单片机程序的设计
MCS-51单片机程序设计
+1
,当X>0
Y= 0
,当X=0
开始
-1
,当X<0
X=0
N
程序流程框图如图4.1所示。 Y
Y←0
X>0 Y
Y←1
N Y←-1
结束
程序如下: ORG
MOV CJNE MOV AJMP MP1: JB MOV LJMP MP2: MOV HERE: SJMP
1000H A,R0 A,#00H,MP1 R1,#00H HERE ACC.7 MP2 R1,#01H HERE R1,#0FFH HERE
1000H DPTR,#2000H DPL DPH DPTR,#3000H R2,DPL R3,DPH
;源数据区首地址 ;源首址暂存堆栈
;目的数据区首地址 ;目的首址暂存寄存器
LOOP:
POP POP MOVX INC PUSH PUSH MOV MOV MOVX MOV MOV DJNZ SJMP
;源数据区首地址 ;目的数据区首地址 ;循环次数 ;取数据 ;数据传送 ;源地址加1 ;目的地址加1 ;循环控制 ;结束
例4.8 外部RAM之间的数据传送程序。
把外部RAM 2000H开始单元中的数据传送到外部RAM 3000H开始的单 元中,数据个数在内部RAM的35H单元中。
START:
ORG MOV PUSH PUSH MOV MOV MOV
K=?
K=0
K=1
转向 0 分支 转向 1 分支
K= n-1
K=n
转向 n-1 分支 转向 n 分支
例4.5 设内部RAM的30H单元有一个数,根据该数值的不同 转移到不同的程序段进行处理,设数值的范围为0~10的 无符号数。
单片机按键程序设计
单片机按键程序设计单片机按键的基本原理其实并不复杂。
通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。
在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。
在实际的按键程序设计中,有多种方式可以实现按键检测。
其中一种常见的方法是查询法。
这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。
以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。
当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。
除了查询法,还有中断法可以用于按键检测。
中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。
```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。
单片机c语言程序设计
单片机c语言程序设计
单片机C语言程序设计是指使用C语言编写单片机控制程序,实现各种功能和任务。
具体步骤如下:
1. 确定程序功能:首先明确单片机的控制目标和需求,确定要实现的功能。
2. 编写主函数:使用C语言编写一个主函数,作为程序的入
口点。
在主函数中,可以定义变量、调用函数、编写主要的程序逻辑。
3. 初始化设置:在主函数中,进行单片机的初始化设置,包括引脚初始化、时钟设置、模块初始化等。
4. 编写中断服务函数:根据需要,编写中断服务函数。
在中断服务函数中,处理特定的中断事件,例如定时器中断、外部中断等。
5. 编写任务函数:根据程序的需求,编写各个任务函数。
任务函数可以是循环执行的函数,或者是根据事件触发执行的函数。
6. 实现控制逻辑:在任务函数中编写具体的控制逻辑代码,根据需要使用控制语句(如if、switch)和循环语句(如for、while)。
7. 进行调试和测试:完成编写后,进行程序的调试和测试,通过仿真器或者实际连接到单片机的硬件进行测试。
8. 优化和修改:根据测试结果进行程序的优化和修改,改善程序的性能和功能。
9. 生成可执行文件:将C源文件编译成可执行文件,可以直接下载到单片机中运行。
10. 下载和运行:将生成的可执行文件通过下载器下载到目标单片机中,并进行运行测试。
以上是单片机C程序设计的一般步骤,具体的实现方法和内容会根据不同的单片机型号和功能需求而有所不同。
51单片机C程序设计100例
《单片机 C 语言程序设计实训 100 例---基于 8051 和 PROTEUS 仿真》案例
//延时 void DelayMS(uint x) { uchar i; while(x--) { for(i=0;i<120;i++); } } //主程序 void main() { P0=0xfe; while(1) { P0=_crol_(P0,1); //P0 的值向左循环移动 DelayMS(150); } } 03 /* 8 只 LED 左右来回点亮 名称:8 只 LED 左右来回点亮 说明:程序利用循环移位函数_crol_和_cror_形成来回滚动的效果
名称:LED 模拟交通灯 说明:东西向绿灯亮若干秒,黄 灯闪烁 5 次后红灯亮, 红灯亮后,南 北向由红灯变为绿灯,若干秒后南北 向黄灯闪烁 5 此后变红灯,东西向变 绿灯,如此重复。 */ #include<reg51.h> #define uchar unsigned char #define uint unsigned int sbit RED_A=P0^0; //东西向灯 sbit YELLOW_A=P0^1; sbit GREEN_A=P0^2; sbit RED_B=P0^3; //南北向灯 sbit YELLOW_B=P0^4; sbit GREEN_B=P0^5; uchar Flash_Count=0,Operation_Type=1; //闪烁次数,操作类型变量
2 上海师范大学信息与机电工程学院—倪继锋
《单片机 C 语言程序设计实训 100 例---基于 8051 和 PROTEUS 仿真》案例
for(i=0;i<7;i++) { P2=_crol_(P2,1); //P2 的值向左循环移动 DelayMS(150); } for(i=0;i<7;i++) { P2=_cror_(P2,1); //P2 的值向右循环移动 DelayMS(150); } } } 04 /* 花样流水灯
100例单片机程序设计范例汇总
100例程序设计范例汇总第一章 (4)【实例1】使用累加器进行简单加法运算: (4)【实例2】使用B寄存器进行简单乘法运算: (4)【实例3】通过设置RS1,RS0选择工作寄存器区1: (4)【实例4】使用数据指针DPTR访问外部数据数据存储器: (4)【实例5】使用程序计数器PC查表: (4)【实例6】IF语句实例: (4)【实例7】SWITCH-CASE语句实例: (4)【实例8】FOR语句实例: (4)【实例9】WHILE语句实例: (5)【实例10】DO...WHILE语句实例: . (5)【实例11】语句形式调用实例: (5)【实例12】表达式形式调用实例: (5)【实例13】以函数的参数形式调用实例: (5)【实例14】函数的声明实例: (5)【实例15】函数递归调用的简单实例: (5)【实例16】数组的实例: (6)【实例17】指针的实例: (6)【实例18】数组与指针实例: (6)【实例19】P1口控制直流电动机实例 (6)第二章 (8)【实例20】用74LS165实现串口扩展并行输入口 (8)【实例21】用74LS164实现串口扩展并行输出口 (10)【实例22】P0I/O扩展并行输入口 (12)【实例23】P0I/O扩展并行输出口 (12)【实例24】用8243扩展I/O端口 (12)【实例25】用8255A扩展I/O口 (14)【实例26】用8155扩展I/O口 (19)第三章 (26)【实例29】与AT24系列EEPROM接口及驱动程序 (26)【实例30】EEPROM(X5045)接口及驱动程序 (30)【实例31】与铁电存储器接口及驱动程序 (33)【实例32】与双口RAM存储器接口及应用实例 (35)【实例33】与NANDFLASH(K9F5608)接口及驱动程序 (35)第四章 (43)【实例34】独立键盘控制 (43)【实例35】矩阵式键盘控制 (44)【实例36】改进型I/O端口键盘 (46)【实例37】PS/2键盘的控制 (49)【实例39】段数码管(HD7929)显示实例 (54)【实例40】16×2字符型液晶显示实例 (55)【实例41】点阵型液晶显示实例 (61)【实例42】LCD显示图片实例 (63)第五章 (70)【实例43】简易电子琴的设计 (70)【实例44】基于MCS-51单片机的四路抢答器 (71)【实例45】电子调光灯的制作 (76)【实例46】数码管时钟的制作 (81)【实例47】LCD时钟的制作 (96)【实例48】数字化语音存储与回放 (103)【实例49】电子标签设计 (112)第六章 (120)【实例50】指纹识别模块 (121)【实例51】数字温度传感器 (121)第七章 (124)【实例53】超声波测距 (124)【实例54】数字气压计 (125)【实例55】基于单片机的电压表设计 (132)【实例56】基于单片机的称重显示仪表设计 (133)【实例57】基于单片机的车轮测速系统 (136)第八章 (138)【实例58】电源切换控制 (138)【实例59】步进电机控制 (140)【实例60】单片机控制自动门系统 (141)【实例61】控制微型打印机 (144)【实例62】单片机控制的EPSON微型打印头 (144)【实例63】简易智能电动车 (145)【实例64】洗衣机控制器 (149)第九章 (152)【实例65】串行A/D转换 (152)【实例66】并行A/D转换 (153)【实例67】模拟比较器实现A/D转换 (154)【实例68】串行D/A转换 (155)【实例69】并行电压型D/A转换 (156)【实例70】并行电流型D/A转换 (156)【实例71】2I C接口的A/D转换 (157)【实例72】2I C接口的D/A转换 (161)【实例73】单片机间双机通信 (164)【实例74】单片机间多机通信方法之一 (166)【实例75】单片机间多机通信方法之二 (171)【实例76】PC与单片机通信 (176)【实例77】红外通信接口 (178)第十一章 (180)【实例79】单片机实现PWM信号输出 (180)【实例80】实现基于单片机的低频信号发生器 (182)【实例81】软件滤波方法 (183)【实例82】FSK信号解码接收 (186)【实例83】单片机浮点数运算实现 (187)【实例84】神经网络在单片机中的实现 (192)【实例85】信号数据的FFT变换 (194)第十二章 (198)【实例86】2I C总线接口的软件实现 (198)【实例87】SPI总线接口的软件实现 (200)【实例88】1-WIRE总线接口的软件实现 (205)【实例89】单片机外挂CAN总线接口 (207)【实例90】单片机外挂USB总线接口 (210)【实例91】单片机实现以太网接口 (214)【实例92】单片机控制GPRS传输 (221)【实例93】单片机实现TCP/IP协议 (223)第十三章 (229)【实例94】读写U盘 (229)【实例95】非接触IC卡读写 (234)【实例96】SD卡读写 (238)【实例97】高精度实时时钟芯片的应用 (242)第十四章 (247)【实例98】智能手机充电器设计 (247)【实例99】单片机控制门禁系统 (248)第一章【实例1】使用累加器进行简单加法运算:MOV A,#02H ;A←2ADD A,#06H ;A←A+06H【实例2】使用B寄存器进行简单乘法运算:MOV A,#02H ; A←2MOV B,#06H ; B←6MUL AB ; BA←A*B=6*2【实例3】通过设置RS1,RS0选择工作寄存器区1:CLR PSW.4 ; PSW.4←0SETB PSW.5 ; PSW.5←1【实例4】使用数据指针DPTR访问外部数据数据存储器:MOV DPTR, #data16 ; DPTR←data16MOVX A, @ DPTR ; A←((DPTR))MOVX @ DPTR, A ; (DPTR)←A【实例5】使用程序计数器PC查表:MOV A, #data ;A←dataMOVC A, @ A+DPTR ; PC←(PC)+1 ,A←((A)+(PC)) 【实例6】if语句实例:void main(){ int a,b,c,min;printf("\n please input three number:");scanf("%d%d%d ",&a,&b,&c);if(a<b&&a<c) printf("min=%d\n",a );else if(b<a&&b<c) printf("min=%d\n",b);else if(c<a&&c<c) printf("min=%d\n",c);else printf("There at least two numbers are equal\n");}【实例7】switch-case语句实例:void main(){ int num; printf("input one number:");scanf("%d",& num);switch(num){ case 1: printf("num =%d\n", num);break;case 2: printf("num =%d\n", num);break;case 3: printf("num =%d\n", num);break;case 4: printf("num =%d\n", num);break;default: printf("The number is out of the range\n", num);}}【实例8】for语句实例:void main(){ for(int a=10;n>0;a --)printf("%d",a);}【实例9】while语句实例:void main(){ int i=0;while(i<=10) i++;}【实例10】do…while语句实例:void main(){ int i=0;do{ i++;}while(i<=10);}【实例11】语句形式调用实例:void main(){ int i=0; while(i<=10) i++; ……Sum(); /*函数调用*/}【实例12】表达式形式调用实例:void main(){ int a,b,i=0; while(i<=10) i++; ……i=4*Sum(a,b); /*函数调用*/}【实例13】以函数的参数形式调用实例:void main(){ int a,b,c,i=0; while(i<=10) i++; ……i= max(c,Sum(a,b)); /*函数调用*/ }【实例14】函数的声明实例:void main(){ int max(int x,int y); /*函数的声明*/ int a,b,c,i=0; while(i<=10) i++; ……i= max(c,Sum(a,b)); /*函数调用*/ }【实例15】函数递归调用的简单实例:void fun(){ int a=1, result,i;for(i=0;i<10;){ i=a+I;result = fun(); /*函数调用*/}return result;}【实例16】数组的实例:void main(){ char num[3] [3]={{ '','#',''},{'#','','#'},{'','#',''}}; /*定义多维数组*/ int i=0,j=0;for(;i<3;i++){ for(;j<3;j++) printf(“%c”,num[i][j]);printf(“/n”);}【实例17】指针的实例:void main(){ int a=3,*p;p=&a; /*将变量a的地址赋值给指针变量p*/printf(“%d,%d”,a,*p); /*输出二者的数值进行对比*/}【实例18】数组与指针实例:void main(){ int i=3,num[3]={1,2,3},*p;p=num; /*将数组num[]的地址赋值给指针变量p*/result =max(p,3); /*函数调用,计算数组的最大值*/}【实例19】P1口控制直流电动机实例sfr p1=0x90;sbit p10=p1^0;sbit p11=p1^1;void main (){int i, m;int j=100;int k=20;// 正快转for (i=0; i<100; i++){P10=1;for (j=0; j<50; j++){m=0;}}P10=0;for (j=0; j<10; j++){m=0}//正慢转for (i=0; i<100; i++) {P10=1;for (j=0; j<10; j++) {m=0}}p10=0;for (j=0; j<50; j++) {m=0}// 负快转for (i=0; i<100; i++) {p11=1;for (j=0; j<50; j++) {m=0;}}p11=0;for (j=0; j<10; j++) {m=0;}// 负慢转for (i=0; i<100; i++) {p11=1;for (j=0;j<10;j++) {m=0;}}p11=0for (j=0; j<50; j++) {m=0;}}第二章【实例20】用74LS165实现串口扩展并行输入口(1)函数声明管脚定义//---------------------------------------库函数声明,管脚定义------------------------------------------ #include<reg52.h>sbit LOAD=P1^7;//用P1^7控制SH/ 管脚(2)串口初始化函数UART_init()//-------------------------------------------------------------------------------------------------------------- // 函数名称:UART_init()// 功能说明:串口初始化,设定串口工作在方式0//-------------------------------------------------------------------------------------------------------------- void UART_init(void){SCON=0x10;//设串行口方式0,允许接收,启动接收过程ES=0;//禁止串口中断}(3)数据接收函数PA()//-------------------------------------------------------------------------------------------------------------- // 函数名称:PA()// 输入参数:无// 输出参数:返回由并口输入的数据// 功能说明:接收八位串行数据//-------------------------------------------------------------------------------------------------------------- unsigned char PA(void){unsigned char PA_data;LOAD=0;//当P1.7输出低电平,74LS165将并行数据装入寄存器//当中LOAD=1;//当P1.7输出高电平,74LS165在时钟信号下进行移位UART_init();//74LS165工作在时钟控制下的串行移位状态while(RI==0);//循环等待RI=0;PA_data=SBUF;return PA_data;//返回并行输入的数据}(1)函数声明管脚定义//---------------------------------------库函数声明,管脚定义------------------------------------------ #include<reg52.h>sbit a7=ACC^7;sbit simuseri_CLK=P1^6;//用P1^6模拟串口时钟sbit simuseri_DATA=P1^5;//用P1^5模拟串口数据sbit drive74165_LD=P1^7;//用P1^7控制SH/ 管脚(2)数据输入函数in_simuseri()//-------------------------------------------------------------------------------------------------------------- // 函数名称:in_simuseri()// 输入参数:无// 输出参数:data_buf// 功能说明:8位同位移位寄存器,将simuseri_DATA串行输入的数据按从低位到// 高位// 保存到data_buf//-------------------------------------------------------------------------------------------------------------- unsigned char in_simuseri(void){unsigned char i;unsigned char data_buf;i=8;do{ACC=ACC>>1;for(;simuseri_CLK==0;);a7= simuseri_DA TA;for(;simuseri_CLK==1;);}while(--i!=0);simuseri_CLK=0;data_buf=ACC;return(data_buf);}(3)数据输出函数PAs()//-------------------------------------------------------------------------------------------------------------- // 函数名称:PAs()// 输入参数:无// 输出参数:PAs _buf,返回并行输入74LS165的数据// 功能说明:直接调用,即可读取并行输入74LS165的数据,不需要考虑74LS165的// 工作原理//--------------------------------------------------------------------------------------------------------------unsigned char PAs(void){unsigned char PAs_buf;drive74165_LD=0;drive74165_LD=1;PAs_buf= in_simuseri();return(PAs_buf);}【实例21】用74LS164实现串口扩展并行输出口单片机串口驱动74LS164的程序主要包括函数声明管脚定义部分、串口初始化函数以及数据发送函数。
第3章51系列单片机程序设计(C语言部分)
idata
间接寻址片内数据存储区,可访问片内全部RAM地址空间(256字节)
pdata
分页寻址片外数据存储区(256字节)由MOV @Ri访问(i=0,1)
xdata
片外数据存储区(64 KB)由MOVX @DPTR访问
code
程序存储器64 KB空间,由MOVC @DPTR访问
第3章 51系列单片机程序设计(C部分)
/* Ary37定义为abry[3]的第7位 */
第3章 51系列单片机程序设计(C部分)
3.5 数 组
数组:数组是一组类型相同 有序数据的集合。用数组名 和下标来唯一确定数组中的 元素。
第3章 51系列单片机程序设计(C部分)
3.5.1 一维数组
一、一维数组的定义 形式:类型说明符 数组名 [常量表达式]
使用C51进行编程时,MCS-51片内的I/O口与片外扩展的I/O可以统一在一个头文 件中定义,也可以在程序中(一般在开始的位置)进行定义。
对于MCS-51片内I/O口按特殊功能寄存器方法定义。 例如:
sfr P0=0x80 ; /* 定义P0口,地址为80H */ sfr P1=0x90 ; /* 定义P1口,地址为90H */
第3章 51系列单片机程序设计(C部分)
3.4.3 C51数据的存储类型与MCS-51存储结构
表 3.4.2 C51存储类型与MCS-51存储空间的对应关系
存储类型 与存储空间的对应关系
data
直接寻址片内数据存储区,访问速度快(128字节)
bdata
可位寻址片内数据存储区,允许位与字节混合访问(16字节)
据 浮点型(float) 类
型 指针类型
详细见表3.4.1
单片机程序设计规范与技巧
单片机程序设计规范与技巧单片机程序设计规范与技巧本文档旨在提供单片机程序设计的规范和技巧,帮助开发人员编写高质量的单片机程序。
以下为详细的内容。
一、程序设计规范1.1 命名规范1.1.1 使用有意义的变量、函数和文件名1.1.2 采用驼峰命名法或下划线命名法1.1.3 避免使用保留关键字作为命名1.1.4 使用全大写字母表示常量1.1.5 使用规定的前缀表示不同类型的变量或函数1.2 注释规范1.2.1 在代码中添加适当的注释解释功能或算法1.2.2 使用清晰明了的语言和常见的注释格式1.2.3 避免添加与代码功能不符的注释1.3 代码编写规范1.3.1 模块化设计,实现功能相对独立的代码模块1.3.2 使用合适的数据结构和算法1.3.3 避免使用全局变量,使用局部变量和函数传参来保持代码的可读性和可维护性1.3.4 严格遵守禁止使用硬编码的原则,使用宏定义或常量来定义硬编码的值1.3.5 通过代码缩进和空格来提高代码的可读性二、技巧2.1 变量的初始化2.1.1 所有变量都应该被初始化,避免使用随机值2.1.2 在适当的时机进行变量的重置,保证代码的可靠性2.2 代码复用2.2.1 提取公共代码作为函数或宏定义,避免重复编写代码2.2.2 将通用的功能模块封装成库,方便多个项目的复用2.3 资源优化2.3.1 合理使用闲置资源,如定时器、中断等2.3.2 避免使用过多的全局变量和动态内存分配,减小内存占用2.3.3 优化算法和数据结构,提高代码的执行效率和响应速度3、附件本文档涉及的附件包括示例代码、库文件和文档。
请参考附件中的相关内容。
4、法律名词及注释4.1 法律名词:本文档中涉及的法律名词包括但不限于版权、专利和商标等。
这些名词在不同国家和地区可能有不同的定义和适用法规。
5、全文结束。
单片机程序设计编程规范
单片机程序设计编程规范单片机程序设计编程规范1.文件结构与命名规范1.1 源码文件- 所有源码文件统一使用英文小写字母命名。
- 文件名应简洁明了,能够清晰表达文件的功能。
- 文件名中可以使用下划线 (_) 连接多个单词。
1.2 头文件- 头文件名与源码文件名相同,但使用大写字母命名。
- 头文件应包含必要的宏定义、类型定义、函数声明等。
1.3 项目结构- 源码文件应按功能模块进行组织和管理,每个模块应放在独立的文件夹中。
- 在项目的根目录下添加一个README文件,对项目进行简要说明。
2.编码规范2.1 缩进与空格- 使用4个空格进行缩进,不使用Tab字符。
- 在操作符前后添加空格,增加可读性。
2.2 函数命名- 函数名使用小写字母命名,单词之间使用下划线 (_) 连接。
- 函数名应能够清晰表达函数的功能。
2.3 变量命名- 变量名使用小写字母命名,单词之间使用下划线 (_) 连接。
- 变量名应简洁明了,能够清晰表达变量的用途和含义。
- 全局变量命名应以g_开头。
2.4 常量命名- 常量名使用全大写字母命名,单词之间使用下划线(_) 连接。
2.5 注释规范- 使用注释来解释代码的意图、功能和实现细节。
- 在关键代码处添加注释,并保持注释与代码的同步更新。
- 注释应写在被注释代码的上方,并使用// 或 / /注释符号。
3.函数设计3.1 函数长度- 函数应尽量保持简短,避免超过一页纸的长度。
- 如果函数过长,应考虑将其拆分为多个较小的函数。
3.2 函数参数- 函数参数应尽量少,并且要考虑参数的顺序和类型。
- 不要在函数参数中使用全局变量,尽量使用局部变量。
3.3 函数返回值- 函数的返回值应具有明确的含义,并清晰地传达函数的执行结果。
4.异常处理与错误消息4.1 异常处理- 对可能发生异常的代码块进行适当的异常处理。
- 使用try-catch块捕获异常,并进行相应的处理或记录。
4.2 错误消息- 提供清晰、准确的错误消息,以便于调试和修复问题。
第5章 MCS-51单片机的程序设计
X + 1, X > 0 Y = 0, X = 0 1, X < 0
5.3.4 循环程序
循环程序一般由如下四部分组成: 循环程序一般由如下四部分组成: ①初始化部分:用来设置循环初值,包括预置变量、计数器和数据指针 初始化部分:用来设置循环初值,包括预置变量、 初值,为实现循环做准备。 初值,为实现循环做准备。 ②循环处理部分:要求重复执行的程序段,是程序的主体,称为循环体。 循环处理部分:要求重复执行的程序段,是程序的主体,称为循环体。 循环体既可以是单个指令,也可以是复杂的程序段,通过它可完成对数据 循环体既可以是单个指令,也可以是复杂的程序段, 进行实际处理的任务。 进行实际处理的任务。 ③循环控制部分:控制循环次数,为进行下一次循环而修改计数器和指 循环控制部分:控制循环次数, 针的值,并检查该循环是否已执行了足够的次数。也就是说, 针的值,并检查该循环是否已执行了足够的次数。也就是说,该部分用条 件转移采控制循环次数和判断循环是否结束。 件转移采控制循环次数和判断循环是否结束。 ④循环结束部分:分析和存放结果。 循环结束部分:分析和存放结果。
√ × 机器汇编
√
√
×
√
×
√
×
5.3.1 16位加减法程序 位加减法程序
位二进制数分别存放在R1R0和R3R2中,试求其和, 例5-1:已知两个 位二进制数分别存放在 :已知两个16位二进制数分别存放在 和 中 试求其和, 并将结果存入R1R0中。 中 并将结果存入 汇编语言程序: 汇编语言程序: ORG CLR R1 R3 R1 R0 R2 R0 MOV ADD MOV MOV ADDC MOV SJMP END 0000H C A,R2 A,R0 R0,A A,R3 A,R1 R1,A $
单片机程序设计范文
单片机程序设计范文单片机程序设计是指利用单片机进行程序编程开发,实现各种功能或控制操作的过程。
单片机是一种微型计算机系统,它具有CPU、内存、输入输出接口等基本组成部分,并且集成在一个芯片上。
单片机程序设计是利用这种芯片进行软件开发,从而实现各种应用需求。
在进行单片机程序设计时,需要掌握一些基本的知识和技巧。
首先,需要了解硬件系统的基本结构和功能,包括CPU、存储器、输入输出接口等。
其次,需要熟悉单片机的指令集和编程语言,如汇编语言或C语言等。
此外,还需要了解各种外设的接口和控制方法,如LED灯、数码管、按键等。
单片机程序设计的流程主要包括以下几个步骤:分析需求、设计框架、编写代码、调试测试和优化改进。
首先,要对需求进行分析,明确所需实现的功能和控制要求。
然后,根据需求设计单片机系统的框架,包括硬件连接和软件模块划分。
接着,根据设计完成编程工作,编写相应的代码。
编写代码时,需要考虑到系统的实时性、稳定性和可扩展性等方面。
编写完成后,需要进行调试测试,确保系统正常运行和实现预期功能。
最后,还需要对系统进行优化改进,提高性能和稳定性。
在实际的单片机程序设计中,有很多经典的案例和实践经验可以借鉴。
例如,LED灯的闪烁控制、数码管的显示操作、按键的响应等。
通过学习这些案例,可以更好地理解和掌握单片机程序设计的基本思路和方法。
此外,还可以通过参加单片机比赛、实践项目等方式提升编程能力和设计水平。
单片机程序设计具有很广泛的应用领域。
例如,工业控制领域中,可以利用单片机实现各种自动化控制系统。
在家电领域中,可以运用单片机实现智能化、联网化的产品功能。
在通信领域中,可以使用单片机实现各种数据处理和通信控制功能。
此外,还可以利用单片机设计各种嵌入式系统、物联网设备等。
总之,单片机程序设计是一项重要的技术和领域,对于电子工程师和计算机科学家来说具有重要的意义和价值。
通过系统学习和实践,可以掌握单片机程序设计的基本理论和实践技巧,进而应用到实际项目中,为社会和经济发展做出贡献。
单片机程序设计
单片机程序设计单片机(Microcontroller)是一种集成电路芯片,由中央处理器、存储器和输入输出设备组成,可用于控制电子设备的运行。
在现代电子领域中,单片机的应用越来越广泛,因此对单片机程序设计的需求也逐渐增加。
本文将介绍单片机程序设计的一般流程和注意事项。
一、单片机程序设计概述单片机程序设计是指为单片机编写软件,使其能够按照预定的功能和要求进行工作。
它包括程序设计的各个环节,如需求分析、算法设计、程序编写、调试和测试等。
通过合理设计和编写单片机程序,可以实现各种电子设备的控制和功能扩展。
二、单片机程序设计的基本流程1. 需求分析:了解单片机的使用环境、功能需求和性能要求,明确希望实现的功能。
2. 算法设计:根据需求分析结果,设计相应的算法和逻辑流程,确定程序的整体结构。
3. 硬件设计:根据单片机型号和功能需求,设计相应的硬件电路,包括输入输出接口、外设接口等。
4. 程序编写:根据算法设计和硬件设计结果,使用合适的编程语言编写单片机程序。
5. 调试和测试:在真实的硬件环境下,对程序进行调试和测试,确保程序的功能正常运行。
6. 优化和扩展:根据实际应用情况,对程序进行优化和扩展,提高程序的性能和功能。
三、单片机程序设计的注意事项1. 编程语言选择:根据单片机型号、功能需求和开发环境,选择合适的编程语言,如C语言、汇编语言等。
2. 程序结构设计:根据需求分析和算法设计结果,设计合理的程序结构,包括主程序、子程序和中断服务程序等。
3. 代码规范:编写代码时,遵循统一的代码规范,如缩进、命名规则、注释规范等,提高代码的可读性和可维护性。
4. 调试工具使用:使用合适的调试工具,如仿真器、调试器等,对程序进行调试和测试,快速排查错误。
5. 性能优化:针对程序的性能问题,进行适当的优化,如减少程序的存储空间占用、提高程序的执行效率等。
6. 安全性设计:对于涉及到安全性的应用,设计合理的安全机制,如输入检测、密码保护等,确保系统的安全可靠性。
单片机编程设计的学习方法和步骤6篇
单片机编程设计的学习方法和步骤6篇第1篇示例:单片机编程设计是现代电子技术领域中非常重要的一门技能。
通过学习单片机编程设计,我们可以掌握如何使用单片机来控制各种电子设备,实现不同的功能和项目。
下面将介绍一下关于单片机编程设计的学习方法和步骤,希望能够帮助大家更好地入门和掌握这门技能。
一、学习方法:1.系统学习:要系统地学习单片机编程设计,首先需要掌握单片机的基础知识,如单片机的结构、运行原理、常用的单片机种类等。
可以通过看书、网上视频、参加培训班等途径进行学习。
2.理论联系实际:学习单片机编程设计最重要的是理论联系实际,要通过实际的项目来巩固所学的知识。
可以选择一些简单的项目来实践,比如LED灯控制、按键控制等,逐步提高难度深入学习。
3.模仿学习:在学习单片机编程设计的过程中,可以借鉴一些经典的案例和代码,通过模仿学习来加深对编程的理解。
通过修改已有代码、理解其原理,逐步提高自己的编程能力。
4.多练习:学习单片机编程设计是一个需要不断练习的过程,只有通过多次实践才能掌握这门技能。
可以选择一些开源的项目来参与,多练习不断提高。
二、学习步骤:1.选择单片机:首先需要选择适合自己学习的单片机。
市面上常见的单片机有51单片机、AVR、ARM等,可以根据需求和学习难度选择适合的单片机。
2.学习编程语言:单片机编程设计通常使用C语言或汇编语言,因此需要学习相关的编程语言知识。
可以通过书籍、网课等途径学习,掌握基本的语法和使用方法。
3.搭建开发环境:学习单片机编程设计需要一个合适的开发环境,可以选择一款适合自己的编译软件和仿真软件。
常用的开发环境有Keil、AVR Studio等。
4.学习单片机的硬件连接和调试:在开始编程之前,需要学习单片机的硬件连接和调试方法。
掌握单片机的引脚功能、接线方法,通过示波器等工具进行调试,确保硬件正常连接。
5.编写代码实现功能:根据需求编写相应的代码,实现所需功能。
可以参考官方手册、资料、网上案例等来帮助编写代码,通过不断调试和修改,完善代码功能。
C单片机的C语言程序设计解读
C单片机的C语言程序设计解读C单片机的C语言程序设计是指使用C语言编写单片机程序的过程。
C语言是一种通用编程语言,非常适合用于嵌入式系统开发,特别是单片机。
在单片机中,C语言用于控制和编程微处理器的功能,比如读写IO口、中断处理、定时器控制等。
1. 引入库函数:在C单片机程序设计中,首先需要引入相应的库函数。
库函数是封装了一系列常用功能的函数集合,通过调用库函数可以方便地实现各种功能。
例如,可以引入stdio.h库函数实现标准的输入输出功能,或者引入io.h库函数实现IO口控制功能。
2. 定义宏定义和常量:在C单片机程序中,可以使用宏定义和常量来定义一些固定的数值或者字符串。
宏定义使用#define指令,在程序中定义一个标识符,并将其替换为指定的文本。
常量使用const关键字定义,定义后数值不可更改。
宏定义和常量可以提高程序的可读性和可维护性。
3.变量的声明和定义:变量是C程序的基本组成元素之一,用于存储和表示数据。
在C单片机程序中,可以先声明变量的类型,然后再进行定义。
变量的类型可以是整型、浮点型、字符型等。
变量的作用范围和生命周期取决于其在程序中的声明位置。
4.函数的定义和调用:函数是C程序的另一个基本组成元素,用于封装一段独立的代码块,实现特定的功能。
在C单片机程序中,可以先定义函数的原型,然后再实现函数的具体功能。
函数的调用使用函数名和实参列表,可以将函数的返回值赋给一个变量或者作为一个表达式的值进行使用。
5. 控制语句:控制语句是用于控制程序执行流程的语句。
C单片机程序中常用的控制语句包括条件语句(if-else语句、switch语句)、循环语句(for循环、while循环、do-while循环)和跳转语句(break语句、continue语句、goto语句)。
通过控制语句可以根据不同的条件执行不同的操作,或者循环执行一些代码块,或者跳转到程序的其他位置。
6.中断处理:中断是单片机程序中常用的一种处理方式。
单片机c语言程序设计与仿真
单片机c语言程序设计与仿真
单片机C语言程序设计与仿真是指使用C语言来编写程序,以控制单片机(Microcontroller)的行为。
单片机是一种集成电路芯片,它包含了计算机的基本功能,可以在其中执行程序、存储数据等。
而C语言是一种通用的编程语言,广泛应用于系统软件、应用软件、嵌入式系统等领域。
以下是单片机C语言程序设计与仿真的详细内容:
1.单片机基础知识:了解单片机的内部结构、工作原理、常用外设(如I/O
端口、定时器、串口通信等)以及单片机的指令系统。
2.C语言编程基础:学习C语言的语法、数据类型、运算符、控制结构、函
数等基础知识,以及如何使用C语言进行基本的编程操作。
3.单片机C语言编程:学习如何使用C语言编写程序来控制单片机的行为。
这包括对单片机的初始化、输入输出控制、中断处理、定时器操作等方面的编程。
4.仿真工具:使用仿真工具进行单片机程序的仿真和调试。
仿真工具可以模
拟单片机的运行环境,让程序员在没有实际硬件的情况下也能测试和调试程序。
5.实际应用案例:通过实际的应用案例来深入了解单片机C语言程序设计的
实际应用和解决方案。
总结来说,单片机C语言程序设计与仿真是指使用C语言来编写程序,控制单片机的工作,并通过仿真工具进行程序的测试和调试。
通过学习和实践这个过程,可以掌握单片机C语言编程的基本知识和技能,为进一步开发和应用嵌入式系统打下基础。
单片机菜单程序设计
单片机菜单程序设计一、引言单片机是一种集成电路,具有微处理器、内存、输入/输出接口等功能模块的芯片。
它广泛应用于各种电子设备中,如家电、汽车电子、工业控制等领域。
而单片机菜单程序设计是利用单片机的功能实现一个具有菜单界面的程序,使用户能够通过菜单选择功能,并进行相应的操作。
本文将介绍单片机菜单程序设计的基本原理和实现方法。
二、菜单程序设计的基本原理菜单程序设计的基本原理是通过使用单片机的输入/输出接口,结合按键和显示屏等外部设备,实现菜单的显示和选择。
具体包括以下几个步骤:1. 初始化:包括对单片机和外部设备的初始化操作,如设置输入/输出引脚、初始化显示屏等。
2. 菜单显示:通过控制显示屏显示菜单的选项,包括菜单标题和各个选项的名称。
3. 按键检测:利用单片机的输入引脚检测按键的状态,判断用户是否按下了某个按键。
4. 选项选择:根据用户按下的按键,判断用户选择了哪个菜单选项。
5. 功能实现:根据用户选择的菜单选项,执行相应的功能操作。
6. 返回菜单:功能操作完成后,返回上一级菜单或回到主菜单。
三、菜单程序设计的实现方法菜单程序设计可以采用多种实现方法,常用的有层级菜单和状态机两种。
1. 层级菜单:层级菜单是通过多级菜单选项的嵌套实现的。
每个菜单选项可以再包含子菜单,用户通过按键选择菜单选项,进入下一级子菜单或执行相应的功能操作。
2. 状态机:状态机是通过定义不同的状态和状态转移条件实现的。
每个菜单选项可以对应一个状态,用户通过按键触发状态转移,实现不同功能的切换。
实现菜单程序时,需要注意以下几点:1. 菜单的设计要简洁明了,选项名称要清晰易懂,避免歧义。
2. 菜单的显示要美观大方,可以使用不同字体、颜色和布局等方式进行设计。
3. 按键的检测要准确可靠,避免误触发或按键失灵的情况。
4. 功能操作要严谨可靠,避免因程序错误导致系统崩溃或数据丢失。
5. 菜单的返回要灵活方便,用户可以随时返回上一级菜单或回到主菜单。
单片机程序设计编程规范
单片机程序设计编程规范单片机程序设计编程规范1. 编程风格和规范1.1 代码命名规范1.1.1 变量和函数名使用小驼峰命名法1.1.2 常量名使用大写字母和下划线1.1.3 类名使用大驼峰命名法1.2 代码缩进和格式化规范1.2.1 使用四个空格进行缩进1.2.2 在适当的地方使用空行来提高代码的可读性1.2.3 使用代码格式化工具保持一致的代码风格1.3 注释规范1.3.1 使用注释来解释代码的目的和实现方式1.3.2 在必要的地方添加注释,但要注意不要过度注释 1.3.3 注释要与代码保持一致,即时更新1.4 错误处理规范1.4.1 使用合适的错误处理机制,如返回错误码或抛出异常1.4.2 在适当的地方添加错误处理代码,保证程序的稳定性和可靠性2. 程序结构和模块化2.1 主函数结构2.1.1 初始化操作2.1.2 主循环2.1.3 退出程序操作2.2 模块化设计2.2.1 将功能相似的代码块封装成函数2.2.2 使用头文件将相关函数和变量声明集中管理2.2.3 将各个模块分开编写,并在主函数中进行调用3. 嵌入式系统开发规范3.1 中断处理规范3.1.1 中断函数中应尽量减少执行时间3.1.2 使用适当的同步机制保证数据的正确性3.1.3 在处理中断前禁止其他中断3.2 低功耗设计规范3.2.1 合理使用睡眠模式和待机模式3.2.2 关闭不必要的外设以降低功耗3.2.3 使用定时器唤醒系统时,应确保精确性和可靠性4. 调试和测试规范4.1 代码调试4.1.1 使用一种可靠的调试工具4.1.2 在关键代码处增加日志信息以便调试4.1.3 避免使用过多的断点以提高调试效率4.2 系统测试4.2.1 对关键功能进行全面的测试4.2.2 编写完善的测试用例并进行模拟测试4.2.3 持续监控和优化系统性能5. 文档管理规范5.1 文档命名规范5.1.1 使用简洁明了的文档名称5.1.2 在文件名中包含版本号和日期信息5.1.3 使用统一的命名规则,方便查找和归档 5.2 文档书写规范5.2.1 使用简洁明了的语言表达清楚的意思 5.2.2 文档内容要完整、准确、可读性强5.2.3 在文档中引用必要的资料和来源本文档涉及附件:- 附件1:代码示例- 附件2:模块设计图本文所涉及的法律名词及注释:- 法律名词1:注释1- 法律名词2:注释2。
单片机的编程及程序设计原理详解
单片机的编程及程序设计原理详解单片机(Microcontroller)是一种集成了处理器核心、存储器、输入/输出设备以及时钟电路等功能模块的微型计算机系统。
它具有体积小、成本低、功耗低等特点,被广泛应用于各种家电、工控设备、消费电子产品以及汽车电子等领域。
单片机的编程和程序设计是单片机应用开发的核心,下面将对其进行详细的解析。
一、单片机编程的基本原理单片机的编程主要是通过按照一定的程序设计规则,编写软件代码并将其烧录到单片机的存储器中,从而实现特定功能。
单片机编程的基本原理可以总结为以下几个步骤:1. 程序设计:首先,根据需求,设计单片机需要完成的具体功能,并将其转化为一系列的算法和流程。
在程序设计中需要考虑到诸如功能要求、资源限制、输入输出处理、错误处理等方面的问题。
2. 编写源代码:在设计完成后,需要使用编程语言(如C、C++、ASM等)编写源代码。
源代码是程序员用来描述单片机要执行的具体任务的文本文件。
3. 编译:将编写好的源代码通过编译器进行编译,将其翻译为二进制的机器码,以便单片机能够识别和执行。
4. 烧录到单片机:将编译后生成的可执行文件通过烧录工具或者编程器烧录到单片机的存储器中,以便单片机能够按照程序的要求运行。
5. 调试和测试:烧录完成后,需要对单片机的程序进行调试和测试,确保其能够正常运行并完成预期的功能。
调试和测试是单片机编程中至关重要的一步,可以通过调试工具、仿真器等辅助设备进行。
二、单片机程序设计的要点单片机程序设计需要考虑到多个方面的要点,下面将介绍一些值得注意的内容:1. 程序结构设计:合理的程序结构设计有助于提高程序的可读性、可维护性和可扩展性。
常见的程序结构设计包括顺序结构、选择结构和循环结构等,合理使用这些结构能够达到更好的程序效果。
2. I/O口的配置和使用:单片机的输入/输出口(IO口)是单片机与外部世界交互的接口,配置和使用IO口是单片机程序设计的重要部分。
单片机程序设计
单片机程序设计单片机程序设计概述单片机(Microcontroller)是一种集成电路芯片,内部集成了处理器、存储器、IO口等功能,用于控制外部设备的操作。
单片机程序设计是指针对特定的应用场景,使用汇编语言或高级语言编写程序,通过单片机实现相应的功能。
单片机的应用领域单片机广泛应用于各个领域,例如智能家居、工业自动化、医疗设备等。
由于单片机具有体积小、功耗低、成本低等特点,在嵌入式系统中得到广泛应用。
单片机程序设计的基本原理和步骤单片机程序设计的基本原理是通过编写一系列指令,将其存储在单片机的存储器中,然后由处理器逐条执行这些指令,从而实现相应的功能。
单片机程序设计的步骤如下:1. 确定需求:要明确需要实现的功能和要求,例如控制LED灯的亮灭、获取传感器数据等。
2. 选择单片机:根据需求选择合适的单片机型号,考虑处理器性能、存储器容量、IO口数量等因素。
3. 开发环境搭建:搭建单片机程序开发环境,包括编译器、调试工具等。
4. 编写程序:根据需求使用汇编语言或高级语言编写程序,实现相应的功能。
程序包括初始化设置、功能实现和IO口控制等部分。
5. 编译和烧录:将编写的程序进行编译二进制文件,然后通过烧录工具将二进制文件烧录到单片机的存储器中。
6. 调试与:通过调试工具对程序进行调试,检查程序的运行是否符合预期。
可以进行功能,确保程序可以正常工作。
7. 优化和改进:根据实际情况对程序进行优化和改进,提高程序的性能和稳定性。
单片机程序设计常用的开发工具和语言开发工具- Keil MDK:一款用于ARM单片机程序开发的集成开发环境,包括编译器、调试工具等。
- MPLAB X IDE:Microchip公司推出的集成开发环境,适用于PIC系列单片机的程序开发。
编程语言- 汇编语言:汇编语言是单片机程序设计中最底层的语言,可以直接操作单片机的寄存器和内存。
- C语言:C语言是单片机程序设计中最常用的高级语言,具有语法简洁、易理解和易于维护的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机程序的设计程序设计是单片机开发最重要的工作,程序设计就是利用单片机的指令系统,根据应用系统(即目标产品)的要求编写单片机的应用程序,其实我们前面已经开始这样做过了,这一课我们不是讲如何来设计具体的程序,而是教您设计单片机程序的基本方法。
不过在讲解之前还是有必要先了解一下单片机的程序设计语言。
一.程序设计语言这里的语言与我们通常理解的语言是有区别的,它指的是为开发单片机而设计的程序语言,如果您没有学过程序设计可能不太明白,我给大家简单解释一下,您知道微软的VB,VC吗?VB,VC就是为某些工程应用而设计的计算机程序语言,通俗地讲,它是一种设计工具,只不过这种工具是用来设计计算机程序的。
要想设计单片机的程序当然也要有这样一种工具(说设计语言更确切些)单片机的设计语言基本上有三类:1.完全面向机器的机器语言机器语言就是能被单片机直接识别和执行的语言,计算机能识别什么?以前我们讲过--是数字"0"或"1",所以机器语言就是用一连串的"0"或"1"来表示的数字。
比如:MOV A,40H;用机器语言来表示就是11100101 0100000,很显然,用机器语言来编写单片机的程序不太方便,也不好记忆,我们必须想办法用更好的语言来编写单片机的程序,于是就有了专门为单片机开发而设计的语言:2.汇编语言汇编语言也叫符号化语言,它使用助记符来代替二进制的"0"和"1",比如:刚才的MOV A,40H就是汇编语言指令,显然用汇编语言写成的程序比机器语言好学也好记,所以单片机的指令普遍采用汇编指令来编写,用汇编语言写成的程序我们就叫它源程序或源代码。
可是计算机不能识别和执行用汇编语言写成的程序啊?怎么办?当然有办法,我们可以通过"翻译"把源代码译成机器语言,这个过程就叫做汇编,汇编工作现在都是由计算机借助汇编程序自动完成的,不过在以前,都是靠手工来做的。
值得注意的是,汇编语言也是面向机器的,它仍是一种低级语言。
每一类计算机都有它自己的汇编语言,比如:51系列有它的汇编语言,PIC系列也有它的汇编语言,微机也有它自己的汇编语言,它们的指令系统是各不相同的,也就是说,不同的单片机有不同的指令系统,它们之间是不通用的,这就是为什么世界上有很多单片机类型的缘故。
为了解决这个问题,人们想了很多的办法,设计了许多的高级计算机语言,而其中最适合单片机编程的要数C语言。
3.C语言-高级单片机语言C语言是一种通用的计算机程序设计语言,它既可以用来编写通用计算机的系统程序,也可以用来编写一般的应用程序,由于它具有直接操作计算机硬件的功能,所以非常适合用来编写单片机程序,与其他的计算机高级程序设计语言相比,它具有以下的特点:(1)。
语言规模小,使用简单在现有的计算机设计程序中,C语言的规模是最小的,ANSIC标准的C语言一共只有32个关键字,9种控制语句,然而它的书写形式却比较灵活,表达方式简洁,使用简单的方法就可以构造出相当复杂的数据类型和程序结构。
(2)。
可以直接操作计算机硬件C语言能够直接访问单片机的物理空间地址(KEIL C51软件中的C51编译器更具有直接操作51单片机内部存储器和I/O口的能力),亦可直接访问片内或片外存储器,还可以进行各种位操作。
(3)。
表达能力强,表达方式灵活C语言有丰富的数据结构类型,可以采用整型、实型、字符型、数组类型、指针类型、结构类型、联合类型、枚举类型等多种数据类型来实现各种复杂数据结构的运算。
利用C语言提供的多种运算符,我们可以组成各种表达式,还可以采用多种方法来获得表达式的值,从而使程序设计具有更大的灵活性。
(4)。
可进行结构化设计单片机教程(MCS-51系列)结构化程序是单片机程序设计的组成部分,C语言中的函数相当于汇编语言中的子程序,KEIL C51的编译器提供了一个函数库,其中包含有许多标准函数,如各种数学函数、标准输入输出函数等,此外还可以根据用户需要编制满足某种特殊需要的自定义函数。
C语言程序就是由许多个函数组成的,一个函数即相当于一个程序模块,所以C语言可以很容易地进行结构化程序设计。
(5)。
可移植性前面我们讲过,由于单片机的结构不同,所以不同类型的单片机就要用不同的汇编语言来编写程序,而C语言则不同,它是通过汇编来得到可执行代码的,所以不同的机器上有80%的代码是公用的,一般只要对程序稍加修改,甚至不加修改就可以方便地把代码移植到另一种单片机中。
这对于已经掌握了一种单片机的编程原理,又想用另一种单片机的人来说,可以大大地缩短学习周期,我们将在教程的下册中专门来讲解C语言的应用及其编程原理。
不过作为单片机初学者想要学会C语言并不是一件容易的事,因此对于大多数人来说,汇编语言仍是编写单片机程序的主要语言。
我们上册的教程将全部以汇编语言来编写单片机的程序。
了解了单片机编程的设计语言,下面我们来看单片机编程的基本过程和步骤。
二.单片机程序设计的步骤单片机的程序设计通常包括根据任务建立数学模型、绘制程序流程图、编写程序及汇编三个步骤。
1.建立数学模型数学实在是太有用了,在单片机的程序设计领域,根据任务建立数学模型是程序设计的关键工作。
比如,在一个测量系统中,从模拟通道输入的温度、压力、流量等信息与该信号的实际值是非线性关系,这就需要我们对其进行线性化处理,此时就要用到指数和函数等数学变量来进行计算;再比如,在直接数字化控制的系统中,常采用PID控制算法来进行系统的运算,此时又要用到数学中的微分和积分运算等等。
因此,数学模型对于单片机的程序设计是非常重要的。
只不过作为初学者,我们还没有复杂到如此程度,因此,详细的内容就不讲解了。
下面的绘制程序流程图可是初学者的基本功,请大家务必仔细看一下。
2.绘制流程图所谓流程图,就是用各种符号、图形、箭头把程序的流向及过程用图形表示出来。
绘制流程图是单片机程序编写前最重要的工作,通常我们的程序就是根据流程图的指向采用适当的指令来编写的,下面的图形和箭头就是我们绘制流程图用的工具(图中左边所示)。
绘制流程图时,首先画出简单的功能流程图(粗框图),再对功能流程图进行扩充和具体化,即对存储器、标志位等单元做具体的分配和说明,把功能图上的每一个粗框图转化为具体的存储器或单元,从而绘制出详细的程序流程图,即细框图。
下面举个例子给大家演示一下,请看下面的程序:主程序:LOOP:SETB P1.0;LCALL DELAY;CLR P1.0;LCALL DELAY;LJMP LOOP;子程序:DELAY:MOV R7,#250;D1:MOV R6,#250;D2:DJNZ R6,D2;DJNZ R7,D1;RET;END。
还记得吗,这是我们第四课中做过的LED灯闪烁的实验,以前我们曾对程序进行过分析,现在让我们用流程图来把这段程序的主程序部分画出来,看上图的右边部分。
这就是程序的流程图,在单片机的编程过程中,绘制流程图能看清楚程序执行的步骤以及程序的流向,事实上,程序的编写就是根据流程图的功能完成的。
下面我们来把第十五课中的那个程序也用流程图画出来。
程序如下:ORG 0000H;LJMP START;ORG 30H;START:MOV SP,#5FH;MOV P1,#0FFH;MOV P3,#0FFH;L1:JNB P3.5,L2;P3.5上接有一只按键,它按下时,P3.5=0 JNB P3.6,L3;P3.6上接有一只按键,它按下时,P3.6=0 LJMP L1;L2:CLR P1.0;亮LED1 LJMP L1;L3:SETB P1.0;暗LED1 LJMP L1;END。
先不看图,自己画一下,看是不是同我画的一样。
在实际的程序设计中,根据框图,采用适当的指令编写出实现流程图的源程序就是我们编写程序的最后工作。
3.编写程序和汇编程序编写完之后,我们要把它汇编成机器语言,这种机器语言就是十六进制文件,后缀名为*.HEX文件,以前还要把它转换成二进制文件,后缀名为*.BIN文件,不过现在的编程器都能直接读入十六进制文件,就不需要转换了,最后用编程器把程序写入单片机。
这些以前都讲过了,这里就不重复了。
下面来讲本课的主题-程序设计的方法。
单片机程序设计的方法要想搞清楚程序设计的方法,我们首先要知道单片机到底有哪几类程序?单片机的程序分为结构化程序、子程序和综合程序三个大类,先来看结构化程序。
1.结构化程序的设计方法在单片机的程序中,既有复杂的程序,也有简单的程序,但不论哪种程序,它们都是由一个个基本的程序结构组成的,这些基本结构有顺序结构、分支结构和循环结构。
(1)。
顺序结构程序的设计顺序结构的程序一般用来处理比较简单的算术或逻辑问题,它的执行过程是按照程序存储器PC自动加1的顺序执行的,主要用数据传递类指令和数据运算类指令来实现。
比如我们前面第六课中的I/O口输入实验就是典型的顺序结构的程序。
试试看,把这个程序的流程图写出来。
下面再看一个例子:将内部RAM中20H单元和30H单元的无符号数相加,存入R0(高位)和R1(低位)中。
先画出流程图:根据流程图编写源代码如下:MOV A,20H;ADD A,30H;MOV R0,A;CLR A;ADDC A,#00H;MOV R0,A;MOV A,30H;ADD A,R1;MOV R1,A;CLR A;ADDC A,R0;MOV R0,A;这就是顺序结构程序,程序的原理我就不分析了,我们接着讲分支结构的程序设计。
这里说明一点,最近有朋友提出这一课的有些程序看不懂,的确如此,这一课的有几个程序实例我们从来没有学过,之所以放在这里,原本是为了让大家理解程序设计的方法,举几个示例证明一下,没想到反而增加了大家的难度。
其实这些示例你不需要刻意的去理解它,只要明白它的设计方法就可以了,因为这一张的主要内容是程序设计的方法,而不是程序执行的原理和结果。
如果以后有更好的示例我会修改一下。
(2)。
分支结构程序的设计所谓分支结构就是利用条件转移指令,使程序执行某一指令后,根据所给的条件是否满足来改变程序执行的顺序,也就是本条指令执行完后,并不是象顺序结构那样执行下一条指令,而是看本条指令所给的条件是否满足,如果满足条件就跳转到其他的指令,如果不满足就顺序执行;当然也可以是满足条件顺序执行,而不满足条件跳转执行,看十五课实验程序中的下面两条:L1:JNB P3.5,L2;P3.5上接有一只按键,它按下时,P3.5=0 JNB P3.6,L3;P3.6上接有一只按键,它按下时,P3.6=0这就是分支结构的程序,如果P3.5为"0",就转移;反之就顺序执行。