初一几何证明题
七年级数学几何证明题(典型)
EDC BAEODCBA七年级数学几何证明题1.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:(1)DE=AB ,(2)∠EDB=60°2.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。
求证: ∠FAC=∠B3.已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30∠C=50°求:(1),求∠DAE 的度数。
(2) 试写出 ∠DAE 与 ∠C - ∠B 有何关系?(不必证明) 4、一个零件的形状如图,按规定∠A=90o ,∠ C=25o,∠B=25o ,检验已量得∠BDC=150o ,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
CDA B5、如图,已知DF ∥AC,∠C=∠D,你能否判断CE ∥BD?试说明你的理由6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 若∠BDC = 140°,∠BGC = 110°,则∠A ?8、如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证BAC 。
EB A 3219、如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F , 若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数. 10、如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB11、如图,将两块直角三角尺的直角顶点C 叠放在一起. (1)若∠DCE=350,求∠ACB 的度数; (2)若∠ACB=1400,求∠DCE 的度数;(3)猜想:∠ACB 与∠DCE 有怎样的数量关系,并说明理由 12、已知:直线AB 与直线CD 相交于点O ,∠BOC=45,(1)如图1,若EO ⊥AB ,求∠DOE 的度数; (2)如图2,若EO 平分∠AOC ,求∠DOE 的度数. 13、已知AOB ,P 为OA 上一点.(1)过点P 画一条直线PQ ,使PQ ∥OB ;(2)过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ;BA CD213FDCBH EG A(3)若︒=∠40AOB ,则=∠PMO ?14、如图。
初一几何证明典型例题
初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】戴氏教育达州西外校区名校冲刺戴氏教育温馨提醒:暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。
在这个炎热的假期,祝你学习轻松愉快。
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23、4、证明:连接BF 和EFA BC DEF 2 1ADBC∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
已知:∠1=∠2,CD=DE ,EFP 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABBA CD F2 1 E A在AC 上取点E , 使AE =AB 。
∵AE =AB AP =AP ∠EAP =∠BAE , ∴△EAP≌△BAP ∴PE =PB 。
PC <EC +PE∴PC <(AC -AE )+PB ∴PC -PB <AC -AB 。
七年级数学典型几何证明50题
七年级数学典型几何证明50题初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)A BC DEF 21 ADBC∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF =CG ∠CGD=∠EFD又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE6、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
初中几何基础证明题初一
初中几何基础证明题初一Document number:PBGCG-0857-BTDO-0089-PTT1998初一几何证明题1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。
2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。
3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。
4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。
B DE /FCA 2G3BDCABD /PCAO23BD/PCO25. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。
6. 如图∠1=∠2,求证:∠3=∠4。
7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。
8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。
B DE/CO23BD /C A234BDE FCAG213a c db9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。
10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。
11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。
12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。
ABCDF E21l l l 3412345l 21ABCD34E13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。
14、已知,如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。
15、如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。
BCDOABCDF EAGHB CDEABCDEA16、已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。
七年级数学典型几何证明50题
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一几何证明题及答案
初一几何证明题及答案【篇一:七年级数学几何证明题(典型)】3.已知,如图,在△ abc中,ad,ae分别是△ abc的高和角平分线,若∠b=30dc4、一个零件的形状如图,按规定∠a=90o ,∠c=25o,∠b=25o,检验已量得∠bdc=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
db5、如图,已知df∥ac,∠c=∠d,你能否判断ce∥bd?试说明你的理由 aebc8、如图,ad⊥bc于d,eg⊥bc于g,∠e =∠1,求证ad平分∠bac。
e3gdc10、如图,将一副三角板叠放在一起,使直角的顶点重合于o,则∠aoc+∠dob11、如图,将两块直角三角尺的直角顶点c叠放在一起. (1)若∠dce=35,求∠acb的度数;(2)若∠acb=140,求∠dce的度数;(3)猜想:∠acb与∠dce有怎样的数量关系,并说明理由12、已知:直线ab与直线cd相交于点o,∠boc=45,(1)如图1,若eo⊥ab,求∠doe的度数;(2)如图2,若eo平分∠aoc,求∠doe的度数.13、已知?aob,p为oa上一点.(1)过点p画一条直线pq,使pq∥ob;(2)过点p画一条直线pm,使pm⊥oa交ob于点m;(3)若?aob?40?,则?pmo? ?adecodbad cob16、已知:线段ab=5cm,延长ab到c,使ac=7cm,在ab的反向延长线上取点d,使bd=4bc,设线段cd的中点为e,问线段ae 是线段cd的几分之一?【篇二:初中数学几何证明经典试题(含答案)】题(一)1、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二).如下图做gh⊥ab,连接eo。
由于gofe四点共圆,所以∠gfh=∠oeg, 即△ghf∽△oge,可得eogf=gogh=cocd,又co=eo,所以cd=gf得证。
eadofb2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二) a.如下图做gh⊥ab,连接eo。
初中经典几何证明练习题(含问题详解)
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ 4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQOP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初一几何证明题(精选多篇)
初一几何证明题(精选多篇)第一篇:初一几何证明题初一《几何》复习题201某--6—29姓名:一.填空题1.过一点2.过一点,有且只有直线与这条直线平行;3.两条直线相交的,它们的交点叫做;4.直线外一点与直线上各点连接的中,最短;a b 5.如果c[图1]6.如图1,ab、cd相交于o点,oe⊥cd,∠1和∠2叫做,∠1和∠3叫做,∠1和∠4叫做,∠2和∠3叫做;a7.如图2,ac⊥bc,cd⊥ab,b点到ac的距离是a点到bc的距离是,c点到ab的距离是d438.如图3,∠1=110°,∠2=75°,∠3=110°,∠4=;cb 二.判断题[图2][图3] 1.有一条公共边的两个角是邻补角;()2.不相交的两条直线叫做平行线;()3.垂直于同一直线的两条直线平行;()4.命题都是正确的;()5.命题都是由题设和结论两部分组成()6.一个角的邻补角有两个;()三.选择题1.下列命题中是真命题的是()a、相等的角是对顶角b、如果a⊥b,a⊥c,那么b⊥cc、互为补角的两个角一定是邻补角d、如果a∥b,a⊥c,那么b⊥c 2.下列语句中不是命题的是()a、过直线ab外一点c作ab的平行线cf b、任意两个奇数之和是偶数c、同旁内角互补,则两直线平行d、两个角互为补角,与这两个角所在位置无关a 3.如图4,已知∠1=∠2,若要∠3=∠4,则需()da、∠1=∠3b、∠2=∠3c、∠1=∠4d、ab∥cdc [图4] 4.将命题“同角的补角相等”改写成“如果,那么”的形式,正确的是()a.如果同角的补角,那么相等b.如果两个角是同一个角,那么它们的补角相等 c.如果有一个角,那么它们的补角相等d.如果两个角是同一个角的补角,那么它们相等四.解答下列各题:p 1. 如图5,能表示点到直线(或线段)的距离的线段qac 有、、;abf 2.如图6,直线ab、cd分别和ef相交,已知ab∥cd,orebba平分∠cbe,∠cbf=∠dfe,与∠d相等的角有∠[图5][图6]d∠、∠、∠、∠等五个。
初一上册几何证明题(精选多篇)
初一上册几何证明题(精选多篇)初一上册几何证明题 1.在三角形abc中,∠acb=90°,ac=bc,e是bc边上的一点,连接ae,过c作cf⊥ae于f,过b作bd⊥bc交cf的延长线于d,试说明:ae=cd。
满意回答因为ae⊥cf,bd⊥bc所以∠afc=90°,∠dbc=90°又∠acb=90°,所以∠ace=∠dbc因为∠cae+∠aec=90°∠ecf+∠aec=90°所以∠cae=∠ecf又ac=bc所以△ace全等于△cbd所以ae=cd像这类题目,一般用全等较好做些2.如图所示,已知ad、bc相交于o,∠a=∠d,试说明∠c=∠b.解:证1:∠a=∠d=====>ab∥cd=====>∠c=∠b证2:△abo内角和180=△cdo内角和180∠a=∠d∠aob=∠d0c∴∠c=∠b证明:显然有:∠aob=∠cod又∠a=∠d,且三角形三个内角的和等于180º∴一定有∠c=∠b.3.d是三角形abc的bc边上的点且cd=ab,角adb=角bad,ae是三角形abd的中线,求证ac=2ae。
在直角三角形abc中,角c=90度,bd是角b的平分线,交ac于d,ce垂直ab于e,交bd于o,过o作fg平行ab,交bc于f,交ac于g。
求证cd=ga。
延长ae至f,使ae=ef。
be=ed,对顶角。
证明abe全等于def。
=》ab=df,角b=角edf角adb=角bad=》ab=bd,cd=ab=》cd=df。
角ade=bad+b=adb+edf。
ad=ad=》三角形adf全等于adc=》ac=af=2ae。
题干中可能有笔误地方:第一题右边的e点应为c点,第二题求证的cd不可能等于ga,是否是求证cd=fa或cd=co。
如上猜测准确,证法如下:第一题证明:设f是ab边上中点,连接ef角adb=角bad,则三角形abd为等腰三角形,ab=bd;∵ae是三角形abd的中线,f是ab边上中点。
初一上册几何证明题(精选多篇)
初一上册几何证明题(精选多篇)第一篇:初一上册几何证明题初一上册几何证明题1.在三角形abc中,∠acb=90°,ac=bc,e是bc边上的一点,连接ae,过c作cf ⊥ae于f,过b作bd⊥bc交cf的延长线于d,试说明:ae=cd。
满意回答因为ae⊥cf,bd⊥bc所以∠afc=90°,∠dbc=90°又∠acb=90°,所以∠ace=∠dbc因为∠cae+∠aec=90°∠ecf+∠aec=90°所以∠cae=∠ecf又ac=bc所以△ace全等于△cbd(asa)所以ae=cd像这类题目,一般用全等较好做些2.如图所示,已知ad、bc相交于o,∠a=∠d,试说明∠c=∠b.解:证1:∠a=∠d=====>ab∥cd=====>∠c=∠b(内错角相等)证2:△abo内角和180=△cdo内角和180∠a=∠d∠aob=∠d0c∴∠c=∠b证明:显然有:∠aob=∠cod(两直线相交,对顶角相等)又∠a=∠d,且三角形三个内角的和等于180º∴一定有∠c=∠b.3.(1)d是三角形abc的bc边上的点且cd=ab,角adb=角bad,ae是三角形abd的中线,求证ac=2ae。
(2)在直角三角形abc中,角c=90度,bd是角b的平分线,交ac于d,ce垂直ab于e,交bd于o,过o作fg平行ab,交bc于f,交ac于g。
求证cd=ga。
延长ae至f,使ae=ef。
be=ed,对顶角。
证明abe全等于def。
=》ab=df,角b=角edf角adb=角bad=》ab=bd,cd=ab=》cd=df。
角ade=bad+b=adb+edf。
ad=ad=》三角形adf全等于adc=》ac=af=2ae。
题干中可能有笔误地方:第一题右边的e点应为c点,第二题求证的cd不可能等于ga,是否是求证cd=fa或cd=co。
初一几何证明题
初一几何证明题1.已知AB∥CD,∠1=∠2,证明:∠XXX∠XXX。
根据平行线内角相等的性质,可得∠1=∠2=∠XXX。
同时,因为AB∥CD,所以∠BEF+∠EFC=180°,即∠BEF=180°-∠XXX。
代入前面的等式,可得∠XXX∠XXX。
2.如图2,AB∥CD,∠3∶∠2=3∶1,求∠1的度数。
根据平行线内角相等的性质,可得∠1=180°-∠2.又因为∠3∶∠2=3∶1,所以∠3=3x,∠2=x。
代入前面的等式,可得∠1=180°-x。
因此,∠1+∠2+∠3=180°,即4x=180°,x=45°。
代入前面的等式,可得∠1=135°。
3.如图3,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,求∠XXX的度数。
根据直角三角形的性质,可得∠CEA=90°。
又因为CE⊥AF,所以∠EAF=90°-∠F=50°。
根据三角形内角和为180°的性质,可得∠EFA=180°-∠F-∠EAF=90°。
因为AB∥CD,所以∠XXX∠EFA=90°。
4.如图4,EF∥AD,∠1=∠2,∠BAC=80°。
求证:∠AGD=100°。
因为EF∥AD,所以∠AGD=∠AGE。
又因为∠BAC=80°,所以∠XXX°-∠BAC/2=50°。
因为∠1=∠2,所以∠DGE=∠AGE=180°-∠1-∠GAC=50°。
因此,∠AGD=∠AGE=50°+∠DGE=100°。
5.如图5,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的XXX°方向。
求∠C的度数。
根据题意,可画出如图6所示的图形。
初中经典几何证明练习题集(含答案解析)
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初一几何证明题
初一几何证明题初一几何证明题1. 证明等腰三角形底角相等设等腰三角形ABC,其中AB=AC,要证明∠B=∠C。
证明:由已知可知∠A=180-∠B-∠C。
又因为∠B=∠C,代入可得∠A=180-2∠B。
由于三角形内角和定理,可得∠A+∠B+∠C=180。
代入上式可得180-2∠B+∠B+∠C=180。
化简得∠C-∠B=0。
即∠C=∠B。
所以等腰三角形底角相等得证。
2. 证明垂直的两条直线互相垂直设有两条直线AB和CD,其中AB⊥CD,要证明CD⊥AB。
证明:由于AB⊥CD,可以得到∠ABC=90度。
假设CD不⊥AB,即CD与AB不垂直,那么就存在另一条直线CE平行于AB,并且与CD相交于点E。
可以得到∠CED=90度。
那么∠CED+∠ABC=90+90=180度,这与角的和为180度的基本定理相矛盾。
所以假设不成立,CD⊥AB。
证毕。
3. 证明平行线的内错角相等设有两条平行线AB和CD,要证明∠1=∠2。
证明:由已知可以得到直线AB∥CD。
假设∠1≠∠2,即∠1>∠2。
通过点C引一条平行于AB的直线CE,并且与CD相交于点E。
根据平行线的性质,可以得到∠3=∠1>∠2。
由于∠2和∠3是同位角,所以∠2>∠3,这与刚才得到的结论相矛盾。
所以假设不成立,∠1=∠2。
证毕。
通过上述证明题,我们可以学习到几何证明的基本方法和常用推理。
几何证明是一种严谨的推理和论证,需要运用已知条件和几何性质来得出结论。
同时,几何证明也需要大量的绘图和图形分析。
进一步研究和掌握几何证明对于提高数学思维和解决实际问题有一定的帮助。
初中几何基础证明题(初一)
初一几何证明题之阿布丰王创作1.如图,AD∥BC,∠B=∠D,求证:AB∥CD.2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB.3. 已知∠1=∠2,∠1=∠3,求证:CD∥OB.4. 如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.5. 已知∠1=∠2,∠2=∠3,求证:CD∥EB.6. 如图∠1=∠2,求证:∠3=∠4.7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B.8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d.9.如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED.10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l2∥l4.11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB∥CD.12、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD.13、如图,EF∥GH,AB、AD、CB、CD是∠EAC、∠FAC、∠GCA、∠HCA的平分线,求证:∠BAD=∠B=∠C=∠D.14、已知,如图,B、E、C在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD.15、如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,,求证:BC∥AE.16、已知,∠D=900,∠1=∠2,EF⊥CD,求证:∠3=∠B.17、如图,AB∥CD,∠1=∠2,∠B=∠3,AC∥DE,求证:AD∥BC.初一经常使用几何证明的定理总结对顶角相等:几何语言:∵∠1、∠2是对顶角∴∠1=∠2(对顶角相等)垂线:几何语言:正用反用:∵∠AOB=90°∵AB⊥CD∴AB⊥CD(垂直的界说)∴∠AOB=90°(垂直的界说)证明线平行的方法:1、平行公理如果两条直线都与第三条直线平行,那么,这两条直线也平行.简述为:平行于同一直线的两直线平行.几何语言叙述:如图:∵AB∥EF,CD∥EF∴AB∥CD(平行于同一直线的两直线平行.)2、同位角相等,两直线平行.几何语言叙述:如图:∵直线AB、CD被直线EF所截∠1=∠2∴AB∥CD(同位角相等,两直线平行.)3、内错角相等,两直线平行.几何语言叙述:如图:∵直线AB、CD被直线EF所截,∠1=∠2∴AB∥CD(内错角相等,两直线平行.)4、同旁内角互补,两直线平行.几何语言叙述:如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O ∴AB∥CD(同旁内角互补,两直线平行.)5、垂直于同一直线的两直线平行.几何语言叙述:如图:∵直线a⊥c,b⊥c∴a∥b(垂直于同一直线的两直线平行.)平行线的性质:1、两直线平行,同位角相等.几何语言叙述:∵AB∥CD∴∠1=∠2(两直线平行,同位角相等.)2、两直线平行,内错角相等.几何语言叙述:如图:∵ AB∥CD∴∠1=∠2(两直线平行,内错角相等.)3、两直线平行,同旁内角互补.几何语言叙述:如图:∵AB∥CD∴∠1+∠2=180O(两直线平行,同旁内角互补.)证明角相等的其余经常使用方法:1、余角的性质:同角或等角的余角相等.例:∵如图∠AOB +∠BOC =90° ∠BOC +∠COD =90°∴∠AOB =∠COD (同角的余角相等)2、补角的性质:同角或等角的补角相等.例:∵如图∠AOB +∠BOD =180°,∠AOC +∠COD =180° 且∠BOD =∠AOC∴∠AOB =∠COD (同角的补角相等)三角形中三种重要线段:1、三角形的角平分线:几何语言叙述:∵如图BD 是△ABC 的角平分线∴∠ABD =∠CBD=12∠ABC2、三角形的中线:几何语言叙述:∵如图BD 是△ABC 的中线∴AD =BD =12AB3、三角形的高线:几何语言叙述:∵如图AD 是△ABC 的高 ∴∠ADB =∠ADC =90°三角形的分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形(按边分)底和腰不等的等腰三角形等腰三角形等边三角形⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形(按角分)锐角三角形斜三角形钝角三角形三角形三边的关系:三角形两边之和年夜于第三边,两边之差小于第三边. 如图:|AB -AC|<BC<AB +AC三角形内角和定理及推论三角形内角和定理:三角形三个内角的和即是180° 几何语言叙述:如图:∠A +∠B +∠C =108°(三角形三个内角的和即是180°)三角形内角和定理推论1: 直角三角形的两锐角互余.几何语言叙述:如图:∵△ABC 中,∠C =90° ∴∠A +∠B =90°(直角三角形的两锐角互余)三角形内角和定理推论2:三角形的一个外交即是和它不相邻的两内角之和.几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD=∠A+∠B(三角形的一个外角即是和它不相邻的两内角之和)三角形内角和定理推论3:三角形的一个外角年夜于任何一个与它不相邻的内角.几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD>∠B(三角形的一个外角年夜于任何一个与它不相邻的内角)平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部份,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数.即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数.反之,如果点P(a ,b)在x轴上方,则b>0;如果P (a ,b)在x轴下方,则b<0.(2)y轴将坐标平面分成两部份,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数.即第二、三象限和x轴的负半轴上的点的横坐标为负数;第一、四象限和x轴正半轴上的点的横坐标为正数.(3)规定坐标原点的坐标为(0 ,0)(4)各个象限内的点的符号规律如下表:上表反推也成立.如:若点P (a ,b )在第四象限,则a>0,b<0(5)坐标轴上的点的符号规律:对称点的坐标特征:(1)关于x 轴对称的两点:横坐标相同,纵坐标互为相反数.如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于x 轴对称,之也成立.如P (2 ,-3)与Q(2 ,3)关于x 轴对称.(2)关于y 轴对称的两点:纵坐标相同,横坐标互为相反数.如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于y 轴对称,.如P (2 ,-3)与Q (-2 ,-3)关于y 轴对称.(3)关于原点对称的两点:纵坐标、横坐标都互为相反数.如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于原点对称,.如P (2 ,-3)与Q (-2 ,3)关于原点对称.。
七年级数学几何证明题(典型)
七年级数学几何证明题1.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:〔1〕DE=AB ,〔2〕∠EDB=60°2.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。
求证: ∠FAC=∠B3.,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,假如∠B=30∠C=50°求:〔1〕,求∠DAE 的度数。
〔2〕 试写出 ∠DAE 与 ∠C - ∠B 有何关系?〔不必证明〕BACD4、一个零件的形状如图,按规定∠A=90º,∠C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
CDA B5、如图,DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由6、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F. ∠A=30°,∠FCD=80°,求∠D。
7、如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,假如∠BDC = 140°,∠BGC = 110°,如此∠A ?AF EGDCB8、如图,AD⊥BC于D,EG⊥BC于G,∠E =∠1,求证AD平分∠BAC。
ED C BAG3219、如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,假如∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.10、如图,将一副三角板叠放在一起,使直角的顶点重合于O,如此∠AOC+∠DOB11、如图,将两块直角三角尺的直角顶点C叠放在一起.〔1〕假如∠DCE=350,求∠ACB的度数;〔2〕假如∠ACB=1400,求∠DCE的度数;〔3〕猜测:∠ACB与∠DCE有怎样的数量关系,并说明理由E O DCBA12、:直线AB 与直线CD 相交于点O ,∠BOC=45,〔1〕如图1,假如EO ⊥AB ,求∠DOE 的度数; 〔2〕如图2,假如EO 平分∠AOC ,求∠DOE 的度数.13、AOB ∠,P 为OA 上一点.〔1〕过点P 画一条直线PQ ,使PQ ∥OB ;〔2〕过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ; 〔3〕假如︒=∠40AOB ,如此=∠PMO ?14、如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一几何证明题
一般认为,要提升数学能力就是要多做,培养兴趣。
事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。
所以数学不好,问题不在自信,而是要培养学好数学的能力那么,我们应如何提升的数学能力呢?可以从以下四方面入手: 1. 提升视知觉功能。
由于数学研究客观世界的"数量与空间形式",要想从纷繁复杂的客观世界抽出这些" 数与形",首先必须具备很强的视知觉功能,去辨识,去记忆,去理解。
2. 提升对数学语言的理解能力。
数学有着自己独特的语言体系,它是一种"文字兼数字与符号的结构"。
数学里的符号、公式、方程式、图形、图表以及文字都需要通过阅读才能了解。
3. 提升对数学材料的概括能力。
对数学材料的抽象概括能力是数学学习能力的灵魂。
若一个看到一大堆东西,看了半天也不晓得它们背后的"数量关系与空间形式",这将是数学学习上极为糟糕的事。
因为数学的精髓就在于,它舍弃了具体的内容,而仅仅抽出"数与形",并对这些"数与形"进行操作。
4. 提示孩子的运算能力。
对"数或符号"的运算操作能力是数学学习所必须具备的一项重要技能。
我们日常生活中的衣食住行,时时刻刻也离不开运算。
在运算中会出现各种各样的问题,需具体问题具体分析。
俗语说,冰冻三尺非一日之寒,同样数学能力的培养也是一个漫长的过程,要善于发现自己的弱点,进行强化与补救训练。
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又因为FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D
是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。
所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。
BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN。
∴ΔBDM≌ΔCNE ∴BM=CN
【扩展阅读篇】
用文字记载转载自百分网,请保留此标记一个星期来的自己的思想、学习、生活情况的文字记录。
它有别于“流水账”,日记,在于流水账是有什么就记录什么,不需要作任何修饰和认识的升华,而且内容不限,一周之内可以记录您每一天的任何事情。
而周记就是:每周一次,并且对自己的生活学习思想认识有一定的升华。
周记是对个人和某个团体一周的所见、所闻、所思、所感、所惑、所获的记录。
还可以写一件在这一周里让你有所感触的事。
编辑本段作用
从学生角度来说,周记用来了解学生的思想动态,学习情况,答疑解惑,并通过周记的形式而置一些跟教育主题有关的主题作文,提高学生的认识,从而在全班范围内形成正确、积极、健康的舆论环境,并为主题班会准备材料,提高同学们参与的积极性。
从老师的角度来说,周记用来回顾一周的得失,提出经验教训,让班主任对班上情况有一个更加详细和全面的了解,提高工作的针对性和准确性。
老师除了用来了解同学一周发生的事情外,还用来锻炼同学的文章水平,使同学文章水平得以提高。
编辑本段格式
周记的题目(写作范围:读后感;见闻;趣事;数学周记......)
1.记事
2.自评(优,缺)
3.解决措施
4.下周计划
5.自己的所见所闻所感
其实周记并没有一种标准的格式,只需要同学们每周把自己的所看到的、听到的、想到的、经历的东西记下来,形成的文字片断或一篇文章,一周写一则就可以了。
编辑本段怎么写周记
不少同学又开始问了,周记怎么写?小学初中周记开头怎么写?
如果是一个片断,将事情写清、将要表达的意思表达完整就行了,当然,时间充裕,你可以将前因后果,你的想法补充完整,形成一篇文章。
不论无论,周记没有什么特殊规定的格式,跟我们平时说话写文章一样,要求就是条理清楚地说清一件事、一个想法。
周记的关键是要真,真事、真情、真想,不要虚构。
用力表达你正经历的、正思考的事,对提高你的写作能力是有帮助的,不要当作负担,也不要觉得有任何压力,因为真的,只要排列一下就行了。
同时,周记交给老师后,也可让老师来了解你的生活、你的想法,或许对你有帮
助。
去年也谈过周记怎么写,转到下面,大家再看看。
老师布置了周记作业,怎么写呢?许多同学发了愁。
其实周记也好,日记也好,都是要写一段时间内印象最深的事。
周记就是本星期内的事。
回想一下这个星期发生了什么,在学习上有什么问题,班级里有什么新鲜事,和朋友老师间关系如何,这些都可以写,和日记相比周记可以写的内容更多了,需要突出一两个重点。
如果大脑里立刻就想起一二件事情,记忆深刻,那么恭喜,你就有材料了,将它们的前因后果,事情经过,个人感想写清楚吧。
有人会问:不好意思,一想到过去的几天,我印象里只记得吃了一次大餐,或者只记得被老师骂了一顿,或者跟同学闹别扭心里不爽,这些都没有重要意义,怎么能写呢?告诉你,既然你想到了,就说明是值得写的。
有意义的事情,不一定非得是意义重大,思想崇高,自己的生活琐事,也是值得一写的,只要你写出你的感受。
我们每天的日子不都是这些细小的沙子一样的事情组成的吗?这些沙子,串起了我们的欢笑,串起了我们的忧愁,串起了我们的无聊,引领着我们一天天,不知不觉地在长大。
更有一些同学说,这个周最无味,什么也没有发生,没什么可写的。
再想想,再想想,多个心眼,仔细观察,你会找到的。
本文由百分网提供,原文地址:/a/201203/64234.html转载请注明出处,谢谢!。