《对数与对数运算(第一课时)》教学设计
对数和对数的运算(一)教学设计
2.2.1 对数与对数的运算(一)教学设计一、教材分析1、教材的地位和作用“对数与对数的运算”作为高一新教材的内容,被安排在必修一第二章《基本初等函数I》中,共分三个课时完成。
这一节课我上的是第一课时——对数的概念。
多年的教学实践表明,对数概念对于高一的同学来讲是一个重要内容,也是一个全新的抽象的概念,其符号难以直观地理解其意义。
因此理解这一概念需要有较好的抽象思维能力,从而对多数学生具有一定的挑战性。
对数是已知底数和幂值求指数,对数运算与指数运算是互逆的关系。
对数概念的学习,既加深了学生对指数的理解,又为后面对数的运算性质及对数函数的学习做了充分准备,起到了承上启下的重要作用。
2、教学目标知识与技能:理解对数的概念;能够说明对数与指数的关系,掌握对数式与指数式的相互转化;了解常用对数和自然对数的概念以及对数恒等式。
过程与方法:通过对实际问题的提出和解决,引出对数产生的背景和必要性;认识对数源于指数,进一步掌握对数式与指数式的互化并应用。
情感态度与价值观:体会数学概念的起源与发展是自然的,关注数学概念的产生背景、应用需要,体会其中所蕴涵的数学思想和方法。
3、教学重难点重点:对数的概念,对数式与指数式的相互转化难点:对数概念的理解,以及对数符号的理解二、学情分析我们的学生是美术特色类高中生,入学基础较差,学习能力较弱,且美术专业教育任务也重,花在数学科目上的时间比普高要少。
故数学成绩较差,中考,高考的平均分均低于市平均分许多。
一般高考数学较容易些的平均分80左右,较难一些的则60多分。
我现在所教的两个班级中考平均分是80.02。
基于这样的学情,学生薄弱的数学基础,较差的数学学习、领悟能力,数学的课堂设计注重于基础的知识点,尽可能的调动学生的学习积极性,而对于较难的综合性题目对学生不做要求。
此前,学生已学习了指数及指数函数,明白了指数运算是已知底数和指数求幂值,但对于指数幂的运算不是很熟练;而对数则是已知底数和幂值求指数,二者是互逆的关系。
对数与对数运算教学设计
对数与对数运算(第一课时)【教材分析与学情分析】本节课是人教A版《必修一》第二章第二节“对数函数”中的第一小节(第一课时)。
对数对学生来说是一个全新的概念,学习起来略显困难,不过在此之前,学生已学习了指数和指数函数的有关知识,这为过渡到本节的学习起着铺垫的作用;本章后面的对数函数对于学生来说是一个全新的函数模型,而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。
本节内容的学习主要是为让学生理解对数的概念,为学习对数函数作好准备。
同时,通过对数概念的学习,使学生体会“对立统一,相互联系、相互转化,数形结合”的思想,培养学生的逻辑思维能力都具有重要的意义。
我校高一学生层次较好,学生数学能力强,思维较活跃,平时已经养成了小组合作学习的习惯。
【课型】新授课【教学目标】1.理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
2.通过实例认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化,培养合作学习的能力,使学生经历认知逐渐深入的过程。
3.引导学生主动参与学习,激发研究数学问题的兴趣,形成主动学习的态度,培养学生自主探究以及合作交流的能力。
【教学准备】多媒体投影,计算机辅助,天宫二号发射成功视频,给学生事先写好的三封信(在课尾揭秘)【教学方法】自主探究,合作探究【教学重点】对数的概念,对数式与指数式的相互转化。
【教学难点】对数概念的理解,对数性质的理解。
【教学过程】(含时间分配)1.新课引入(7分钟)实例1:播放天宫二号发射成功视频。
在学生自豪感被激发之后,提出问题:已知地球到月球的距离大约为384401公里,老师有一张厚度为1mm 的纸,假设可以不断对折下去,那么大约折叠多少次,就可以架起一座从地球到月球的桥梁?62=38440110,=x x ⨯?实例2:研究细胞分裂时,一个细胞经过x 次分裂后,细胞的个数为y ,得到函数y=2x 。
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1
2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
对数与对数运算教案
对数与对数运算教案一、教学目标1.了解对数的概念和性质。
2.掌握对数的换底公式。
3.能够运用对数运算解决实际问题。
二、教学重点1.对数的换底公式的掌握。
2.对数运算的实际应用。
三、教学难点1.对数的换底公式的理解与应用。
2.对数运算在实际问题中的灵活运用。
四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。
2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。
然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。
3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。
逐步提高题目的难度,以巩固学生的基本技能。
(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。
培养学生的问题解决能力和分析能力。
4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。
让学生感受到对数运算在实际问题中的重要性。
(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。
拓宽学生的数学思维。
五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。
展望下节课的内容,为下一步学习打下基础。
六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。
七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。
对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。
通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。
同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。
《对数与对数运算》教学设计(精品)
对数与对数运算(一)(一)教学目标1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象——对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础.(四)教学过程教学环节教学内容师生互动设计意图提出问题1.提出问题(P72思考题)13 1.01xy=⨯中,哪一年的老师提出问题,学生思考回答.由实际问题引入,激发人口数要达到10亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).启发学生从指数运算的需求中,提出本节的研究对象——对数,学生的学习积极性.概念 形成合作探究:若1.01x =1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.举例:如:24416,2log 16==则,读作2是以4为底,16的对数.1242=,则41log 22=,读作12是以4为底2的对数.合作探究 师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力.概念 深化 1. 对数式与指数式的互化 在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1 (2)log x a a N N x =⇔= 指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N→真数掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题.说明:对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程x a N =(a >0,且a ≠1)的解. 也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算. 2. 对数的性质:提问:因为a >0,a ≠1时,log x N a a N x =⇔=则 由1、a 0=1 2、a 1=a 如何转化为对数式②负数和零有没有对数? ③根据对数的定义,log a N a =? (以上三题由学生先独立思考,再个别提问解答) 由以上的问题得到① 011,a a a == (a >0,且a ≠1) ② ∵a >0,且a ≠1对任意的力,10log N 常记为lg N .恒等式:log a N a =N 3. 两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e =2.71828…为底的对数称为自然对数,log e N 常记为ln N .备选例题例1 将下列指数式与对数式进行互化.(1)64)41(=x(2)51521=-(3)327log 31-= (4)664log -=x【分析】利用a x = N ⇔x = log a N ,将(1)(2)化为对数式,(3)(4)化为指数式. 【解析】(1)∵64)41(=x ,∴x =41log 64(2)∵51521=-,∴2151log 5-= (3)∵327log 31-=,∴27)31(3=-(4)∵log x 64 = –6,∴x -6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了这一点. 在处理对数式与指数式互化问题时,依据对数的定义a b = N ⇔b = log a N 进行转换即可.例2 求下列各式中的x . (1)32log 8-=x ; (2)4327log =x ; (3)0)(log log 52=x ; 【解析】(1)由32log 8-=x得32332)2(8--==x = 2–2,即41=x .(2)由4327log =x ,得343327==x ,∴813)3(4343===x .(3)由log 2 (log 5x ) = 0得log 5x = 20 = 1. ∴x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.(2)第(3)也可用对数性质求解.如(3)题由log 2(log 5x ) = 0及对数性质log a 1=0. 知log 5x = 1,又log 55 = 1. ∴x = 5.对数与对数运算(二)(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程. 2.教学难点: 对数的运算性质发现过程及其证明. (三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法. (四)教学过程教学环节教学内容师生互动设计意图复习引入复习:对数的定义及对数恒等式log baN b a N=⇔=(a>0,且a≠1,N>0),指数的运算性质.;m n m n m n m na a a a a a+-⋅=÷=();mnm n mn n ma a a a==学生口答,教师板书.对数的概念和对数恒等式是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备.提出问题探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m na a a+⋅=,那m n+如何表示,能用对数式运算吗?如:,,m n m n m na a a M a N a+⋅===设.于是,m nMN a+=由对数的定义得到log,maM a m M=⇔=lognaN a n N=⇔=logm naMN a m n MN+=⇔+=log log log()a a aM N MN∴+=放出投影学生探究,教师启发引导.即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?概念形成(让学生探究,讨论)如果a>0且a≠1,M>0,N>0,那么:(1)log log loga a aMN M N=+(2)log log loga a aMM NN=-(3)log log()na aM n M n R=∈证明:(1)令,m nM a N a==则:m n m nMa a aN-=÷=logaMm nN∴-=又由,m nM a N a==log,loga am M n N∴==即:log log loga a aMM N m nN-=-=(3)0,log,Nn nan N M M a≠==时令则log,bnab n M M a==则N bn na a∴=N b∴=让学生多角度思考,探究,教师点拨.让学生讨论、研究,教师引导.让学生明确由“归纳一猜想”得到的结论不一定正确,但是发现数学结论的有效方法,让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略.通过这一环节的教学,训练学生思维的广阔性、发散性,进一步加深学生对字母的认识和利用,体会即log log log aa a MM N N=- 当n =0时,显然成立.log log na a M n M ∴=从“变”中发现规律.通过本环节的教学,进一步体会上一环节的设计意图.概念 深化合作探究: 1. 利用对数运算性质时,各字母的取值范围有什么限制条件?2. 性质能否进行推广?(师组织,生交流探讨得出如下结论) 底数a >0,且a ≠1,真数M >0,N >0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.(生交流讨论) 性质(1)可以推广到n 个正数的情形,即 log a (M 1M 2M 3…M n ) =log a M 1+log a M 2 +log a M 3+…+log a M n(其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).应用 举例例1 用log a x ,log a y ,log a z 表示下列各式(1)log a xyz(2)23log 8a x y学生思考,口答,教师板演、点评. 例1分析:利用对数运算性质直接化简.(1)log axyzlog log a a xy z =-通过例题的解答,巩固所学的对数运算法则,提高运算能力.备选例题例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-;(2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++-- =5lg 212lg 21+ =21)5lg 2(lg 21=+. 方法二:原式=57lg 4lg 724lg +- =475724lg⨯⨯ =21)52lg(=⨯.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222==1[lg9lg10lg 2]2=+- 1[2lg31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266 (2)434log []a x a y⋅ 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglg lg lg lg cb ac b a x =-+=,∴532c b a x =.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M ⇒N = M .对数与对数运算(三)(一)教学目标 1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答. 2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想.(2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力. (3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程教学环节教学内容师生互动设计意图提出问题我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?师:从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正产生认知冲突,激发学生的学习欲望.数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出任意不为1的正数为底的对数.概念形成1. 探求换底公式,明确换底公式的意义和作用.例如,求我国人口达到18亿的年份,就是计算x=log1.011318的值,利用换底公式与对数的运算性质,可得x=log1.011318=01.1lg1318lg=01.1lg13lg18lg-≈0043.01139.12553.1-=32.8837≈33(年).由此可得,如果人口年增长率控制在1%,那么从2000年初开始,大约经过33年,即到2032年底我国的人口总数可达到18亿.师:你能根据对数的定义推导出下面的换底公式吗?log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0).(师生讨论并完成)当a>0,且a≠1时,若a b=N,①则log a N=b. ②在①的两边取以c(c>0,且c≠1)为底的对数,则log c a b=log c N,即b log c a=log c N.∴b=aNcaloglog. ③由②③得log a N=aNccloglog(c>0,且c≠1).一般地,log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0),这个公式称为换底公式.推导换底公式应用举例(多媒体显示如下例题,生板演,师组织学生进行课堂评价)例1 计算:(1)例1分析:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的掌握换底公式的应用.log34·log48·log8m=log416,求m的值.(2)log89·log2732.(3)(log25+log4125)·5log2log33.具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.(1)解:原方程等价于3lg4lg×4lg8lg×8lglg m=2,即log3m=2,∴m=9.(2)解法一:原式=8lg9lg·27lg32lg=2g313g21·3g312g51=910.解法二:原式=8log9log22·27log32log22=33log22·3log352=910.(3)解:原式=(log25+log255)·5log22log33=21log2255·log52=21log2525·log52=45log25·log52=45.小结(1)不同底的对数要尽量化为同底的对数来计算;(2)在第(3)小题的计算过程中,用到了性质logmaM n=mn logaM及换底公式log a N=aNbbloglog.利用换底公合作探究:现在我们来用已学过的对数知识解决实际问题.例2 20世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lg A-lg A0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1). 式可以证明:log a b=ablog1,即log a b log b a=1.例2解:(1)M=lg20-lg0.001=lg001.020=lg20000=lg2+lg104≈4.3.因此,这是一次约为里氏4.3级的地震.(2)由M=lg A-lg A0可得M=lgAA⇔AA=10M⇔A=A0·10M.当M=7.6时,地震的最大振幅为A1=A0·107.6;当M=5时,地震的最大振幅为A2=A0·105.所以,两次地震的最大振幅之比是21AA=56.71010⋅⋅AA=107.6-5=102.6≈398.答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.合作探究:可以看到,虽然7.6级地震和5级地震仅相差2.6级,但7.6级地震的最大振幅却是5级地震最大掌握利用对数知识解决实际问题.课堂练习1.课本P 79练习第4题.2.在a b log 1,ba lg lg ,log nb a n ,log n b a n ,baab ab log 1log 1--(a >0,a ≠1,b >0,b ≠1,ab ≠1,n ∈N )中和log a b 相等的有 A.2个B.3个C.4个D.1个3.若log 34·log 48·log 8m =log 42,求m .4.(1)已知log 53=a ,log 54=b ,试用a 、b 表示log 2512;(2)已知log 1227=a ,求log 616.14的含量P =(21)5730t.由对数与指数的关系,指数式P =(21)5730t可写成对数式t =log573021P .湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,即P =0.767,那么t =log5730210.767,由计算器可得t ≈2193. 所以,马王堆古墓是近2200年前的遗址. 课堂练习答案1.(1)1;(2)1;(3)45.2. A3. 3.4. (1)2ba +. (2)aa +-3)3(4. 归纳 总结1.换底公式及其应用条件(注意字母的范围).2.解决实际问题的一般步骤:学生先自回顾反思,教师点评完善.形成知识体系.课后作业:2.2 第三课时 习案学生独立完成巩固新知备选例题例1 已知log 189 = a ,18b = 5,求log 3645. 【解析】方法一:∵log 189 = a ,18b = 5, ∴log 185 = b , 于是)218(log )59(log 36log 45log 45log 1818181836⨯⨯== =2log 15log 9log 181818++=aba b a -+=++2918log 118. 方法二:∵log 189 = a ,18b = 5, ∴lg9 = a lg18,lg5 = b lg8,∴9lg 18lg 25lg 9lg 918lg)59lg(36lg 45lg 45log 236-+=⨯===ab a a b a -+=-+218lg 18lg 218lg 18lg . 【小结】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质;(2)题目中有指数式和对数式时,要注意指数与对数互化,统一成一种形式. 例2 我们都处于有声世界里,不同场合,人们对音量会有不同的要求,音量大小的单位是分贝(dB),对于一个强度为I 的声波,分贝的定义是:y = 10lgI I. 这里I 0是人耳能听到的声音的最低声波强度,I 0 = 10-12w/m 2,当I = I 0时,y = 0,即dB = 0.(1)如果I = 1w/m 2,求相应的分贝值;(2)70dB 时声音强度I 是60dB 时声音强度I′的多少倍? 【解析】(1)∵I =1w/m 2, ∴y =10lg120110lg 10I I -= 1210lg101012lg10120()dB ==⨯=(2)由70 = 10lg 0I I ,即7lg 0=I I,∴7010=I I ,又60 = 10lg0I I ',即lg 0I I '=6,∴0I I '=106. ∴67001010='='I I I II I =10,即I = 10I ′答: (1)I = 1w/m 2,相应的分贝值为120()dB ; (2)70dB 时声音强度I 是60dB 时声音强度I′的10倍。
高中数学《对数的概念与运算性质》教学设计
《对数与对数运算》(第一课时)(人教A版普通高中课程标准实验教科书数学必修1第二章第二节)一、教学内容解析《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质.基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化.二、教学目标设置1.感受引入对数的必要性,理解对数的概念;2.能够说出对数与指数的关系,能根据定义进行互化和求值;3.感受数学符号的抽象美、简洁美.本课时落实以上三个教学目标:通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。
根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念.通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值.恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.三、学生学情分析1.认知基础从运算的角度来讲,加、乘、乘方运算中只有乘方的逆运算对数运算还没有学习.从函数的角度来说,高一的学生刚刚学习了集合、函数的概念、函数的表示方法和函数的一般性质,对函数有了初步的认识,在此基础上又学习了指数运算和指数函数,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程,之后将在学习对数的基础上继续学习对数函数.2.问题诊断对数的概念对于学生来说,是全新的.形式地进行指数式与对数式之间的互化是容易的,在真正理解对数概念的基础上进行解题是有一定难度的,表现在两个方面:(1)不能将对数与普通的数平等对待,不理解对数的概念,只能够进行表面上的形式转换;(2)不能把“对数的实质是指数”应用在数学问题的解决中.基于以上分析,本节的教学难点是:(1)对数概念的理解;(2)对数的常用性质的概括.为了突破第一个难点,要在引入对数概念时,通过不同的实例,让学生感受到为什么要学习对数,是基于研究指数的需求才引入对数,因此对数的实质是指数;在形成概念时,要引导学生明确“对数是数”这一事实;在引入对数概念后,学生通过自主举例,具体感知个例,从对数概念外延的角度进行理解.本节的第二个难点是:“0和负数没有对数”这一性质的深入认识.在教学中最明显的例证是涉及到求定义域时,看到对数符号,不能如同看到分母一样,瞬间闪现出真数要大于0的限制,因此应该在学习对数伊始,就打好“0和负数没有对数”的认识基础.为了突破第二个难点,不要急于将现成的结论抛出,可以让学生在自主举例(感受个例)的基础上,尝试思考(分析通例)对数中的底数和真数可以取什么样的数,引导学生思考是不是所有的实数都有对数,哪些数有对数?为什么?通过互化和求值的练习,让学生逐渐地从内涵和外延两方面加深对数概念的理解.四、教学策略分析本节教学中,学习对数概念的过程就是认识的辨证发展过程:从实践到认识:通过具体情境,具体问题,具体对数的体验感知,遵循从具体到抽象的过程,来建立对数概念,从概念内涵的角度学习;再实践:形成概念之后,遵循从一般到特殊的思路,进行自主举例,感知个例,从概念外延的角度加深概念理解;再认识:理性分析通例(思考底数和真数的范围),又从特殊到一般进行概念的再认识;循环往复:在随后的练习巩固中,认识两种特殊的对数(常用对数和自然对数)和两种特殊的对数值(1的对数和底数的对数),来获得基于对数概念的运算性质,从而丰富学生对于对数概念的认知.突破难点的策略为:旧知新悟,适度模仿,归纳概括,自主举例.五、教学过程设计1.对数概念的形成1.1创设情境,引发思考【实际情境】网上的一则消息:有驴友挖到几枚恐龙蛋,送到权威机构做了碳14同位素鉴定,结果是白垩纪的恐龙蛋化石,现坐等博物馆上门收购.生物死亡后,它机体内原有的碳14含量,每经过大约6000年,会衰减为原来的一半,这个时间称为“半衰期”,研究人员常常根据机体内碳14的含量来推断生物体的年代,其中半衰次数x与碳14的含量P间的关系为:1()2x P.但是,当生物组织内的碳14含量低于千分之一时(这里我们按11024来计算),一般的放射性探测器就测不到碳14了.众所周知,恐龙生活在距今大约一亿年前的地球上,那么用碳14同位素法能推断出恐龙蛋化石的年代吗?问题1:(1)经过1次半衰期,碳14的含量会变为原来的多少?3次呢?(2)经过几次半衰期,一般的放射性探测器就测不到碳14了呢?(3)用碳14同位素法能推断出恐龙蛋化石的年代吗?【预设的答案】12,18;10;不能【设计意图】对数概念不是凭空产生的,用考古鉴定这一实例,让学生感受“求指数”这样的问题是客观存在的,是源于实际生活的.【数学情境】解方程:(1)2x=2;(2)2x=3;(3)2x=4.【设计意图】创设数学情境,通过指数方程的实例,让学生感受在数学学习中,“求指数”这样的问题也是存在的,有必要研究这一类问题.问题2:以上几个问题的共同特征是什么?【活动预设】引导学生归纳概括出问题的共同特征:已知底数和幂,求指数x .1.2探究典例,形成概念活动:解方程:(1)2x =2; (2)2x =3; (3)2x =4.【活动预设】感受在求指数的过程中,有的指数可以直接写出结果,有的指数却不好表示.【设计意图】为引入对数符号表示指数做铺垫.问题3:以引例中的2x =3为例,分析x 的值存在吗?如果存在,符合条件的x 的值有几个?能估计出x 的大致范围吗?【活动预设】(1)根据函数图象,思考等式2x =3中指数x 的存在性,唯一性和大致范围;(2)类比:在学习求方程x 3=2的根时,为了表示底数x ,引入了数学符号:√,表示3次方为2的数;这里,我们引入对数符号来表示指数x ,将x 记作log 23.【设计意图】从引例中的具体问题入手,思考指数x 的存在性,唯一性和大致范围,为了表示指数,引入对数符号,在具体问题中体验用对数符号表示指数的过程.问题4:结合方程2x =3来思考,x =log 23中log 23表示什么?【活动预设】(1)分析log 23表示的含义;(2)感受:以2x =4为例,分析指数x 可以怎样用对数符号表示,以及该符号表示什么. 教师讲授:若a x =N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数,记作:N x a log ,其中a 叫做对数的底数,N 叫做真数.【设计意图】理解具体的对数符号所表示的含义,并且在探究特例的基础上,遵循从具体到抽象的思路,形成对数概念.问题5:指数式与对数式是等价的,但a ,x ,N 在两个式子中的名称一样吗?【预设的答案】此处画上连线图,呈现指数式与对数式之间的关系。
对数与对数运算(第一课时)教学设计
教学内容分析
教学重点:对数式与指数式的互化以及对数运算性质
教学难点:推导对数运算性质
教学模式
“传递──接受式”与“探究式教学”相结合
教学主题
掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握
2.通过观察,探究,分析掌握指数式与对数式的互化。
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
学情分析
高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历了从特殊到一般,具体到抽象的研究过程.
例题讲解(性质应用)
例2用 , , 表示下列各式:
(1) (2)
解:(1)
(2)
=
例3求下列各式的值:
(1) (2)
解:(1)
(2)
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
式子
名称
----幂的底数
----幂的指数
----幂值
----对数的底数
----以 为底 的对数
----真数
(停顿)这是因为 ,所以 。因此, 中真数N也要求大于零,所以在 , 的条件下,指数式与对数式是可以相互转化的。
由真数 ,得到负数与零一定没有对数。
《对数与对数运算》教学设计
《对数与对数运算》教学设计2.2.1对数与对数运算(一)教学目标(一)教学知识点1.对数的概念;2.对数式与指数式的互化.(二)能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识.(三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题;3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设20XX 年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20XX 年的2倍?()x %81+=2?x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?二、新授内容:定义:一般地,如果()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =?=log例如:1642= ? 216log 4=; 100102=?2100log 10=;2421= ?212log 4=; 01.0102=-?201.0log 10-=.探究:1。
是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ?⑵ 01log =a ,1log =a a ;∵对任意 0>a 且1≠a , 都有 10=a ∴01log =a 同样易知:1log =a a ⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN .例如:5log 10简记作lg5;5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN .例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞.三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4) 73.531=m )(解:(1)5log 625=4;(2)2log 641=-6;(3)3log 27=a ;(4)m =73.5log 31.例2.将下列对数式写成指数式:(1)416log 21-=;(2)7128log 2=;(3)201.0lg -=;(4)303.210ln =.解:(1)16)21(4=- (2)72=128;(3)210-=0.01;(4)303.2e =10.例3.求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算:⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x , ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===;⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8;(2)52=32 ;(3)1 2-=21;(4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2⑵5log 125=3⑶2log 41=-2⑷3log 811=-4解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2(4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5五、课堂小结⑴对数的定义;⑵指数式与对数式互换;⑶求对数式的值.六、课后作业:1.阅读教材第62~64页; 2.作业:《习案》作业二十《对数与对数运算(第一课时)》教学设计华南师范大学陈嘉韵教材新课标人教版高中教材数学必修1课题 2.2.1对数与对数运算第一课时教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。
对数与对数运算教案
对数与对数运算教案(第1课时)一.教学内容分析本节课是必修1中第二章对数函数内容的第1课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起着十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数做好准备.同时,通过对对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二.学生学习情况分析大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.三.教案设计思想学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例中认识对数模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四.教学目标1.理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.2.通过实例使学生认识对数模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.3.通过学生分组进行探究活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.4.培养学生的类比、分析、归纳能力,培养学生严谨的思维品质以及在学习过程中培养学生的探究意识.五.教学重点难点重点:(1)对数的概念;(2)对数式与指数式的相互转化.难点:(1)对数概念的理解;(2)对数性质的理解.六.教学过程创设情境,引入新课引例(3分钟)1.一尺之锤,日取其半,万世不竭.(1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数模型,易得⎝⎛⎭⎫125=132,(2)可设取x次,则有⎝⎛⎭⎫12x=0.125,抽象出:⎝⎛⎭⎫12x=0.125⇒x=?2.2002年我国GDP为a亿元,如果每年平均增长8%,那么经过多少年GDP是2002年的2倍?分析:设经过x年,则有(1+8%)x=2,抽象出:(1+8%)x=2⇒x=?让学生根据题意,设未知数,列出方程.这两个例子都出现指数是未知数思考如何表示对对数的学习兴趣,培养学生的探究意识.生活及科研中还有很多这样的例子,因此引入对数是必要的.一、对数的概念(3分钟)2.2.1对数与对数运算第1课时三、对数七.教学反思本教案先由引例出发,创设情境,激发学生对对数的学习兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握.教学中引导学生阅读对数的定义,同时,定义的讲解注重理解,强调对数是一种求指数的运算,指对数的互化,注意读法、写法等。
2.2.1对数与对数运算(第一课时)
2
lo g 1 5 .7 3 m 1 34 ( ) 16 2 2 10 0.01
e
2 .3 0 3
10
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. 常用对数:以10为底的对数
lg 0.01
自然对数:以e为底的对数
其中无理数e=2.71828 ··· (5) lo g 1 0 0 .0 1 2
求a的取值范围
3、求等式 lg 1- 3x) = 1 ( 中的x的值
其中 a 叫做对数的底数,N叫做真数.
a N
x
x lo g a N
对数式
指数式
新课讲解
二、对数的性质 若 a 0, 且 a 1
a N
x
x lo g a N
2 lo g 4 1 6
1 2 x lo g 2 1 0 4 8 5 7 6 lo g 4 2
4 16
2
课本64页练习3,4
目标再现
1、理解对数的概念,了解对数与指数的关系;
2、理解和掌握对数的性质;
3、掌握对数式与指数式的关系 .
作业:课本74页A组1,2
课堂检测
1、已知 ln(lg x) = 0, 那么x等于( )
1 C、 10
(5- a D、e
2、已知对数式 b = log ( a-
典例分析
例1 将下列指数式化为对数式,对数式化为指数式. (1)54=645 (2)2
6
lo g 5 6 4 5 4
m
1 64
lo g 2
1 64
6
(3) ( ) 5 .7 3
3 (4) lo g 1 1 6 4
《对数与对数运算》教案(第1课时)
2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。
《对数运算》教案
对数与对数运算(第一课时)一、教学目标1.知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2.过程与方法(1)通过实例认识对数模型,体会引入对数的必要性;(2)通过观察分析得出对数的概念及对数式与指数式的互化;(3)通过分组探究进行活动,掌握对数的重要性质;3.情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;四、归纳总结: 1、对数的概念一般地,如果函数()10≠>=a a N a x 且那么数x 叫做以a 为底N 的对数,记作 log a x N =,其中a 叫做对数的底数,N 叫做真数。
2.对数与指数的互化 b N N a a b =⇔=log 3.对数的基本性质负数和零没有对数;01log =a ;1log =a a对数恒等式:N a N a =log ;n a na =log五、课后作业课后练习1、2、3、4 1.对数的概念一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:N x a log = a — 底数,N — 真数,N a log — 对数式说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a ax=⇔=log○3 提出问题①为什么在对数定义中规定a>0,a ≠1?②根据对数定义求log a 1和log a a(a>0,a ≠1)的值. ③负数与零有没有对数?④Na a log =N 与log a ab =b(a>0,a ≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a ≠1. ②log a 1=0,log a a=1.因为对任意a>0且a ≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =N a a log =N,即Na a log =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(Na a log =N 叫对数恒等式)对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ;(4)对数恒等式:N a N a =log ; (5)n a n a =log .两个重要对数:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5.②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10.(一)(讲一讲)对数的概念若N a x =)1,0(≠>a a ,则x 叫做以.a 为底..N 的对数(Logarithm ), 记作:N x a log =其中a — 底数,N — 真数,N a log — 对数式 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a ax=⇔=log ;并解决问题3 ○3 注意对数的书写格式. (二)探究对数的性质(1)负数和零没有对数;N >0; (2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ;(4)对数恒等式:N a N a =log ; (5)n a n a =log .(三)两种特殊的对数:常用对数10log lg N N 记为;自然对数 e log ln N N 记为;(无理数e=2.718 28……)。
对数与对数运算的教案
对数与对数运算的教案《对数与对数运算》教案授课教师:马吉艳课时:一个课时授课对象:高中一年级学生一.设计思想本节课就是数学必修课程1第二章基本初等函数(i)2.2.1对数与对数运算的内容,它就是研究自学时程科学知识对数函数与性质的必不可少基础知识。
通过与指数式的比较得出结论对数的定义与性质,使学生学会指数与对数的互化并能够展开一些直观的对数式表达式。
通过指数运算性质,根据对数定义,使用逆向思维对对数的乘法运算展开推论,从对数的积运算的推论过程中,用相似的方法获得其他运算性质。
在学生基本掌控这些性质后,通过练与鼓励推论出换底公式。
运用观测、操作方式去领悟规律,能并使学生充份介绍自学的方法和技巧,在交流中突破难点,超越传统教学的死记硬背,进一步增强学生自学兴趣。
二.教学目标1.科学知识与技能(1)理解对数的概念,了解指数与对数的关系;(2)理解和掌握对数的性质,记住几个重要的公式;(3)能灵活运用对数运算性质和换底公式进行计算。
2.过程与方法通过与指数式的比较,带出对数定义与性质。
3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳的能力;(2)通过对数运算性质的学习,培养学生举一反三、严谨的思维态度;(3)在自学过程中,使学生践行探究、技术创新的意识,培育分析问题、解决问题的能力。
三.课程类型新授课四.教学重点与难点(1)重点:对数式与指数式的互化以及对数的运算性质。
(2)难点:对数运算性质的推导与运用。
五.教学方法讲授法、探讨法、投影分析与辨认出。
六.教学过程教师活动复习引入:1.老师带领学生复习指数的定义。
“如果反过来求哪一年的人口数可以达答呢?我们要求x,其实就是知道了底数和幂的值,反过来求指数。
这就是我们今天要学习的内容之一对数。
4.老师讲解对数的概念并板书:一般地,如果a=n(a>0,且a≠1),那么数x叫做以a为底n的对数,记作x=san,其中a叫做对数的底数,n叫做幂数。
对数与对数运算教学设计
对数与对数运算教学设计《对数与对数运算》教学设计课题2.2.1对数与对数运算:第一课时三维目标:知识与技能1.理解对数的概念,了解对数与指数的关系;2.学会对数式与指数式的的互化,培养学生类比,分析,归纳的能力。
(二)过程与方法1.解自然对数和常用对数的概念,以及对数恒等式;2.通过实例推导对数运算性质,准确运用对数的运算性质进行计算,求值,化简。
并掌握化简,求值的技能。
(三)情感、态度和价值观1.培养学生分析,综合解决问题的能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识。
教学内容分析:教学重点对数式与指数式的互化以及对数性质加以灵活运用教学难点对数运算性质推导过程,以及分析过程课型:新授课新课讲解(一)创设情境,课题引入(学生活动)P72~P73页提出以下问题:对对数的发明有杰出贡献的科学家是谁发明对数的目的是什么?为什么说对数发明是17世纪重大数学成就?苏格兰数学家napier(纳皮尔)在研究天文学过程中,为了简化其中的计算发明了对数。
恩格斯曾经把对数的发明与解析几何的创立、微积分的建立是并称为17世纪数学史上的3大成就。
伽利略也说过:“给我空间、时间及对数,我可以创造一个宇宙”;(老师引导:那么,什么是对数?对数式怎样简化运算的?对数真的有用吗?)教师:为了研究对数,我们先来研究下面这个问题?(学生活动)P72页思考:根据上一节的例1我们能从中算出任意一个某(经过的年份)的人口总数,可不可能哪一年人口数低于13亿?那么哪一年的人口达到18亿?可不可能哪一年人口达到1000亿?你会算吗(教师活动)由指数函数性质知,有,所以人口数达到18时候,,所以有在个式子中,等于多少?学生可能会说,解出即可。
实际不然,实际问题实际考虑,地球上供养不起这么多人,所以现在同学们们要珍惜现在资源,爱护地球。
对数概念(教师活动)(板书)一般地,若,那么数叫做以为底的对数,记作,叫做对数的底数,叫做真数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案:(作:数应3班向世威)《对数与对数运算(第一课时)》教学设计所用教材:数学必修(一)目次:人民出版社,2007年1月,第2版第4次印刷1教材分析1.1内容与内容解析《对数函数》是普通高中数学人教A版必修1第二章对数函数内容的第一课时,本节讲对数的概念和运算性质主要是为后面学习对数函数的图像性质作准备。
对数概念是在指数概念的基础上定义的,是继研究指数函数之后的另一种重要基本函数,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。
1.2地位与作用解析通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
2学情分析学生在前面的课程中已学习了函数的基本概念、图像及其基本性质,在第二章又进一步学习了指数函数及其运算、图像和性质,特别是指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
3教学目标1.能初步判别具体函数是否为对数函数,了解对数的概念并能用语言刻画,以及对数与指数的关系;通过观察、分析掌握指数式与对数式的互化;2.(经历观察、分析、猜想、验证、证明、概括等数学活动),通过实例使学生认识对数的模型,体会引入对数的必要性;通过探究理解对数的性质。
领悟从()的思想方法3.感知对数的重要性,从“发现”中体验成功,进一步提高学习和探索的兴趣。
同时培养严谨的思维品质和探究意识;4教学重难点重点:对数函数概念的形成和初步应用,指数式与对数式的互化难点:对数概念的理解,对数性质的理解5教法学法以引导发现法为主,结合直观教学法和讲授法,引导学生学会观察分析、思考探究、合作交流,提高学生分析、解决问题的能力。
对数的教学采用讲练结合的教学模式。
教学中,采用讲讲练练的教学程序,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。
6教学媒体多媒体,课件,黑板7教学过程环节(一)创设情境,引入课题活动1【教师】引例(3分钟)1、一尺之棰,日取其半,万世不竭。
(1)取5次,还有多长?(2)取多少次,还有0.125尺?【问题组1】(1)这个模型跟我们前面学过的哪个模型相似?(指数函数)(2)我们可以从哪些角度去思考这道题?其中最好的方式是?(3)倘若我们还剩下0.1、0.01、0.0001呢?(可设取x次,则有x⎪⎭⎫⎝⎛21= 0.125 =321⎪⎭⎫⎝⎛;抽象出:x=3)【学生】让学生根据题意,设未知数,列出方程。
【设计说明】这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的兴趣,培养学生的探究意识.也就是我们这节课将要学习的对数问题,于是板书课题。
环节二回顾旧知活动2【教师】从上节课学习的指数函数的应用入手,结合指数所表示的含义,进一步了解指数和对数之间的联系。
(对数的导入)(P72思考)根据上一节的例8我们能从13 1.01xy=⨯中,算出任意一个年头x的人口总数,那么哪一年的人口达到18亿,20亿,30亿?(停顿让学生思考)即:1820301.01, 1.01, 1.01,131313x x x===在这个式子中,x分别等于多少【问题组2】1.在上节课的内容后,你们是否能立马说出13 1.01xy=⨯代表的含义是?2.本题中我们如何用关于x的数学式子来表示人口分别达到18亿,20亿,30亿?3.在列出表达式后,在这些式子中,x分别等于多少?【学生】回忆旧知,思考实例。
【设计说明】这是已知底数和幂的值,求指数的问题,自然地将问题由指数过渡到对数,也就是我们这节课将要学习的对数问题。
环节三围绕猜想形成概念活动3【教师】点出在这三个式子中,都是已知(停顿)底数和幂,求指数x 。
引导学生思考如何求指数x ?这是本节课要解决的问题【问题组3】 1.如何求指数x ?2.xx 01a N a N a a =>≠若,已知和如何求指数(其中,且)3.数学家欧拉用对数来表示x ,如何表示? 【学生】思考如何来用对数来表示x ,求指数x环节四 讲授新课1.对数的概念一般地,如果),1,0(≠>=a a N a x 且那么数x 叫做以a 为底N 的对数,记作,且)0,1,0(log >≠>=N a a N x a其中a 叫做对数的底数,N 叫做真数。
称x a N =为指数式,称logax N=为对数式注意:①底数的限制:a>0且a ≠1 。
真数的限制:),0(+∞ ②对数的书写格式③对数的相关描述2.指数式与对数式的互化通过以上直观图示可以看出,指数式与对数式虽然表示的是两种不同的运算,但都表示N x a ,,三个数之间的数量关系,在1,0≠>a a 且的条件下,这两种运算可以相互转化,它们互为逆运算。
log a N我们可以由指数式得到对数式,也可以由对数式得到指数式:log x a a N N x=⇔=不难得到,181.0113x=的x 用对数表示就是 1.0118log 13x = 同时,我们还会注意到,41010000=,10log 100004=,利用对数可以将很大很大的数变为较小的数,减少计算量,以后还会发现,乘除运算便会加减运算,简化运算.3.两种常用对数常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN .例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN .例如:3log e 简记作ln3; 10log e 简记作ln10.环节五 探究思考(与环节三相辅相成)探究: 活动4 探究.?)1(log ?,0log 52=-=bN a =log 中的N 可以取哪些值?【教师】结合指数的底数和指数,引导学生分析分别以0,-1为指数的指数的情况,进而得出底数a 的取值范围【问题组4】1.式子中的底数有什么特点?真数有什么特点?你们能从这两个式子想到些什么吗?2.当这个式子的底数大于0且不等于1时,对于真数来说有什么要求?是否任意的真数都能使对数有意义呢?(是不是所有的实数都有对数?)【学生】分析指数和真数的限制分析:当底数大于0且不等于1时,真数大于0. 结论:负数和零没有对数活动5探究.?log ?,1log ,1,0==≠>a a a a a 且当【教师】组织学生讨论,形成猜想,引导学生证明猜想。
学生根据对指数和对数互化的了解以及对指数和真数的限制的分析进行小组讨论,完成证明过程。
【问题组5】你能否猜想一下两个式子的结果呢?当a 是一个常数时,这两个式子的结果会发生改变吗?如果这两个式子的结果不发生改变,我们能得到怎样的结论? 【学生】猜想,讨论得到怎样的结论。
分析:.1log ,01log 110=⇔==⇔=a a a a a a结论:1的对数为0,底的对数为1.活动6 学生动手建立指数和对数的关系【教师】引导学生利用底数、真数、幂及前面的例题建立指数和对数的关系,并适时指导,进一步提出问题。
【问题组6】问题:的值各为多少?和y x y x ,62,82,422===分析1:;382=⇔=x x.6log 622=⇔=y y1.将y x 和等式左右两边有什么特点?2.我们在二式中能看出怎样的对应关系,我们可以如何进一步刻画它? 【学生】形成对数指数对应关系的猜想,思考问题。
的值求出来后环节六 初步应用 加深理解活动7例1 判断下列式子是否为对数式,并说明理由? 1621log 625log 345 3log 811 2log a lg 0.0001 2ln e a 21log )0(>a例2 将下列指数式写成对数式;对数式写成指数式(1)62554= (2)64126=- (3)273=a(4) 73.531=m )( (5)416log 21-=; (6)7128log 2=; (7)201.0lg -=; (8)303.210ln =.例3 求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 【问题组7】1.通过例1,我们发现对数式的底数和真数有什么特征?2.通过例2,我们发现对数式和指数式互化的关键在于什么?3.通过例3,我们发现求解对数等式中的未知量x 的思路是?【设计说明】对对数知识进行初步运用,让学生在问题的解决中加深对知识的理解,进一步突破教学难点。
环节七 归纳小结 深化理解活动8【教师】引领学生归纳数学知识与思想方法。
【问题组8】1.对数具有怎样的基本形式和条件?2.对数和指数之间互换时有什么重要点?3.如何求对数式的值?4.本节课主要学习了哪种思想方法?【设计说明】突出对数的定义及考察点,以及对数和指数互化的关键点,将新知纳入自己的认知结构。
环节八 布置作业 课后延伸 活动9【教师】布置作业课本74P 习题2.2A 组第1、2题。
提出问题【问题组9】1.在求解含未知量的对数或指数时又有怎样的思维方式和奥秘呢? 【设计说明】提出思考问题,进行课后延伸,让学生带着问题走出课堂。
8教学设计说明本节课程序设计铺垫引入,展示目标−→−启发诱导,探求新知−→−变式练习,反馈校正−→−形成测试,评价回授−→−归纳小结,深化目标 设计线索:实际问题−−→−导入形成对数概念、了解对数符号−−−→−典型例题对数式与指数式间的关系−−−→−对应关系理解运用 整个设计体现以下理念:重过程——展现定义得出的来龙去脉,让学生经历观察、分析、猜想、验证、证明、概括、理解应用等数学学习过程。
重思想——引导学生从实际问题导入对数概念、对数符号,理解对数的意义,从指数过渡到对数,在从指数入手,让学生大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
重探究——让学生立足于实际问题进行探究,进一步培养学生的猜想能力、分析与解决问题的能力,以及转化归纳转化能力。