、长为6m得链条自桌上无摩察地向下滑动,设运动开始时,链条自桌上垂下部分长为1m,问需多少时间链条全部滑过桌面。
§7二阶常系数非齐次线性微分方程
1。求下列微分方程得通解
(1);
(2);
(3);
(4);
(5).
2。求下列微分方程得特解
(1);
(2)
3.设连续函数满足求。
4、一质量为得质点由静止开始沉入水中,下沉时水得反作用力与速度成正比(比例系数为),求此物体之运动规律、
(1);
(2).
5、 用适当得变换替换化简方程,并求解下列方程
(1);
(2)
(3)
(4)
6.求一曲线,使其任意一点得切线与过切点平行于轴得直线与轴所围城三角形面积等于常数、
7、设质量为得物体自由下落,所受空气阻力与速度成正比,并设开始下落时速度为0,求物体速度与时间得函数关系、
8。有一种医疗手段,就是把示踪染色注射到胰脏里去,以检查其功能。正常胰脏每分钟吸收掉染色,现内科医生给某人注射了0、3g染色,30分钟后剩下0。1g,试求注射染色后分钟时正常胰脏中染色量随时间变化得规律,此人胰脏就是否正常?
5。一链条悬挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m,若不计摩擦力,求链条全部滑下所需时间。
(完整版)高等数学微分方程试题
第十二章 微分方程§12-1 微分方程的基本概念、判断题 1.y=ce 2x(c 的任意常数 )是 y =2x 的特解。
2. y=( y ) 3是二阶微分方程。
3. 微分方程的通解包含了所有特解。
4. 若微分方程的解中含有任意常数,则这个解称为通解。
5. 微分方程的通解中任意常数的个数等于微分方程的阶数。
二、填空题 微分方程 .(7x-6y)dx+dy=0 的阶数是 函数 y=3sinx-4cosx 微分方程的解。
A)( y )+x 2 y+x 2=0 (B) ( y ) 2+3x 2y=x 3 (C) y +3 y +y=0 (D) y -y 2=sinx2 2 2x 3x 1.y Cx 2 C 2(其中 C 为任意常数) 2.y C 1e 2x C 2e 3x (其中 C 1 ,C 2为任意常数)五、质量为 m 的物体自液面上方高为 h 处由静止开始自由落下,已知物体在液体中受的阻 力与运动的速度成正比。
用微分方程表示物体, 在液体中运动速度与时间的关系并写出初始 条件。
12-2 可分离变量的微分方程 一、求下列微分方程的通解1. 2. 3. 积分曲线 y=(c 1 +c 2 x)e 2x中满足y x=0=0, y x=0=1 的曲线是三、选择题 1.下列方程是常微分方程A )、x 2+y 2=a 2 (B) 、 y+ d(earctanx) 0 (C)dx2 a2+ 2a2 22=0 (D)、 y =x 2+y 2y2.下列方程中是二阶微分方程3.微分方程 ddx 2y+w 2y=0 的通解是其中 c.c 1.c 2 均为任意常数A ) y=ccoswx(B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx2 则微分方程 y =3y3 的一个特解是 (B)y=x 3+1 (C) y=(x+c) 34. C 是任意常数,(A )y-=(x+2) 3 四、试求以下述函数为通解的微分方程。
第十二章练习题
99第十二章 练习题练习一 一、指出函数xx c y 22-=(c 为任意常数)是否为微分方程(x+y)dx+xdy=0的解?若是解,请指出是否为通解?二、验证y=cx 3是微分方程03='-y x y 的通解,并作此微分方程通过点(1,31-)的积分曲线?三、在下列各题中,确定函数式中所含参数,使函数满足所给初始条件:1、x 2-y 2=c, y 0=x =5;2、y=(c 1+c 2x)e 2x , y 0=x =0 y '0=x =1四、写出由下列条件确定的曲线所满足的微分方程1、 曲线上任一点(x,y )的切线垂直于此点与原点的连线。
2、 曲线上点P (x,y )处的法线与x 轴的交点为Q ,且PQ 被y 轴平分。
*五、用微分方程表示一物理命题:某种气体的气压P对于温度T的变化率与气压成正比,与温度的平方成反比。
100101 练习二一、求下列微分方程的通解1、y '-x y '=a(y 2+y ')2、sec 2xtgydx+sec 2ytgxdy=03、(e x+y -e x )dx+(e x+y +e y )dy=04、y '=cos(x -y) (提示:令z(x)=x -y)二、求下列微分方程满足所给初始条件的特解1、⎪⎩⎪⎨⎧==++=-40sin )1(cos 0πx xy ydy e ydx 2、⎪⎪⎩⎪⎪⎨⎧-==+=11sec 232πx y xdx dy y x三、若可微函数f(x)满足关系式dt t f x f x ⎰=0)()(,证明:f(x)≡0102四、设du u f x x f x⎰+=0)()(,f(x)为可微函数,求f(x)五、一曲线通过点(2,3),它在两坐标轴间的任意切线线段均被切点所平分,求这曲线方程。
六、质量为1克的质点受外力作用作直线运动,这外力和时间成正比,和质点运动速度成反比,在t=10秒时速度为50厘米/秒,外力为4厘米/秒2,问从运动开始一分钟后速度是多少?103 练习三一、求下列齐次方程通解1、xy y dx dy x ln = 2、y x y x y -+='二、求下列齐次方程满足所给条件的特解1、 ⎪⎩⎪⎨⎧=+==e y y x dx dy xy x 2122 2、⎪⎩⎪⎨⎧==-+=10)(122x y dx y xy dy x三、求微分方程11+-++=y x y x dx dy 的通解(提示:令t=x+1)104四、设有连接点O (0,0)和A (1,1)的一段向上凸的曲线弧OA ,对于OA 上任一点P(x,y),曲线弧OP 与直线段OP 所围城图形面积为x 2,求曲线弧OA 的方程。
微分方程练习题及解析
微分方程练习题及解析微分方程作为数学中的一个重要分支,广泛应用于各个领域,涉及到物理、经济学、生物学等众多科学领域。
掌握微分方程的解析方法和技巧,对于理解和解决实际问题具有重要意义。
本文将为大家提供一些微分方程的练习题,并对其中的解析过程进行详细讲解。
1. 难题1已知微分方程 dy/dx = x * y,求其通解,并求通过点 (1,2) 的特解。
解析:首先对微分方程进行变量分离,将 dy/y 移到方程的右边,将 dx/x 移到方程的左边,得到:dy/y = x * dx对上式两边同时积分,得到:ln|y| = x^2/2 + C1其中,C1 为常数。
接下来,对上式两边同时取指数,得到:|y| = e^(x^2/2 + C1) = e^(C1) * e^(x^2/2)由指数函数的性质可知,e^(C1) 为常数,因此可以将其用 C2 来表示。
于是通解为:y = ± C2 * e^(x^2/2)下面求通过点 (1,2) 的特解,将 x=1 和 y=2 代入通解中,得到:2 = ± C2 * e^(1/2)解得 C2 = ± (2 / e^(1/2))所以通过点 (1,2) 的特解为:y = ± (2 / e^(1/2)) * e^(x^2/2)2. 难题2已知微分方程 d^2y/dx^2 + 4 * dy/dx + 4y = 0,求其通解,并求过点(0,1) 且 y'(0) = -2 的特解。
解析:该微分方程为二阶常系数齐次线性微分方程,首先求其特征方程。
特征方程为:r^2 + 4r + 4 = 0解特征方程可得到两个特征根相等的情况,即 r = -2。
由于存在重根,通解形式为:y = (C1 + C2x) * e^(-2x)下面求过点 (0,1) 且 y'(0) = -2 的特解。
将 x=0 和 y=1 代入通解中,得到:1 = C1 * e^0 = C1将 x=0 和 y'=-2 代入通解的导数中,得到:-2 = C2 * e^0 - 2C1 = C2 - 2解得 C2 = -2 + 2 = 0所以过点 (0,1) 且 y'(0) = -2 的特解为:y = (1 + 0x) * e^(-2x) = e^(-2x)通过以上两个例子,我们可以看到,对于微分方程的求解,我们需要先进行变量分离、恢复变量或代换等操作,然后再通过积分或特征方程求解,最后根据已知条件求得特定的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 微分方程§12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程一、单项选择题1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=;(C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ).(A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =;(C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D).4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=;(C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=;(C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D).二、填空题1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .2.微分方程3d d 0,4x x y y y x=+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:3252x x y C =++.4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =.5'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cxy e x=.三、解答题1.求下列微分方程的通解.(1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解:(3)d 10d x y y x +=; (4) 23d (1)0.d yy x x++= 解: 解:2.求下列微分方程满足所给初始条件的特解:(1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==;解: 解:(3) 2d 2d 0,1x x y y x y =+==; (4)d 10d x y yx+=. 解: 解:3*.设连续函数20()d ln 22x t f x f t ⎛⎫=+ ⎪⎝⎭⎰,求()f x 的非积分表达式. 答:()ln 2x f x e =⋅.§12.2 一阶线性微分方程、全微分方程一、单项选择题1. 下列所给方程中,是一阶微分方程的是( ).2d (A)3(ln )d y y x y x x+=; 52d 2(B)(1)d 1y y x x x -=++ 2d (C)()d y x y x=+; (D)()d ()d 0x y x x y y -++=. 答(B).2. 微分方程2()d 2d 0x y x xy y ++=的方程类型是( ).(A) 齐次微分方程; (B)一阶线性微分方程;(C) 可分离变量的微分方程; (D)全微分方程. 答(D).3. 方程y y x y x ++='22是( ).(A)齐次方程; (B)一阶线性方程;(C)伯努利方程; (D)可分离变量方程. 答(A).二、填空题1.微分方程d d x yy e x-+=的通解为 . 答:x x y Ce xe --=+. 2.微分方程2()d d 0x y x x y --=的通解为 . 答:33x xy C -=.3.方程()(d d )d d x y x y x y +-=+的通解为 . 答:ln()x y x y C --+=.三、简答题1.求下列微分方程的通解:(1) sin cos x y y x e -'+=; (2) d ln d y y x y x x=; 解: 解:(3) 232xy y x x '+=++; (4) tan sin 2y y x x '+=; 解: 解:(5) 2d (6)20d yy x y x-+=; (6) (2)d 0y y e xe y y +-=; 解: 解:(7) 222(2)d ()d 0a xy y x x y y ---+=. 解:2.求下列微分方程满足所给初始条件的特解.(1) 0d 38,2d x yy y x=+==; (2)d sin ,1d x y y x y x x x π=+==. 解: 解:3*.求伯努利方程2d 3d yxy xy x-=的通解. 解:§12.3 可降阶的高阶微分方程、二阶线性微分方程一、单项选择题1. 方程x y sin ='''的通解是( ).(A)322121cos C x C x C x y +++=; (B)1cos C x y +=;(C)322121sin C x C x C x y +++=; (D)x y 2sin 2=. 答(A)2. 微分方程y y xy '''''+=满足条件21x y ='=,21x y ==的解是( ).(A)2(1)y x =-; (B)212124y x ⎛⎫=+- ⎪⎝⎭;(C)211(1)22y x =-+; (D)21524y x ⎛⎫=-- ⎪⎝⎭. 答(C).3. 对方程2y y y '''=+,以下做法正确的是( ).(A)令()y p x '=,y p '''=代入求解; (B)令()y p y '=,y p p '''=代入求解; (C)按可分离变量的方程求解; (D)按伯努利方程求解. 答(B). 4. 下列函数组线性相关的().是(A)22,3x x e e ; (B)23,x xe e ;(C)sin ,cos x x ; (D)22,x x e xe . 答(A).5. 下列方程中,二阶线性微分方程是( ).(A)32()0y y y '''-=; (B)2x y yy xy e '''++=;(C)2223y x y y x '''++=; (D)222x y xy x y e '''++=. 答(D). 6. 12,y y 是0y py qy '''++=的两个解,则其通解是( ). (A)112y C y y =+; (B)1122y C y C y =+; (C)1122y C y C y =+,其中1y 与2y 线性相关;(D)1122y C y C y =+,其中1y 与2y 线性无关. 答(D). 7. 下列函数组线性相关的().是 22(A),3x x e e ; 23(B),x x e e ;(C)sin ,cos x x ; 22(D),x x e xe . 答(A).二、填空题1.微分方程sin y x x ''=+的通解为. 答: 312sin .6x y x C x C =-++2.微分方程y y x '''=+的通解为. 答: 212.2xx y C e x C =--+三、简答题1.求下列微分方程的通解.(1) 21()y y '''=+; (2) 21()2y y '''=.解: 解:2.求方程2()0y x y '''+=满足条件12x y ='=,11x y ==-的特解. 解:§12.4 二阶常系数线性齐次微分方程一、单项选择题1. 下列函数中,不是微分方程0y y ''+=的解的是( ).(A)sin y x =; (B)cos y x =;(C)x y e =; (D)sin cos y x x =+. 答(C).2. 下列微分方程中,通解是312x x y C e C e -=+的方程是( ). (A)230y y y '''--=; (B)250y y y '''-+=;(C)20y y y '''+-=; (D)20y y y '''-+=. 答(A).3. 下列微分方程中,通解是12x x y C e C xe =+的方程是( ). (A)20y y y '''--=; (B)20y y y '''-+=;(C)20y y y '''++=; (D)240y y y '''-+=. 答(B).4. 下列微分方程中,通解是12(cos2sin 2)x y e C x C x =+的方程是( ). (A)240y y y '''--=; (B)240y y y '''-+=(C)250y y y '''++=; (D)250y y y '''-+=. 答(D). 5. 若方程0y py qy '''++=的系数满足10p q ++=,则方程的一个解是( ).(A)x ; (B)x e ; (C)x e -; (D)sin x . 答(B). 6*. 设()y f x =是方程220y y y '''-+=的一个解,若00()0,()0f x f x '>=,则()f x 在0x x =处( ).(A)0x 的某邻域内单调减少; (B)0x 的某邻域内单调增加;(C) 取极大值; (D) 取极小值. 答(C).二、填空题1.微分方程的通解为40y y '''-=的通解为 . 答:412x y C C e =+.2.微分方程20y y y '''+-=的通解为 . 答:212x x y C e C e -=+. 3.微分方程440y y y '''-+=的通解为 . 答:2212x x y C e C xe =+.4.微分方程40y y ''+=的通解为 . 答:12cos2sin 2y C x C x =+. 5.方程6130y y y '''++=的通解为 . 答:312(cos2sin 2)x y e C x C x -=+.三、简答题1.求下列微分方程的通解:(1) 20y y y '''--=; (2) 22d d 420250d d x xx t t-+=.解: 解:2.求下列方程满足初始条件的特解.(1) 00430,10,6x x y y y y y ==''''-+===; (2) 0250,5,2x x y y y y=='''+===.解: 解:§12.5 二阶常系数线性非齐次微分方程一、单项选择题1. 微分方程2y y x ''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C). 2. 微分方程2y y x '''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).3. 微分方程256x y y y xe -'''-+=的一个特解应具有形式( ).2(A)x Axe -; 2(B)()x Ax B e -+;22(C)()x Ax Bx C e -++; 2(D)()x x Ax B e -+. 答(B). 4. 微分方程22x y y y x e '''+-=的一个特解应具有形式( ).2(A)x Ax e ; 2(B)()x Ax Bx e +;2(C)()x x Ax Bx C e ++; 2(D)()x Ax Bx C e ++. 答(C).5. 微分方程23sin x y y y e x '''+-=的一个特解应具有形式( ).(A)(cos sin )x e A x B x +; (B)sin x Ae x ;(C)(sin cos )x xe A x B x +; (D)sin x Axe x 答(A).二、填空题1.微分方程34y y x x ''+=+的一个特解形式为答:3*48x xy =-.2.微分方程2y y x '''+=的一个特解形式为 . 答:*()y x Ax B =+. 3.微分方程56x y y y xe '''-+=的一个特解形式为 . 答:*()x y Ax B e =+. 4.微分方程356x y y y xe '''-+=的一个特解形式为 . 答:3*()x y x Ax B e =+. 5.微分方程sin y y x ''-=的一个特解形式为 . 答:*sin y A x =. 6.微分方程sin y y x ''+=的一个特解形式为 . 答:*(cos sin )y x A x B x =+.三、简答题1.求下列微分方程的通解.:(1) 22x y y y e '''+-=; (2) 5432y y y x '''++=-; 解: 解:(3) 269(1)x y y y x e '''-+=+. 解:。