特殊的平行四边形-课件ppt
合集下载
人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件
10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线
《平行四边形》优质课件PPT(共15张PPT)
在5个三角形中有2块大三角形,
1块中等三角形,2块小三角形。
5、正方形、长方形和平行四边形之间的关系。 平行四边形 长方形
正方形
巩固练习
判断。
(1)正方形是特殊的长方ห้องสมุดไป่ตู้。
( √)
(2)正方形和长方形是特殊的平行四边形。( )√
(3)四边形都有四条边。
( √)
巩固练习
哪组线段可以组成平行四边形?
知识梳理
1、长方形
8、【答案】A
宽 长长 宽 长 长长 长方方方边形形形叫对有做有边4长4条个相,边角等短,,。边2都长叫是2做短直宽,角。。 颈本是4((2B4前宝2(A虽学【122意B学4②.、、、6、22...联单构前1二面贵1有学考、.识生.:是有发(①) 教 【 能 ) 能1写 元 建 人 ) 我 , 嘉 半 点 【。 闭 材)一所现系①认学答力学力刚围和评教们守肴”定答 从上料定节校统小,识难案目生目上绕谐论学已住,位案 我眼未社制园优强其维点】标分标路责人这难经生弗】】 做想体会地发化的此护:C:组:的任际首点学命食自D起象现和使生的说之身如学交学景这关诗:了,,然,。认时用欺方从法谓体何会流会色一系时辩生我不界识代手凌法现是乎健在珍、珍主、普证命们知具具的 机现要。在错!康艰视讨视题创说地的才其有有构,象求“做误的苦生论生落造:看珍能旨物反,成值,我共起的重的命:命”美待贵感也质复““部得及们设,,尾要情的①的从明好与受;性性“分提时用计他联愚意况一你一点”社独四虽,二,倡向综两尊没看公义下些如些滴会特季有②字是老合课重有似移。养具何具的生,的至不,社师的,规做平山护体看体一小活每冷道符生会和思律到淡”精做待做是事的个暖,合,动和家维都,对,神法小法《做举人变弗题传时长方离按自实。,伟,责起动都化学意神代报式不 客己乃掌的掌任 ,持,是,,。,在告来开观负点握行握与之理独体不③点精认责规责睛基为基角以解一验知④染神识任律。之本?本色恒神无生其:事上事。办(笔的②的同,话二活善材逐物的物承事2,自有自在结分的的也料步,反。担不救些救》一尾),千。强养赋映(责能自事自,二切的②我姿是调成情任2忽护情护是从分作责们百故,负于有略方是方《实)用任都态学实责景代”法你法积际,。是应,然践任。价喜极出培请一该追后提的进,欢也奉发养赏个为求知出习一的有献多析人自人不新意惯步,回社角尾分己生足问识。充但报会度联内的幸,题对要实是,》使分中应生福教、物科了有。学析的该命的然新质学上可负生问“做喝种后要有安联长能责认题的彩种知求能排所精会任识的事,可困,动时描神对的到能情用 能 。 推作间绘”身公勇三力。心。知动用,的学体民担字。在的不人典会造就社。生呵足们型统成要会活护,进环筹伤对责中生然行境兼害自任,命后新,我顾,己是,能探使们,你履、一并自索气要会行对种且反、氛清怎好他价努也新更醒么自人值力;研显地做己、追地知究寂认?的对求让困,静识③责社,自,说更、到结任会己然明是悲自合。负的后了一凉己自责生能时种。的己,命自代精无责的绽强和神论任经放也实境是,并验出。践界塑时,精故为造,努刻说彩曰认美力想说的:识好做着你光教的品一履的芒学发格个行看。相展、负责法有长提成责任和人也供就任,建树说。了幸的议立,《条福人。强生兑件人。烈命命和生的如》需、责此曰要还任“
1块中等三角形,2块小三角形。
5、正方形、长方形和平行四边形之间的关系。 平行四边形 长方形
正方形
巩固练习
判断。
(1)正方形是特殊的长方ห้องสมุดไป่ตู้。
( √)
(2)正方形和长方形是特殊的平行四边形。( )√
(3)四边形都有四条边。
( √)
巩固练习
哪组线段可以组成平行四边形?
知识梳理
1、长方形
8、【答案】A
宽 长长 宽 长 长长 长方方方边形形形叫对有做有边4长4条个相,边角等短,,。边2都长叫是2做短直宽,角。。 颈本是4((2B4前宝2(A虽学【122意B学4②.、、、6、22...联单构前1二面贵1有学考、.识生.:是有发(①) 教 【 能 ) 能1写 元 建 人 ) 我 , 嘉 半 点 【。 闭 材)一所现系①认学答力学力刚围和评教们守肴”定答 从上料定节校统小,识难案目生目上绕谐论学已住,位案 我眼未社制园优强其维点】标分标路责人这难经生弗】】 做想体会地发化的此护:C:组:的任际首点学命食自D起象现和使生的说之身如学交学景这关诗:了,,然,。认时用欺方从法谓体何会流会色一系时辩生我不界识代手凌法现是乎健在珍、珍主、普证命们知具具的 机现要。在错!康艰视讨视题创说地的才其有有构,象求“做误的苦生论生落造:看珍能旨物反,成值,我共起的重的命:命”美待贵感也质复““部得及们设,,尾要情的①的从明好与受;性性“分提时用计他联愚意况一你一点”社独四虽,二,倡向综两尊没看公义下些如些滴会特季有②字是老合课重有似移。养具何具的生,的至不,社师的,规做平山护体看体一小活每冷道符生会和思律到淡”精做待做是事的个暖,合,动和家维都,对,神法小法《做举人变弗题传时长方离按自实。,伟,责起动都化学意神代报式不 客己乃掌的掌任 ,持,是,,。,在告来开观负点握行握与之理独体不③点精认责规责睛基为基角以解一验知④染神识任律。之本?本色恒神无生其:事上事。办(笔的②的同,话二活善材逐物的物承事2,自有自在结分的的也料步,反。担不救些救》一尾),千。强养赋映(责能自事自,二切的②我姿是调成情任2忽护情护是从分作责们百故,负于有略方是方《实)用任都态学实责景代”法你法积际,。是应,然践任。价喜极出培请一该追后提的进,欢也奉发养赏个为求知出习一的有献多析人自人不新意惯步,回社角尾分己生足问识。充但报会度联内的幸,题对要实是,》使分中应生福教、物科了有。学析的该命的然新质学上可负生问“做喝种后要有安联长能责认题的彩种知求能排所精会任识的事,可困,动时描神对的到能情用 能 。 推作间绘”身公勇三力。心。知动用,的学体民担字。在的不人典会造就社。生呵足们型统成要会活护,进环筹伤对责中生然行境兼害自任,命后新,我顾,己是,能探使们,你履、一并自索气要会行对种且反、氛清怎好他价努也新更醒么自人值力;研显地做己、追地知究寂认?的对求让困,静识③责社,自,说更、到结任会己然明是悲自合。负的后了一凉己自责生能时种。的己,命自代精无责的绽强和神论任经放也实境是,并验出。践界塑时,精故为造,努刻说彩曰认美力想说的:识好做着你光教的品一履的芒学发格个行看。相展、负责法有长提成责任和人也供就任,建树说。了幸的议立,《条福人。强生兑件人。烈命命和生的如》需、责此曰要还任“
6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册
感悟新知
解题秘方:紧扣平行四边形边的性质进行解答 .
知2-练
解:∵平行四边形的对边相等, ∴ CD=AB=5 cm, AD=BC=4 cm. ∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知 ∠ BAC =40 °, ∠ ACB = 80 °,则∠ BCD = ( C)
解:S 四边形 ABFE=S 四边形 FCDE. 理由如下: ∵四边形 ABCD 是平行四边形, ∴ OA=OC, AD ∥ BC. ∴∠ 1= ∠ 2. 又∵∠ 3= ∠ 4, ∴△ AOE ≌△ COF(ASA). ∴ S △ AOE=S △ COF.
知3-练
感悟新知
又由 ▱ ABCD 得
知3-练
感悟新知
例4 如图 6-1-8,在▱ ABCD 中,对角线 AC, BD 相
知3-练
交于点 O,过点 O 作直线 EF,分别交 AD, BC 于点 E, F. 判断四边形 ABFE 的面积与四边形 FCDE 的面 积有何关系,试说明理由 .
感悟新知
解题秘方:紧扣平行四边形的对角线性质、全等 三角形的性质进行解答 .
知2-讲
特别提醒
1. 2.
从 从• 边角• 看看• ::平平行行四四边边形形的的对对角边相平等行、且邻相角等互. 补 注• 意•:•要根据推理证明的需要,合理选用平
.
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P137随堂练习T1] 如图 6-1-4,在 ABCD 中, AB=5 cm, BC=4 cm,则▱ ABCD 的周长为__1_8___cm.
人教版数学四年级上册第五单元《平行四边形的认识》(课件20张ppt)
课堂练习
作业布置
第67页练习十一,第1题。
板书设计
平行四边形的认识
两组对边分别平行的四边形,叫Байду номын сангаас平行四边形。
谢谢!
人教版小学数学四年级上册第五单元
平行四边形的认识
视察下面的图形,寻找平行四边形。
导入新课
感受生活中“平行四边形”的存在
新课学习
视察、猜想平行四边形的特征
新课学习
验证平行四边形的特征
边的特点
新课学习
平行四边形的两组对边分别平行并且相等。两组对角分别相等。
角的特点
∠1=∠3,∠2=∠4。
验证平行四边形的特征
新课学习
通过实验我们发现平行四边形的四条边确定了,形状不能确定。
问题:请你思考一下,这是什么原因呢?
用四根小棒摆一个平行四边形。
新课学习
从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
认识平行四边形的底、高
新课学习
理解平行四边形的底、高特征
新课学习
概括平行四边形的特点
两组对边分别平行的四边形,叫做平行四边形。
新课学习
做一个平行四边形。
实验要求:① 用双手捏住平行四边形的两个对角, 向相反方向拉。② 将你的实验结果和发现记录在练习本上。
学生动手体验四角灵活的平行四边形模型。
绿色圃中小学教育网http://www.lspjyX
新课学习
对边之间的高长度相等。
对边之间的高互相平行。
新课学习
底
高
底
高
探究画高的方法
1. 问题:我们可以怎样画平行四边形的高呢?
《认识平行四边形》PPT-完美版
•
1、学生自读。指名读。
•
2、理解重点词语:
•
3、有感情地朗读、背诵。
•
课外再搜集一些鲁迅先生的名言。
•
趣味语文
•
1、过渡:鲁迅先生的童年发生过许多 故事, 这节课 我们就 来读一 个鲁迅 巧对先 生的故 事。
•
2、学生自读。指名读。
•
周樟寿的对子妙在哪里?他为什么对 得好?
•
文人巧对对联的故事还有很多,课后 搜集此 类故事 ,与同 学们交 流。
《认识平行四边形》PPT-完美版
典题精讲
照下面的样子做一做。
课件PPT
你发现了什么?
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
典题精讲
形状改变了, 边的长短没变
长方形的对边相 等,平行四边形
的对边也相等
《认识平行四边形》PPT-完美版
课件PPT
《认识平行四边形》PPT-完美版 《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
第五单元 四边形的认识
第 3 课时 认识平行四边形
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
学习目标
课件PPT
1、认识四边形,能辨认平行四边形。
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
情景导入
课件PPT
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
•
1、谈谈心目中的பைடு நூலகம்迅
•
(1)学了本单元的课文,我们被鲁迅 先生的 才学和 人格魅 力所折 服,这 节课我 们就来 谈谈自 己心目 中的鲁 迅。
北师大版初中九年级上册数学课件 《矩形的性质与判定》特殊平行四边形PPT课件(第3课时)
【点评】此题考查了矩形的判定与性质、三线合一以及三角形 中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
例3:如图,在△ABC中, AB=AC,D为BC上一点,以AB,BD为 邻边作平行四边形ABDE,连接AD, EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
MN MK2 NK2 2x2 8x2 2 3x,
MN 2 3x 2 3. DN x
当堂练习
1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在
EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,
则S1,S2的大小关系是( )
A.S1>S2
B B.S1=S2
C.S1<S2D.3S1=2S2
(3)线段DF与AB有怎样的关系?请直接写出你的结论. 分析:由四边形ADCE为矩形,可得AF=CF,又由AD是BC边 的中线,即可得DF是△ABC的中位线,则可得DF∥AB, DF=A1B.
2
解:DF∥AB,DF=A12B.理由如下: ∵四边形ADCE为矩形, ∴AF=CF, ∵BD=CD, ∴DF是△ABC的中位线, ∴DF∥AB,DF=A12B
∴四边形ADCE是平行四边形.
而∠ADC=90°,
∴四边形ADCE是矩形.
例4:如图所示,在△ABC中,D为BC边上的一点,E是 AD的中点,过A点作BC的平行线交CE的延长线于点F,且 AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说 明理由.
4.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC 于点M,MA=MC.
(1)求证:CD=AN; (2)若∠AMD=2∠MCD, 求证:四边形ADCN是矩形.
例3:如图,在△ABC中, AB=AC,D为BC上一点,以AB,BD为 邻边作平行四边形ABDE,连接AD, EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
MN MK2 NK2 2x2 8x2 2 3x,
MN 2 3x 2 3. DN x
当堂练习
1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在
EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,
则S1,S2的大小关系是( )
A.S1>S2
B B.S1=S2
C.S1<S2D.3S1=2S2
(3)线段DF与AB有怎样的关系?请直接写出你的结论. 分析:由四边形ADCE为矩形,可得AF=CF,又由AD是BC边 的中线,即可得DF是△ABC的中位线,则可得DF∥AB, DF=A1B.
2
解:DF∥AB,DF=A12B.理由如下: ∵四边形ADCE为矩形, ∴AF=CF, ∵BD=CD, ∴DF是△ABC的中位线, ∴DF∥AB,DF=A12B
∴四边形ADCE是平行四边形.
而∠ADC=90°,
∴四边形ADCE是矩形.
例4:如图所示,在△ABC中,D为BC边上的一点,E是 AD的中点,过A点作BC的平行线交CE的延长线于点F,且 AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说 明理由.
4.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC 于点M,MA=MC.
(1)求证:CD=AN; (2)若∠AMD=2∠MCD, 求证:四边形ADCN是矩形.
2特殊的平行四边形课件
∴AC=DB (矩形的对角线相等).
菱形的性质定理1:菱形的四条边都相等..
符号语言: ∵四边形ABCD是菱形,
∴AD=AB=BC=DC (菱形的四条边都相等).
菱形的性质定理2:菱形的对角线互相垂直,并且每一条对角线平分 一组对角..
符号语言: ∵四边形ABCD是菱形 ∴AC⊥DB ∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8
3、矩形具有而菱形不一定具有的性质是( D )
A、四条边都相等 B、对角线平分每一组对角
C、对角线互相垂直 D、两条对角线相等
例2、根据图形求出相应的x、y的值(第1、3个图 是矩形,第2个图是菱形;第3个图中的2x、2y+4、 x+3y分别表示矩形对角线5一半的长)
X= 65 Y= 25;
X= 26 Y=
直
有一个角是直角
角
三
角
形
有两条边相等
等 腰 三 角 形
特殊的三角形是从任意三角形的边或角所具有的特征来定义的.
特殊的平行四边形是从平行四边形的边或角所具有的特征来定义的.
矩形
有一个角是直角
菱
有一组邻边相等
形
因为矩形和菱形是特殊的平行四边形,所以矩形和菱形具有平行四边形所有 性质.
角
矩 对角相等 形
(菱形的对角线互相垂直,并且每一条对 角线平分一组对角).
例1、选择题:
1、下列命题中,属于假命题的是( D)
A、矩形的四个角相等
B、菱形的四条边相等
C、矩形的对角线相等且平分
D、菱形的对角线相等且垂直
2、矩形具有而平行四边形不一定具有的性质是
(c )
A、对角线互相平分 B、对角相等
C、对角互补
菱形的性质定理1:菱形的四条边都相等..
符号语言: ∵四边形ABCD是菱形,
∴AD=AB=BC=DC (菱形的四条边都相等).
菱形的性质定理2:菱形的对角线互相垂直,并且每一条对角线平分 一组对角..
符号语言: ∵四边形ABCD是菱形 ∴AC⊥DB ∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8
3、矩形具有而菱形不一定具有的性质是( D )
A、四条边都相等 B、对角线平分每一组对角
C、对角线互相垂直 D、两条对角线相等
例2、根据图形求出相应的x、y的值(第1、3个图 是矩形,第2个图是菱形;第3个图中的2x、2y+4、 x+3y分别表示矩形对角线5一半的长)
X= 65 Y= 25;
X= 26 Y=
直
有一个角是直角
角
三
角
形
有两条边相等
等 腰 三 角 形
特殊的三角形是从任意三角形的边或角所具有的特征来定义的.
特殊的平行四边形是从平行四边形的边或角所具有的特征来定义的.
矩形
有一个角是直角
菱
有一组邻边相等
形
因为矩形和菱形是特殊的平行四边形,所以矩形和菱形具有平行四边形所有 性质.
角
矩 对角相等 形
(菱形的对角线互相垂直,并且每一条对 角线平分一组对角).
例1、选择题:
1、下列命题中,属于假命题的是( D)
A、矩形的四个角相等
B、菱形的四条边相等
C、矩形的对角线相等且平分
D、菱形的对角线相等且垂直
2、矩形具有而平行四边形不一定具有的性质是
(c )
A、对角线互相平分 B、对角相等
C、对角互补
平行四边形的定义及性质ppt课件
§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
平行四边形PPT课件
高
底
过平行四边形一顶点,向对边画垂线,这点到
垂足的线段是平行四边形的高。
这条对边是平行四边形的底。
平行四边形一条底上有几条高? (无数条)
A
D
高
B
C
底
自学提示:注意底和高的对应。
高
高
底
底
我是小法官
(1)平行四边形的两组对边分别相等。
(√ )
(2)在一个平行四边形里,只可以画出一条高。 (×)
(3)
高
底
(×)
在下图中标出平行四边形的底和高。
高
高
底
底
说一说:下图中你认识的图形的 名称。
总结:
1.通过今天的学习,你收获了什么? 2.还有哪些不太明白的地方?
谢谢观赏!
2020/11/5
15
平行四边形PPT课件
平行四边形
两组对边分别平行的四边形,就是 平行四边形。
( 不是 )
(是 )
( 不是 )
( 不是 )ห้องสมุดไป่ตู้
(是 )
观察、思考:拉成了什么图形? 两组对边有什么变化?两组对角有什 么变化?
平行四边形具有不稳定性(易变形) 两组对边分别相等 两组对角分别相等
折痕是平行四 边形的高。
中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
《正方形的性质与判定》特殊平行四边形PPT(第1课时)教学课件
再由一个直角,得出是矩形;最后由一组邻边相等可
F
得正方形;
证明: ∵ BF∥CE,CF∥BE,
∴四边形BECF是平行四边形. ∵四边形ABCD是矩形, ∴ ∠ABC = 90°, ∠DCB = 90°, ∵BE平分∠ABC, CE平分∠ DCB, ∴∠EBC = 45°, ∠ECB = 45°, ∴ ∠ EBC =∠ ECB .
第一章 特殊平行四边形
正方形的性质与判定
第1课时
导入新课
讲授新课
当堂练习
课堂小结
学习目标 1.了解正方形的定义及其与平行四边形的关系. 2.探索并证明正方形的性质定理.(重点) 3.应用正方形的性质定理解决相关问题.(难点)
导入新课
活动:观察这些图片,你什么发现?正方形四条边有什么关系? 四个角呢?
A M
B
P
D
N C
∴∠ADB=∠CDB=45°.
∴∠MPD=∠NPD=45°.
∴DM=PM,DN=PN.
∴四边形NPMD是矩形(有一组邻边相等的矩形是正方形).
课堂小结
矩形
平行四边形
一组邻边相等且一个内角为直角 (或对角线互相垂直平分且相等)
菱形
正方形
请同学们动手完成以上证明?
A
D
O
B
C
提示:可以先通过证明来得到正方形是矩形、菱形,然后利用矩形和菱形 的定理来完成该题.
想一想: 正方形是矩形吗?是菱形吗?
矩形 正方形 菱形 平行四边形
归纳 正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所 以平行四边形、矩形、菱形有的性质,正方形都有.
一 正方形判定的定理
动一动:过点A作射线AM的垂线AN,分别在AM , AN上取点B , D ,使
北师大版九年级数学上册第一章 特殊平行四边形复习课件(共64张PPT)
第一章
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
人教版八年级数学下册《特殊的平行四边形》复习课件
AE的长为(
A.4
)
B. 3
C.10
D.12
A
D
F
G
B
E
C
例
如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别
在正方形ABCD的边上,且AH=2,连接CF.
(1)当DG=2时,求证:菱形EFGH是正方形。
(2)设DG=x,试用含x的代数式表示△FCG的面积。
D
G
C
F
H
A
A
C
O
B
N
)
矩形的探究性问题
A
例 如图,在△ABC中,DE分别是AB,
AC的中点,连接DE并延长至点F,使
E F = D E , 连 接 C F.
(1)求证:四边形DBCF是平行四边形。
(2)探究:当△ABC满足什么条件时,
B
四边形ADCF是矩形,并说明理由。
D
E
F
C
N
A
B
如图,已知AD//BC,AB//CD,∠B=∠BCD.
4、正方形既是矩形,又是菱形;
5、理解矩形、菱形、正方形的关系。
框架
矩形
正方形
平行四边形
菱形
定义
平行四边形:两组对边分别平行的四边形叫平行四边形。
矩形:有一个角是直角的平行四边形叫矩形。(特殊在角)
菱形:有一组邻边相等的平行四边形叫菱形。(特殊在边)
正方形:有一个角是直角且有一组邻边相等的平行四边形叫正方形。
点PQ分别在BD,AD上,则PA+PQ的最小值为_______。
Q
A
D
P
E
B
C
CD在∠MON的内部,顶点A,B分别在射
A.4
)
B. 3
C.10
D.12
A
D
F
G
B
E
C
例
如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别
在正方形ABCD的边上,且AH=2,连接CF.
(1)当DG=2时,求证:菱形EFGH是正方形。
(2)设DG=x,试用含x的代数式表示△FCG的面积。
D
G
C
F
H
A
A
C
O
B
N
)
矩形的探究性问题
A
例 如图,在△ABC中,DE分别是AB,
AC的中点,连接DE并延长至点F,使
E F = D E , 连 接 C F.
(1)求证:四边形DBCF是平行四边形。
(2)探究:当△ABC满足什么条件时,
B
四边形ADCF是矩形,并说明理由。
D
E
F
C
N
A
B
如图,已知AD//BC,AB//CD,∠B=∠BCD.
4、正方形既是矩形,又是菱形;
5、理解矩形、菱形、正方形的关系。
框架
矩形
正方形
平行四边形
菱形
定义
平行四边形:两组对边分别平行的四边形叫平行四边形。
矩形:有一个角是直角的平行四边形叫矩形。(特殊在角)
菱形:有一组邻边相等的平行四边形叫菱形。(特殊在边)
正方形:有一个角是直角且有一组邻边相等的平行四边形叫正方形。
点PQ分别在BD,AD上,则PA+PQ的最小值为_______。
Q
A
D
P
E
B
C
CD在∠MON的内部,顶点A,B分别在射
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、矩形、菱形的定义与性质
平行四边形
矩形
菱形
定义
两组对边分别平行 有一个角是直角的 有一组邻边相等
的四边形叫平行四 平行四边形叫做 的平行四边形叫
边形。
矩形。
做菱形。
边
两组对边分别平行 且相等
对边平行且相等
四边相等
性 角 对角相等
质
邻角互补
对角线 互相平分
四个角都是直角
对角相等 邻角互补
互相平分且相等
3、对角线相等的平 行四边形是矩形。
1、定义 2、四条边都相等相 等的四边形是菱形;
3.对角线互相垂直的 平行四边形是菱形。
1.判断题
1)、一组对边平行,另一组对边相等的的四边
形是平行四边形。( x )
2)、两条对角线相等的四边形是矩形。( x ) 3)、对角线互相垂直平分的四边形是菱形。(√ ) 4)、三个角为直角的四边形是矩形。(√ )
3.顺次连接对角线互相垂直的四边形各边中点得 矩形;
1 、 (2017无锡市中考)下列性质中,菱形具有而矩形不
一定具有的是:
(C )
A. 对角线相等
B. 对角线互相平分
C. 对角线互相垂直 D. 领边互相垂直
2、(2013•资阳)在矩形ABCD中,对角线AC、BD相交 于点O,若∠AOB=60°,AC=10,则AB= 5 .
互相垂直且平分 每条对角线平分
一组对角
2、平行四边形、矩形、菱形的对称性
对称 性
平行四边形 中心对称
矩形
菱形
中心对称,轴对称 中心对称,轴对称
3、矩形、菱形的判定
平行四边形
矩形
菱形
1.定义
判 定
2.两组对边分别相 等的四边形;
3一组对边平行且 相等的四边形; 4.对角线互相平分 的四边形;
1、定义 2、有三个内角是 直角的四边形是矩 形;
2、选择题:
现将一张矩形的纸对折后再对折,然后沿着图
中的虚线剪下,打开,得到的是( B )
A、平行四边形
B、菱形
C、矩形
D、三角形
1、解答题 (关于菱形和矩形)
如图,矩形ABCD的对角线AC、BD交于
点O,过点D作DP∥OC,且 DP=OC,连结
CP,试判断四边形CODP的形状,并说明理
由。
结论:四边形CODP是菱形
A
B
证明:∵ DP∥OC, DP=OC,
O
∴ 四边形CODP是平行四边形 D
C
∵四边形ABCD是矩形 ,
P
∴AC=AB,OA=OC,ODP是菱形 .
2、如图,矩形ABCD的对角 A 线AC、BD交于点O,过点D作
DP∥OC,且 DP=OC,连结 D
CP,试判断四边形CODP的形
请添加一个条件,使四边形
A H D
EFGH为矩形,并说明理由。
E
G
添加的条件__A_C_⊥__B__D__
B
F
C
我想到:三角形中位线定理:
三角形的中位线平行于三角形的第三边,且等于 第三边的一半.
我发现:
1.顺次连接对角线既不相等也不垂直的四边形各边中 点得 平行四边形; 2.顺次连接对角线相等的四边形各边中点得 菱形;
特殊的平行四边形(复习课)
景园中学:宋宇
考
学
知
牛
综
直
纲
习
识
刀
合
冲
解
目
梳
小
提
中
读
标
理
试
高
考
1、理解菱形、矩形的概念,并了解它们之间的 关系;
2、掌握菱形、矩形的性质和判定,并能熟练运 用相关知识解决问题。
1、复习回顾菱形和矩形的定义、性质定理与 判定定理,并会合理运用这两个定理。
2、进一步体会菱形与矩形的区别与联系。
状.并说明理由。
B O
C
P
如果题目中的矩形变为菱形,结论会变为什么?
A
B
O
D P
C
图一
2.填空(关于任意四边形与特殊平行四边形)
如图,在四边形ABCD中,E、F、G、H分别是边AB
、BC、CD、DA的中点,四边形ABCD 的对角线满足什
么条件时,四边形EFGH为菱形。 解:添加的条件_A_C__=__B_D___