上海大学-离散数学2-图部分试题

合集下载

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学第2章习题解答

离散数学第2章习题解答
当然非闭式也可以是逻辑有效式(如F(x) F(x)),也可能为矛盾式(如
F(x) F(x)),也可能不存在其值不确定的解释。
2.10(1)
xA(x)
(A(a)
A(b)
A(c))
(消去量词等值式)
A(a)
A(b)
A(c)
(德·摩根律)
x A(x)
(消去量词等值式)
2)
xA(x)
(A(a)
A(b)
A(c))
( H (b,a) H (b,b) H (b, c)
(H(c,a) H(c,b) H (c,c)
分析 在有穷个体域内消去量词时, 应将量词的辖域尽量缩小, 例如,在(2) 中,首先将量词辖域缩小了(因为yG(y)中不含x,所以,可以缩小)。否则,演算是相当麻烦的。见下面的演算:
x(F(x) yG(y)
x(F(x) (G(x) H (x))
(2)令F(x):x是人,G(y):y是化,H (x) : x喜欢,命题符号化为x(F(x) y(G(y) H ( x, y)))
(3)令F(x):x是人,G(x) : x犯错误,命题符号化为
x(F(x) G(x)),
或另一种等值的形式为
x(F(x) G(x)
(4)令F(x): x在北京工作,G( x) : x是北京人,命题符号化为
在一阶逻辑中,将命题符号化时,当引入特性谓词(如题中的F(x))之后,
全称量词后往往使用联结词→而不使用,而存在量词 后往往使用 ,而不使用→,如果用错了,会将真命题变成假命题,或者将假命题变成真命题。
2.6在解释R下各式分别化为
(1)x( x 0);
(2)x y(x y x);
(3)x y z(x y) (x z y z));

离散数学(第二版)最全课后习题答案详解

离散数学(第二版)最全课后习题答案详解

-
(10)
p:天下大雨
q:他乘车上班
-
(11)
p:下雪
q:路滑
r:他迟到了
(12)
p:2 是素数
q:4 是素数
-
(13)
p:2 是素数
q:4 是素数
-
15.设 p:2+3=5. q:大熊猫产在中国. r:太阳从西方升起. 求下列符合命题的真值:
(1)
(2)
(3) (4) 解:p 真值为 1,q 真值为 1,r 真值为 0. (1)0,(2)0,(3)0,(4)1 16.当 p,q 的真值为 0,r,s 的真值为 1 时,求下列各命题公式的真值: (1) (2) (3) (4)
24.已知 的类型.
解:∵
是重言式,试判断公式

是重言式,而要使该式为重言式,其成真赋值只有
11,∴ 25.已知
解:∵
的类型.
都是重言式。
Hale Waihona Puke 是矛盾式,试判断公式及
是矛盾式,而要使该式为矛盾式,其成假赋值
只有 00,∴
都是重言式。
26. 已 知 解:
是重言式, 及
是矛盾式,试判断 的类型.
是矛盾式。
是重言式。
q:老王是河北人
-
(3)
p:天气冷
p:王欢与李乐组成
(4)
一个小组
p:李辛与李末是兄
(5)

q:我穿羽绒服 -
-
p:王欢与李乐组成一个
-
小组
-
p:李辛与李末是兄弟
(6) p:王强学过法语
q:刘威学过法语
-
(7)
p:他吃饭
q:他听音乐
-

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

大学离散数学试卷二及答案

大学离散数学试卷二及答案

大学离散数学试卷二及答案一、单项选择题 (2分×10=20分)1、下列语句是命题的有[ B ]。

A. 122>+y x ;B. 2010年的国庆节是晴天;C. 青年学生多么朝气蓬勃呀!D. 学生不准吸烟!2、在命题逻辑中,任何命题公式的主合取范式都 [ C ]。

A. 不一定存在;B. 不存在;C. 存在且唯一;D. 存在但不唯一.3、设S={1,2,3,4},R={<1,1>,<3,3>,<4,4>},则R 满足的性质是 [ C ]A. 自反、对称、传递的 ;B. 自反、对称、反对称的;C. 对称、反对称、传递的;D. 只有对称性.4. 与命题p ∧(p ∨q)等值的公式是 [ A ]。

A. p ;B. q ;C. p ∨q ;D. p ∧q.5. 设M={a,b,c},M 上的等价关系R={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}确定的集合M 的划分是[ D ]。

A.{{a},{b},{c}}B.{{a,c},{b,c}}C.{{a,c},{b}}D.{{a},{b,c }}6. 设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“每个人都喜欢某种花”的逻辑符号化为[ C ]。

A. )),()(()((y x H y F y x M x →∃∧∀;B. )),()(()((y x H y F y x M x →∃→∀;C. )),()(()((y x H y F y x M x ∧∃→∀;D. )),()(()((y x H y F y x M x ∧∀→∃.7. 下列图中,不是哈密顿图的为[ A ]。

A B C D8. 下列四组数据中,能作为某个4阶无向简单图的度序列的为[ D ]。

A. 1,2,3,4 ;B. 2,2,2,3;C. 1,1,2,3;D. 1,1,1,3.9. 一棵无向树T 有8个顶点,4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T 中有[ C ]片树叶。

上海大学-离散数学2-图部分试题

上海大学-离散数学2-图部分试题

离散数学图论部分综合练习一、单项选择题1.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、哈密顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路..v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。

答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。

若命题P和Q等价,则记作P⇔Q。

蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。

若命题P蕴含Q,则记作P→Q。

2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。

答案:设x属于A∩B,即x同时属于A和B。

根据并集的定义,若元素属于A或B,则它属于A∪B。

因此,x属于A∪B。

由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。

3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。

在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。

4. 描述有限自动机的组成部分及其功能。

答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。

输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。

5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。

在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。

确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。

从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。

重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

上海大学2001年攻读硕士学位研究生入学考试离散数学试题

上海大学2001年攻读硕士学位研究生入学考试离散数学试题

上海大学2001年攻读硕士学位研究生入学考试离散数学试题招生专业 :计算机系统结构计算机软件与理论计算机应用技术每题10分,一共10题(一) 给出下列赋值:(1)个体域D 是实数;(2)0=a ;(3)函数y x y x f -=),(;(4)谓词y x y x F <:),(,求)),,((a x a f xF ∀在上述赋值下的真值。

(二) 判断下列公式中x 和y 哪些出现是自由的?哪些出现是约束的,并受哪一个量词的约束?)))(),(())),((),(((__x B x y x A x y x B x y x A y ∃↔∃→⌝∃∧∀(三) 用推导过程证明:S R S Q R P Q P ∨⇒→→∨,,。

(四) 设R 是A 上等价关系,定义R R R R R n n *,)1()()1(-==,0是关系的复合,证明R R n =)(,1≥n 。

你能降低条件吗?。

(五) 设R 是A 上二元关系,}),{(A a a a I A ∈。

证明:若R R R *1-=并且R I A ∈,则R 是等价关系,其中R 1- 是R 的逆关系,0是关系复合。

请问逆命题成立吗?(六) 设G 是顶点数大于等于3的简单图,若63-≥v e ,e 是G 的边数,v 是G 的顶点数,证明G 一定含有圈。

(七) 设G 是简单平面图,若63-=v e ,e 是G 的边数,v 是G 的顶点数,证明G 是连通的并且具有以下性质:在G 的任意不相临顶点u 和v 之间加一条边{u,v},所得的非平面图。

请你画一个满足63-=v e 的连通简单平面图。

)3(≥v 。

(八) 有否可能一个群与其一个真子群关于群的运算同构?请加以说明。

(九) 设G 21和G 是群G 的子群,G G 21≠。

证明G 1的每个左陪集与G 2的每个左陪集都不相等。

请证明之外举例说明。

(十) 设,*)(G 是群,~是G 上等价关系,满足对所有G y x a ∈,,,若y *a x *a ~则y x ~。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

上海大学《离散数学》2018-2019学年第一学期期末试卷

上海大学《离散数学》2018-2019学年第一学期期末试卷

上海大学2018— 2019学年第 1 学期《离散数学》期末考试试卷一、单项选择题(每小题2分,共20分)1. 下列集合关于数的加法和乘法运算不能构成环的是( )A.自然数集合;B.整数集合;C.有理数集合;D.实数集合。

2. 设I 为整数集合,则下列集合关于数的加法运算不能构成独异点的是( )A.I ;B.{2|}k k I ∈;C.{21|}k k I +∈;D.{35|,}m n m n I +∈。

3. 设6{0,1,,5}N =L ,6+为模6加法,则下列元素是66,N <+>的生成元的是( )A.2;B.3;C.4;D.5。

4. 设>⨯+<,,F 是整环,则>⨯+<,,F 不一定是( )A.可交换环;B.无零因子环;C.含么环;D.域。

5. 格不一定具有( )A.交换律;B.结合律;C.分配律;D.吸收律。

6. 设{1,2,4,8}S =,o 和*分别表示求最小公倍数和最大公约数运算,则,,S <*>o 是( )A.有补格;B.分配格;C.有补分配格;D.布尔代数。

7. 一个含4个结点的无向图中有3个结点的度数分别为1,2,3,则第4个结点的度数不可能是( )A.0;B.1;C.2;D.4。

8. 设连通的简单平面图G 中有10条边和5个面,则G 的结点数为( )A.6;B.7;C.8;D.9。

9. 设无向树T 中有1个结点度数为2,2个结点度数为3,3个结点度数为4,则T 中的树叶数为( )A.10;B.11;C.12;D.13。

10.设G 为连通的无向图,若G 仅有2个结点的度数是奇数,则G 一定具有( )A 、欧拉路径;B 、欧拉回路;C 、哈密尔顿路径;D 、哈密尔顿回路。

二、填空题(每小空2分,共20分)1. 设R 为实数集合,{|01}S x x R x =∈∧≤≤,则在代数,max S <>中,S 关于max 运算的么元是_ __,零元是_ __。

离散数学考试题详细答案

离散数学考试题详细答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(P⇄Q)(P⇄R S)b)我今天进城,除非下雨。

设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。

设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:x(R(x) Q(x)) 或x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。

设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:x(R(x) E(x,0) →y(R(y) E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)(P→(Q→R))(R→(Q→P))(P Q R)(P Q R)((P Q R)→(P Q R)) ∧((P Q R) →(P Q R)).((P∧Q∧R) (P Q R)) ∧ ((P∧Q∧R) (P Q R))(P Q R) ∧(P Q R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)a) T b) F3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

离散数学试题与参考答案

离散数学试题与参考答案

《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学图论部分综合练习一、单项选择题1.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ). A .6 B .5 C .4 D .32.已知图G 的邻接矩阵为,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ). A .deg(V )=2E B .deg(V )=EC .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .οο ο ο οcab edο f图一图二A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图三7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的应该填写:D8.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+210.无向图G存在欧拉通路,当且仅当( ).A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.1m n-+B.m n-C.1m n++D.1n m-+ 12.无向简单图G是棵树,当且仅当( ).A.G连通且边数比结点数少1 B.G连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题ο ο οο ο c a b e dο f 图四1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、哈密顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路..图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题 1.设图GV ,E ,其中V a 1, a 2, a 3, a 4, a 5,E a 1, a 2,a 2, a 4,a 3, a 1,a 4, a 5,a 5, a 2(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2,v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;v 1v 2v 3v 4v 5v 6v 1v 2 v 3v d bae fghn 图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(2)求出每个结点的度数;(4)画出图G的补图的图形.3.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.4.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.5.用Dijkstra算法求右图中A点到其它各点的最短路径。

6.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二元树;(2)计算它们的权值.7.给出右边所示二元有序树的三种遍历结果.五、证明题1.若无向图G中只有两个奇数度结点,则这两个结点一定是连通的.2.设G是一个n阶无向简单图,n是大于等于2的奇数.证明图G与它的补图G中的奇数度顶点个数相等.k条边才能3.设连通图G有k个奇数度的结点,证明在图G中至少要添加2使其成为欧拉图.参考解答一、单项选择题1.B 2.D 3.C 4.C 5.A 6.D 7.D 8.C 9.A 10.D 11.A 12.A二、填空题1.15 2.{f },{c ,e } 3.W|S|4.所有结点的度数全为偶数 5.等于出度 6.n 为奇数 7.v -e +r =2 8.3 9.e=v -1 10.4 11.512.3 13.0三、判断说明题1.解:正确.因为图G 为连通的,且其中每个顶点的度数为偶数. 2.解:(1)图G 1是欧拉图. 因为图G 1中每个结点的度数都是偶数.图G 2是汉密尔顿图.因为图G 2存在一条汉密尔顿回路(不惟一):a (a ,b )b (b , e ) e (e , f ) f (f , g ) g (g , d ) d (d ,c ) c (c , a )a问题:请大家想一想,为什么图G 1不是汉密尔顿图,图G 2不是欧拉图。

(2)图G 1的欧拉回路为:(不惟一):v 1(v 1, v 2) v 2 (v 2, v 3) v 3 (v 3, v 4) v 4 (v 4, v 5)v 5 (v 5, v 2) v 2 (v 2, v 6)v 6 (v 6, v 4) v 4 (v 4, v 1)v 1 3.解:图G 是平面图.因为只要把结点v 2与v 6的连线(v 2, v 6)拽 到结点v 1的外面,把把结点v 3与v 6的连线 (v 3, v 6)拽到结点v 4, v 5的外面,就得到一个平 面图,如图九所示.4.解:错误.不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图九四、计算题1.解:(1)图G 是有向图: (2)邻接矩阵如下:,0001010000000010100000010)(⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=D A(3)图G 是单侧连通图,也是弱连通图. 2.解:(1)图G 如图十(2)邻接矩阵为 图十⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110010110110110110100110(3)deg(v 1)=2deg(v 2)=3 deg(v 3)=4 deg(v 4)=3 deg(v 5)=2(4)补图如图十一图十一 3.解:(1)G 的图形如图十二οο οο ο a 1a 2a 3 a 4 a 5 v 1 v 2 v 3 v 4 v 5 ο ο ο ο οv 1 v 2 v 3v 4v 5οοο ο ο(2)邻接矩阵: 图十二⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110010110110110110000100 (3)v 1,v 2,v 3,v 4,v 5结点的度数依次为1,2,4,3,2 (4)补图如图十三:图十三4.解:(1)G 的图形表示如图十四:图十四 (2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110110110011100110110 (3)粗线表示最小的生成树,如图十五如图十五最小的生成树的权为1+1+2+3=7: 5. 解:注意算法执行过程的数据要完整的表示。

6.解:(1)最优二叉树如图十六所示: 方法(Huffman ):从2,3,5,7,11,13,17 ,19,23,29,31中选2,3为最低层结点,并 从权数中删去,再添上他们的和数,即5,5,7,11,13,17,19,23,29,31; 再从5,5,7,11,13,17,19,23,29,31中选 5,5为倒数第2层结点,并从上述数列中删去,再添上他们的和数,即7,10,11,13, 17,19,23,29,31;然后,从7,10,11,13,17,19,23,29,31中选7,10和11,13为倒数第3层结点,并从 如图十六 上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31; ……(2)权值为:26+36+55+74+114+134+173+193+233+293+312=12+18+25+28+44+52+51+57+69+87+62=5057.解:a)前根:a,b,d,g,e,h,i,c,fb)中根:g,d,b,h,e,i,a,c,f c)后根:g,d,h,i,e,b,f,c,a五、证明题1.证明:用反证法.设G 中的两个奇数度结点分别为u 和v .假设u 和vο ο ο ο οο ο ο ο 3 2 7 13 5 511 17 34 οο 160 29 10 ο ο ο 23 19 42 ο ο 17 ο 24 ο 5331ο οο 9565不连通,即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.这与定理3.1.2的推论矛盾.因而u 和v 一定是连通的.2.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于2的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.3.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数.又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.。

相关文档
最新文档