操作系统 内存管理实验报告

合集下载

操作系统 内存管理实验报告

操作系统 内存管理实验报告

同组同学学号:#include <stdio.h>#include <malloc.h>#include <string.h>int main(void){char *str; /* 为字符串申请分配一块内存 */if ((str = (char *) malloc(10)) == NULL){printf("Not enough memory to allocate buffer\n");return(1); /* 若失败则结束程序 */} /* 复制 "Hello" 字符串到分配到的内存 */strcpy(str, "Hello"); /* 打印出字符串和其所在的地址 */printf("String is %s\n Address is %p\n", str, str); /* 重分配刚才申请到的内存空间, 申请增大一倍 */if ((str = (char *) realloc(str, 20)) == NULL) { printf("Not enough memory to allocate buffer\n"); return(1); /* 监测申请结果, 若失败则结束程序, 养成这个好习惯 */} /* 打印出重分配后的地址 */printf("String is %s\n New address is %p\n", str, str); /* 释放内存空间 */free(str);return 0;}调试过后得出结果截图如下:#include <stdio.h>#include <alloca.h>void test(int a){char *newstack;/* 申请一块内存空间*/newstack = (char *) alloca(len);if (newstack)/* 若成功, 则打印出空间大小和起始地址*/ printf("Alloca(0x%X) returned %p\n",len,newstack);else/* 失败则报告错误, 我们是做实验, 目前无需退出*/ printf("Alloca(0x%X) failed\n",len);} /* 函数退出, 内存自动释放, 无需干预*/void main(){/* 申请一块256字节大小的内存空间, 观察输出情况*/ test(256);/* 再申请一块更大内存空间, 观察输出情况*/test(16384);}调试结果截图如下:根据练习二改编程序如下:#include <stdio.h>#include <malloc.h>#include <string.h>int main(void){char *str;/* 为字符串申请分配一块内存 */if ((str = (char *) malloc(20)) == NULL){printf("Not enough memory to allocate buffer\n"); return(1); /* 若失败则结束程序 */}/* 复制 "Hello" 字符串到分配到的内存 */strcpy(str, "My name is Li Caihong!");/* 打印出字符串和其所在的地址 */printf("String is %s\n Address is %p\n", str, str); /* 重分配刚才申请到的内存空间, 申请增大一倍 */if ((str = (char *) realloc(str, 40)) == NULL){ printf("Not enough memory to allocate buffer\n"); return(1);/* 监测申请结果, 若失败则结束程序, 养成这个好习惯 */}/* 打印出重分配后的地址 */printf("String is %s\n New address is %p\n", str, str);/* 释放内存空间*/free(str);return 0; }在该程序中, 我将程序中的“Hello”改为“My name is Li Caihong!”首次调试出来的结果显示内存太小, 出现的结果有很多不认识的代码。

操作系统实验-内存管理

操作系统实验-内存管理

操作系统实验-内存管理(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--广州大学学生实验报告开课学院及实验室:计算机科学与工程实验室 2015 年一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。

二、实验内容1、常用页面置换算法模拟实验设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。

1)、最佳淘汰算法(OPT)2)、先进先出的算法(FIFO)3)、最近最久未使用算法(LRU)4)、最不经常使用算法(LFU)5)、最近未使用算法(NUR)命中率=1-页面失效次数/页地址流长度2、在Linux环境下利用下列系统调用malloc(), free()编写一段程序实现内存分配与回收的管理。

要求:1)、返回已分配给变量的内存地址;2)、返回释放后的内存地址;3)、释放已分配的内存空间后,返回释放内存后未使用内存的大小。

三、实验原理一、虚拟存储系统UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。

当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。

这种页面调入方式叫请求调页。

为实现请求调页,核心配置了四种数据结构:页表、页框号、访问位、修改位、有效位、保护位等。

二、页面置换算法当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。

该程序通过查找页表,得到该页所在外存的物理块号。

如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。

如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。

实现内存分配实验报告(3篇)

实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。

2. 掌握动态分区分配方式中的数据结构和分配算法。

3. 通过编写程序,实现内存分配和回收功能。

二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。

内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。

(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。

(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。

2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。

动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。

(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。

(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。

四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。

(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。

(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。

(2)对比两种算法在内存分配效率、外部碎片等方面的差异。

五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。

北理工操作系统内存管理实验报告

北理工操作系统内存管理实验报告

实验三:内存管理班级:学号:姓名:一、实验目的1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解;2.熟悉虚存管理的页面淘汰算法;3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。

二、实验要求1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。

并产生一个需要访问的指令地址流。

它是一系列需要访问的指令的地址。

为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。

2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。

而不再判断它是否被改写过,也不将它写回到辅存。

3.系统运行既可以在Windows,也可以在Linux。

三、实验流程图图1 页式存储管理程序参考流程四、实验环境硬件设备:个人计算机。

系统软件:windows操作系统,Visual C++6.0编译环境。

五、实验结果说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。

将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。

此时主存中还有两个空闲帧。

此时按刚才随机顺序进行访问指令工作。

前9页因都在主存中可直接调用。

第10个随机地址为页号为5的指令,也在主存中,也可直接调用。

页号为24,3因不在主存中,需要调用进主存。

此时主存已满。

然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。

以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。

六、实验感想七、实验代码#include <iostream>#include <iomanip>#include <stdlib.h>#include <time.h>#include <vector>#include <queue>//#include <algorithm>using namespace std ;#define PAGETABLE_NUM 35 //模拟进程的页表表项数量;#define AVAILABLEFRAME_NUM 10 //主存中固定工作集页帧的数量;#define RANDOMNUMBER_NUM 20 //产生随机指令地址的数量;structPageTableEntry{unsignedintFrameNum ;boolPressent ;};voidInitRandomAddr(vector<unsigned int>&RandomAddr) ;voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue) ;voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue) ;voidSetPTE(PageTableEntry&PTE) ;int main(){int a ;//初始化RANDERNUMBER_NUM条随机的32位指令地址;vector<unsigned int>RandomAddr(RANDOMNUMBER_NUM) ;InitRandomAddr(RandomAddr) ;//初始化FIFS指针;vector<unsigned int>::iterator FIFS_pintor ;FIFS_pintor = RandomAddr.begin() ;//初始空闲帧队列;queue<unsigned int>IdleFrameQueue, ActiveFrameQueue ;InitIdleFrameQueue(IdleFrameQueue) ;//初始进程页表(模拟进程初始时,工作集已经使用至少10个页帧);vector<PageTableEntry>PageTable(PAGETABLE_NUM) ;InitPageTable(PageTable, RandomAddr, IdleFrameQueue, ActiveFrameQueue) ;//Testcout<<" 开始访问指令地址\n" ;vector<unsigned int>::iterator pt_RandomAddr ;for(pt_RandomAddr = RandomAddr.begin(); pt_RandomAddr != RandomAddr.end(); pt_RandomAddr++ ){unsignedintPageNum = (*pt_RandomAddr) >> 12 ;cout<<"地址:0x"<<hex<<*pt_RandomAddr<<dec<<"\t页号:"<<PageNum;if ( PageTable[PageNum].Pressent == 0 ) //该页不在主存中;{cout<<"\t该页不在主存,";if (IdleFrameQueue.empty()) //工作集空闲页帧已用完;{cout<<"执行FIFO淘汰算法\t";//FIFS算法淘汰一页;unsignedintFrame_Num ;Frame_Num = ActiveFrameQueue.front() ;ActiveFrameQueue.pop() ;PageTable[(*FIFS_pintor) >> 12].Pressent = 0 ; //标记此页已经被置换出主存;//置换进新页;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;//移动FIFS指针;FIFS_pintor++ ;}else{cout<<"调入所需页到空闲页\t";//调入当前所需的页到空闲页中;unsignedintFrame_Num ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;}}elsecout<<"\t该页在主存";cout<<"\t帧号:"<<PageTable[PageNum].FrameNum<<endl ;}return 0 ;}voidInitRandomAddr(vector<unsigned int>&RandomAddr){cout<<" 生成随机指令地址\n" ;vector<unsigned int>::iterator pd ;srand( (unsigned)time( NULL ) );for(pd = RandomAddr.begin(); pd != RandomAddr.end(); pd++ ){//产生随机页号0~PAGETABLE_NUM - 1;unsignedint High_20 = rand() % PAGETABLE_NUM ;//产生随机偏移量0~4095 ;unsignedint Low_12 = rand() % 4096 ;unsignedintAddr = (High_20 << 12) | Low_12 ;*pd = Addr ;cout<<"随机指令地址:0x"<<setw(8)<<setfill('0') <<setiosflags(ios::uppercase | ios::fixed)<<hex<<*pd<<"\t页号:"<<dec<<High_20<<"\t偏移量:0x"<<hex<<Low_12<<dec<<endl ;}}voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue){//帧号从0~1048575,这里取1000000~1000016;for ( unsigned intFrameNum = 1000000; FrameNum< 1000000 + AVAILABLEFRAME_NUM; FrameNum++ )IdleFrameQueue.push(FrameNum) ;}voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue){cout<<" 初始化页表; \n" ;for_each(PageTable.begin(), PageTable.end(), SetPTE) ;unsignedintPage_Num, Frame_Num ;for ( int count = 0; count < 9; count++){while(true){Page_Num = RandomAddr[count] >> 12 ;if ( PageTable[Page_Num].Pressent != 0 )break ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[Page_Num].FrameNum = Frame_Num ; //设置页帧号;PageTable[Page_Num].Pressent = 1 ; //标记页帧在主存中;AvtiveFrameQueue.push(Frame_Num) ; //记录活动页帧;cout<<"将模拟进程的第"<<Page_Num<<"页初始化至主存中,帧号为:"<<Frame_Num<<endl;}}cout<<endl ;}voidSetPTE(PageTableEntry&PTE){PTE.FrameNum = PTE.Pressent = 0 ; }。

内存管理实验报告

内存管理实验报告

内存管理实验报告实验名称:内存管理实验目的:掌握内存管理的相关概念和算法加深对内存管理的理解实验原理:内存管理是操作系统中的一个重要模块,负责分配和回收系统的内存资源。

内存管理的目的是高效地利用系统内存,提高系统的性能和稳定性。

实验过程:1.实验环境准备本实验使用C语言编程,要求安装GCC编译器和Linux操作系统。

2.实验内容实验主要包括以下几个部分:a.基本内存管理创建一个进程结构体,并为其分配一定大小的内存空间。

可以通过C语言中的指针操作来模拟内存管理的过程。

b.连续分配内存算法实现两种连续分配内存的算法:首次适应算法和最佳适应算法。

首次适应算法是从低地址开始寻找满足要求的空闲块,最佳适应算法是从所有空闲块中选择最小的满足要求的块。

c.非连续分配内存算法实现分页和分段两种非连续分配内存的算法。

分页是将进程的虚拟地址空间划分为固定大小的页面,然后将页面映射到物理内存中。

分段是将进程的地址空间划分为若干个段,每个段可以是可变大小的。

3.实验结果分析使用实验中的算法和方法,可以实现对系统内存的高效管理。

通过比较不同算法的性能指标,我们可以选择合适的算法来满足系统的需求。

具体而言,连续分配内存算法中,首次适应算法适用于内存中有大量小碎片的情况,可以快速找到满足要求的空闲块。

最佳适应算法适用于内存中碎片较少的情况,可以保证最小的内存浪费。

非连续分配内存算法中,分页算法适用于对内存空间的快速分配和回收,但会带来一定的页表管理开销。

分段算法适用于对进程的地址空间进行分段管理,可以灵活地控制不同段的权限和大小。

实验中还可以通过性能测试和实际应用场景的模拟来评估算法的性能和适用性。

实验总结:本实验主要介绍了内存管理的相关概念和算法,通过编写相应的代码实现了基本内存管理和连续分配、非连续分配内存的算法。

通过实际的实验操作,加深了对内存管理的理解。

在实验过程中,我们发现不同算法适用于不同情况下的内存管理。

连续分配算法可以根据实际情况选择首次适应算法或最佳适应算法。

操作系统:实验4 存储管理(实验报告)

操作系统:实验4 存储管理(实验报告)

欢迎共阅班级: 姓名: 学号:5) 当前计算机的实际内存大小为:______________________________________ 分析程序4-1,请回答问题:1) 理论上每个Windows 应用程序可以独占的最大存储空间是:_____________2) 程序中,用于检查系统中虚拟内存特性的API 函数是:__________________ 4.2 Windows 虚拟内存本节实验的目的是:实验4存储管理1) 通过实验了解Windows内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。

2) 学习检查虚拟内存空间或对其进行操作;3) 了解Windows的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。

1. 工具/准备工作在开始本节实验之前,请回顾教材的相关内容。

需要准备一台运行Windows系统的计算机,且安装了C/C++编译器。

2. 实验内容与步骤将系统当前的保留区(reserved)虚拟地址空间填入表4.3中。

表4.3 实验记录2) 根据运行结果,请简单描述程序运行的流程:_________________________________________________________________________________________________________________________________________的程序段,该段程序试图通过VirtualAlloc()函数,然后利用物理备用内存将整个块分配到虚拟内存空间的任何位置。

这种技术只对拥有1GB以上的RAM且都有换页文件的计算机可行。

从运行结果看,这种技术成功了吗?_________________。

3) 程序中说明为___________________________________________________的程序段,该段程序利用VirtualAlloc()函数,如果函数成功,则获得大块内存,但不将任何物理内存调配到此块中。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。

二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。

尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。

在实际应用中,首次适应算法被广泛采用。

2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。

最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。

因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。

四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。

两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。

操作系统实验二-内存管理

操作系统实验二-内存管理

操作系统实验二-内存
管理
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
洛阳理工学院实验报告
原始数据纪录:
输入数据:
T1时刻 a 80, b 60, c 100,输出空闲分区
T2时刻,进程结束,释放进程b,输出空闲分区
T3时刻输入d 50后,输出空闲分区
T4时刻进程结束,释放a, c,输出空闲分区
T5时刻进程结束,释放d,输出空闲分区
输出数据:
实验总结:本次实验还是比较难的,操作系统这本书上也没有什么例子供参考,所以只能靠自己的理解以及平时上课的积累才能完成此次实验。

这次实验让我们掌握了内存的分配,回收算法的思想,对内存管理有了进一步的认识。

总的来说,实验的意义就是为了进一步对C语言的认识与理解,根据不同的题目,能够很快想出相应的思路。

实验四 操作系统存储管理实验报告

实验四  操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。

二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。

离散分配:分页存储管理、分段存储管理、段页式存储管理。

2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。

最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。

最坏适应算法:选择最大的空闲分区进行分配。

3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。

四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。

输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。

2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。

输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。

3、离散内存分配实验实现分页存储管理的地址转换功能。

输入逻辑地址,程序计算并输出对应的物理地址。

4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。

记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。

五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。

内存状态显示清晰,分区的使用和空闲情况一目了然。

动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。

2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。

本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。

三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。

分区的大小可以相等,也可以不等。

2、实现创建一个固定大小的内存空间数组,模拟内存分区。

为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。

3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。

分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。

(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。

2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。

实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。

3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。

观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。

(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。

2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。

模拟页面的调入和调出过程,处理缺页中断。

3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。

探讨页大小的选择对存储管理的影响。

(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收、页面置换算法等关键概念,并能够分析和解决存储管理中可能出现的问题。

二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了 Visual Studio 等编程工具和相关的调试环境。

三、实验内容(一)内存分配与回收算法实现1、首次适应算法首次适应算法从内存的起始位置开始查找,找到第一个能够满足需求的空闲分区进行分配。

在实现过程中,我们通过建立一个空闲分区链表来管理内存空间,每次分配时从表头开始查找。

2、最佳适应算法最佳适应算法会选择能够满足需求且大小最小的空闲分区进行分配。

为了实现该算法,在空闲分区链表中,分区按照大小从小到大的顺序排列,这样在查找时能够快速找到最合适的分区。

3、最坏适应算法最坏适应算法则选择最大的空闲分区进行分配。

同样通过对空闲分区链表的排序和查找来实现。

(二)页面置换算法模拟1、先进先出(FIFO)页面置换算法FIFO 算法按照页面进入内存的先后顺序进行置换,即先进入内存的页面先被置换出去。

在模拟过程中,使用一个队列来记录页面的进入顺序。

2、最近最久未使用(LRU)页面置换算法LRU 算法根据页面最近被使用的时间来决定置换顺序,最近最久未使用的页面将被置换。

通过为每个页面设置一个时间戳来记录其最近使用的时间,从而实现置换策略。

3、时钟(Clock)页面置换算法Clock 算法使用一个环形链表来模拟内存中的页面,通过指针的移动和页面的访问标志来决定置换页面。

四、实验步骤(一)内存分配与回收算法的实现步骤1、初始化内存空间,创建空闲分区链表,并为每个分区设置起始地址、大小和状态等信息。

2、对于首次适应算法,从链表表头开始遍历,找到第一个大小满足需求的空闲分区,进行分配,并修改分区的状态和大小。

3、对于最佳适应算法,在遍历链表时,选择大小最接近需求的空闲分区进行分配,并对链表进行相应的调整。

内存操作实验报告

内存操作实验报告

一、实验目的1. 熟悉内存的基本操作,包括内存的分配、释放、读写等。

2. 掌握C语言中内存操作的相关函数,如malloc、free、memcpy等。

3. 提高对内存管理重要性的认识,了解内存泄漏的成因及预防措施。

二、实验环境1. 操作系统:Windows 102. 编译器:Visual Studio 20193. 编程语言:C语言三、实验内容1. 内存分配与释放2. 内存读写3. 内存拷贝4. 内存泄漏检测四、实验步骤1. 内存分配与释放(1)编写一个函数,使用malloc分配内存,并打印分配的内存地址。

```c#include <stdio.h>#include <stdlib.h>void test_malloc() {int p = (int )malloc(sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_malloc();return 0;}```(2)编写一个函数,使用calloc分配内存,并打印分配的内存地址。

```c#include <stdio.h>#include <stdlib.h>void test_calloc() {int p = (int )calloc(10, sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_calloc();return 0;}```2. 内存读写(1)编写一个函数,使用memcpy函数复制内存内容。

操作系统实验-内存管理

操作系统实验-内存管理

操作系统实验-内存管理操作系统实验内存管理在计算机系统中,内存管理是操作系统的核心任务之一。

它负责有效地分配和管理计算机内存资源,以满足各种程序和进程的需求。

通过本次操作系统实验,我们对内存管理有了更深入的理解和认识。

内存是计算机用于存储正在运行的程序和数据的地方。

如果没有有效的内存管理机制,计算机系统将无法高效地运行多个程序,甚至可能会出现内存泄漏、内存不足等严重问题。

在实验中,我们首先接触到的是内存分配策略。

常见的内存分配策略包括连续分配和离散分配。

连续分配是将内存空间视为一个连续的地址空间,程序和数据被依次分配到连续的内存区域。

这种方式简单直观,但容易产生内存碎片,降低内存利用率。

离散分配则将内存分成大小相等或不等的块,根据需求进行分配。

其中分页存储管理和分段存储管理是两种常见的离散分配方式。

分页存储管理将内存空间划分为固定大小的页,程序也被分成相同大小的页,通过页表进行映射。

分段存储管理则根据程序的逻辑结构将其分成不同的段,如代码段、数据段等,每个段有不同的访问权限和长度。

接下来,我们研究了内存回收算法。

当程序不再使用分配的内存时,操作系统需要回收这些内存以便再次分配。

常见的内存回收算法有首次适应算法、最佳适应算法和最坏适应算法。

首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲区域进行分配;最佳适应算法则选择大小最接近需求的空闲区域进行分配;最坏适应算法选择最大的空闲区域进行分配。

为了更直观地理解内存管理的过程,我们通过编程实现了一些简单的内存管理算法。

在编程过程中,我们深刻体会到了数据结构和算法的重要性。

例如,使用链表或二叉树等数据结构来表示空闲内存区域,可以提高内存分配和回收的效率。

在实验中,我们还遇到了一些实际的问题和挑战。

比如,如何处理内存碎片的问题。

内存碎片是指内存中存在一些无法被有效利用的小空闲区域。

为了解决这个问题,我们采用了内存紧缩技术,将分散的空闲区域合并成较大的连续区域。

操作系统内存管理实验报告

操作系统内存管理实验报告

操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。

内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。

本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。

一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。

在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。

内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。

二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。

具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。

三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。

该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。

当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。

2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。

该机制使用页表来记录虚拟地址与物理地址的映射关系。

当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。

3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。

该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。

只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。

操作系统实验之内存管理实验报告

操作系统实验之内存管理实验报告

操作系统实验之内存管理实验报告一、实验目的内存管理是操作系统的核心功能之一,本次实验的主要目的是深入理解操作系统中内存管理的基本原理和机制,通过实际编程和模拟操作,掌握内存分配、回收、地址转换等关键技术,提高对操作系统内存管理的认识和实践能力。

二、实验环境本次实验在 Windows 操作系统下进行,使用 Visual Studio 作为编程环境,编程语言为 C++。

三、实验原理1、内存分配算法常见的内存分配算法有首次适应算法、最佳适应算法和最坏适应算法等。

首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲分区进行分配;最佳适应算法则选择大小最接近需求的空闲分区;最坏适应算法选择最大的空闲分区进行分配。

2、内存回收算法当进程结束释放内存时,需要将其占用的内存区域回收至空闲分区链表。

回收过程中需要考虑相邻空闲分区的合并,以减少内存碎片。

3、地址转换在虚拟内存环境下,需要通过页表将逻辑地址转换为物理地址,以实现进程对内存的正确访问。

四、实验内容1、实现简单的内存分配和回收功能设计一个内存管理模块,能够根据指定的分配算法为进程分配内存,并在进程结束时回收内存。

通过模拟多个进程的内存请求和释放,观察内存的使用情况和变化。

2、实现地址转换功能构建一个简单的页式存储管理模型,模拟页表的建立和地址转换过程。

给定逻辑地址,能够正确计算出对应的物理地址。

五、实验步骤1、内存分配和回收功能实现定义内存分区的数据结构,包括起始地址、大小、使用状态等信息。

实现首次适应算法、最佳适应算法和最坏适应算法的函数。

创建空闲分区链表,初始化为整个内存空间。

模拟进程的内存请求,调用相应的分配算法进行内存分配,并更新空闲分区链表。

模拟进程结束,回收内存,处理相邻空闲分区的合并。

2、地址转换功能实现定义页表的数据结构,包括页号、页框号等信息。

给定页面大小和逻辑地址,计算页号和页内偏移。

通过页表查找页框号,结合页内偏移计算出物理地址。

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。

最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。

最坏适应算法:选择空闲分区中最大的分区进行分配。

2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。

最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。

时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。

五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。

实现首次适应算法、最佳适应算法和最坏适应算法的函数。

编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。

2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。

实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。

编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告操作系统存储管理实验报告引言:操作系统是计算机系统中的核心软件之一,它负责管理计算机硬件资源和提供用户与计算机之间的接口。

在操作系统中,存储管理是一个重要的子系统,它负责管理计算机的内存资源。

本实验旨在通过实际操作,深入了解操作系统的存储管理机制,并通过实验结果分析其性能和效果。

实验目的:1. 了解操作系统的存储管理机制;2. 掌握存储管理相关的概念和技术;3. 分析不同存储管理策略的优缺点;4. 通过实验验证不同策略的性能和效果。

实验内容:本次实验主要涉及以下几个方面的内容:1. 内存分配:在操作系统中,内存是计算机中的重要资源,它被划分为多个固定大小的块,每个块称为一页。

实验中,我们将学习不同的内存分配算法,如连续分配、离散分配和分页分配,并通过实验验证它们的性能和效果。

2. 内存回收:当某个进程不再需要使用内存时,操作系统需要回收该内存空间,以便其他进程使用。

实验中,我们将学习不同的内存回收算法,如最佳适应算法、最坏适应算法和首次适应算法,并通过实验比较它们的效果。

3. 虚拟内存管理:虚拟内存是一种扩展内存的技术,它将磁盘空间作为辅助存储器,将部分数据存储在磁盘上,以释放内存空间。

实验中,我们将学习虚拟内存的概念和原理,并通过实验验证其性能和效果。

实验结果与分析:通过实验,我们得到了不同存储管理策略的性能数据,并进行了分析。

在内存分配方面,连续分配在内存利用率方面表现较好,但容易产生外部碎片;离散分配能够充分利用内存空间,但需要额外的管理开销;分页分配能够灵活地分配内存,但会带来内部碎片。

在内存回收方面,最佳适应算法能够更好地利用内存空间,但需要较长的搜索时间;最坏适应算法能够减少外部碎片,但可能导致内存利用率较低;首次适应算法在搜索时间和内存利用率方面都有较好的平衡。

在虚拟内存管理方面,虚拟内存能够有效扩展内存空间,提高系统的性能和效率。

通过实验,我们发现虚拟内存的使用可以显著减少交换空间的开销,并提高系统的响应速度。

操作系统虚拟内存管理实验报告

操作系统虚拟内存管理实验报告

操作系统虚拟内存管理实验报告一、引言操作系统中的虚拟内存管理是一种将主存作为cache使用,将物理内存扩展到硬盘等外部存储设备的技术。

本实验旨在研究和实践虚拟内存管理的相关知识,并探讨不同策略在虚拟内存管理中的应用与效果。

二、实验目的本实验的主要目的有以下几点:1.了解并掌握操作系统中虚拟内存的概念和作用;2.基于已有的实验系统,实现并比较不同的虚拟内存管理策略;3.通过实验,深入理解虚拟内存管理对计算机系统性能的影响。

三、实验环境本次实验使用的虚拟机环境配置如下:操作系统:Windows 10开发工具:Visual Studio Code编程语言:C++四、实验步骤1.实验系统设计本实验使用C++语言编写一个简单的模拟系统,实现虚拟内存管理的各项功能。

该系统包含一个进程管理器、一个虚拟内存管理器以及一个页面置换算法模块。

2.进程管理器实现进程管理器负责管理进程的创建、调度和撤销等操作。

在本实验中,我们选择了最简单的时间片轮转调度算法。

3.虚拟内存管理器实现虚拟内存管理器负责将虚拟地址映射为物理地址,并进行合理的页面置换操作。

在本实验中,我们采用了两种常见的虚拟内存管理策略,分别为页面置换算法FIFO和LRU。

4.页面置换算法实现页面置换算法模块主要针对物理内存不足时进行页面置换,并合理选择待置换的页面。

本实验中,我们实现了先进先出(FIFO)和最近最久未使用(LRU)两种页面置换算法,并对其进行性能比较。

五、实验结果与分析1.实验数据收集我们通过运行不同规模的任务,并记录其执行时间、内存占用等数据,以便后续进行性能分析。

2.性能分析通过实验数据的对比分析,我们可以得出不同虚拟内存管理策略的优缺点。

FIFO算法适用于执行时间较长的任务,而LRU算法则适用于要求较高内存使用效率的任务。

六、实验总结通过本次实验,我们了解了虚拟内存管理的基本概念和主要作用,并实践了不同策略的虚拟内存管理系统。

通过对实验数据的分析,我们对不同策略的性能特点有了更深入的了解。

内存分配实验报告总结(3篇)

内存分配实验报告总结(3篇)

第1篇一、实验目的本次实验旨在让学生深入理解内存分配的基本原理和不同分配算法,通过实际操作,提高学生对内存管理技术的掌握程度。

通过本次实验,我们希望达到以下目标:1. 熟悉内存分配的基本概念和过程;2. 掌握常见的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法;3. 理解内存分配中的碎片问题,并尝试解决;4. 培养学生的动手实践能力和问题解决能力。

二、实验内容1. 实验环境:使用C语言编写程序,运行在Linux操作系统上。

2. 实验步骤:(1)首次适应算法:从内存空间的起始位置开始查找,找到第一个满足申请大小的空闲分区,将其分配给请求者。

(2)最佳适应算法:从所有空闲分区中查找一个最小的满足申请大小的分区,将其分配给请求者。

(3)最坏适应算法:从所有空闲分区中查找一个最大的满足申请大小的分区,将其分配给请求者。

(4)解决内存碎片问题:采用紧凑算法,将所有空闲分区合并成一个连续的大空间,从而减少内存碎片。

三、实验过程1. 编写程序实现内存分配算法,包括内存初始化、申请内存、释放内存等功能。

2. 对不同分配算法进行测试,观察分配效果,分析不同算法的优缺点。

3. 分析内存碎片问题,尝试解决方法,如紧凑算法。

四、实验结果与分析1. 首次适应算法:该算法简单易实现,但可能导致内存利用率较低,且可能产生较大的内存碎片。

2. 最佳适应算法:该算法分配效果较好,内存利用率较高,但分配速度较慢。

3. 最坏适应算法:该算法分配效果较差,内存利用率较低,但分配速度较快。

4. 紧凑算法:通过合并空闲分区,减少了内存碎片,提高了内存利用率。

五、实验体会1. 通过本次实验,我们深入了解了内存分配的基本原理和不同分配算法,掌握了常见内存分配算法的优缺点。

2. 实验过程中,我们遇到了各种问题,如内存碎片问题、算法实现问题等,通过查阅资料、讨论和尝试,最终解决了这些问题,提高了我们的问题解决能力。

3. 实验使我们认识到,内存管理是操作系统中的一个重要组成部分,对计算机性能和稳定性有着重要影响。

操作系统实验之内存管理实验报告

操作系统实验之内存管理实验报告
//空闲分区 typedef struct Free_Block {
int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block;
定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情
该模块完成在内存空间中申请一块空间供进程使用的功能,通过输入进程大 小系统先查看内存空间中是否有足够的空间供其进行申请,若无,显示分配失败 相应信息,否则在空闲内存分区块中选择最先的一块进行分配,若内存空间不足 则继续向下查找,空闲内存分区的顺序通过三种算法给出。分配内存时,要指定 进程的首地址和大小,并对内存空闲分区的大小做相应的修改。 2.4 进程终止模块
四、开发工具及主要源代码
1、开发工具
sublimeText3 文本编辑器,采用 g++编译。
2、主要源码
这里只给出最先适应算法的源码,由于三种算法均为对链表进行排序,只是 排序依据的属性不同,结构上几乎相似,在此就不做赘述 /*最先适应算法,按地址的大小由小到达排序*/
void rFirst_Fit() {
current_min_addr = temp->next->start_addr; p = temp; } temp = temp->next; } if (p->next != head->next) { temp = p->next; p->next = p->next->next; temp->next = head->next;
不足之处在于,本次实验中没有实现最坏适应法,分析可能是在在排序的 过程中链表的指针出现了错误,在开始调试阶段只对单一算法进行了调试从而 忽略了这个问题的存在,直到编写本报告的时候才发现种问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同组同学学号:
同组同学姓名:
实验日期:交报告日期:
实验(No. 4 )题目:编程与调试:内存管理
实验目的及要求:
实验目的:
操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管理的过程是完全透明不可见的。

因此,程序员开发时从不关心系统如何为自己分配内存,而且永远认为系统可以分配给程序所需的内存。

在程序开发时,程序员真正需要做的就是:申请内存、使用内存、释放内存。

其它一概无需过问。

本章的3个实验程序帮助同学们更好地理解从程序员的角度应如何使用内存。

实验要求:
练习一:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果,分析遇到的问题和解决方法。

练习二:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。

练习三:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。

改编实验中的程序,并运行出结果。

实验设备:多媒体电脑
实验内容以及步骤:
在虚拟机中编写好以下程序:
#include <stdio.h> #include <string.h> #include <malloc.h>
int main(void)
{
char *str;
/* 为字符串申请分配一块内存*/
if ((str = (char *) malloc(10)) == NULL)
{
printf("Not enough memory to allocate buffer\n");
return(1); /* 若失败则结束程序*/
}
/* 拷贝字符串“Hello”到已分配的内存空间*/
strcpy(str, "Hello");
/* 显示该字符串*/
printf("String is %s\n", str);
/* 内存使用完毕,释放它*/
free(str);
return 0;
}
调试过后得出的结果截图如下:(由图可看出我将此程序以aa.c为文件名保存,调试后出现aa1文件,调试结果出现语句“String is Hello”)
#include <stdio.h>
#include <malloc.h>
#include <string.h>
int main(void)
{
char *str; /* 为字符串申请分配一块内存 */
if ((str = (char *) malloc(10)) == NULL)
{
printf("Not enough memory to allocate buffer\n");
return(1); /* 若失败则结束程序 */
} /* 复制 "Hello" 字符串到分配到的内存 */
strcpy(str, "Hello"); /* 打印出字符串和其所在的地址 */
printf("String is %s\n Address is %p\n", str, str); /* 重分配刚才申请到的内存空间,申请增大一倍 */
if ((str = (char *) realloc(str, 20)) == NULL) { printf("Not enough memory to allocate buffer\n"); return(1); /* 监测申请结果,若失败则结束程序,养成这个好习惯 */
} /* 打印出重分配后的地址 */
printf("String is %s\n New address is %p\n", str, str); /* 释放内存空间 */
free(str);
return 0;
}
调试过后得出结果截图如下:
#include <stdio.h>
#include <alloca.h>
void test(int a)
{
char *newstack;/* 申请一块内存空间*/
newstack = (char *) alloca(len);
if (newstack)/* 若成功,则打印出空间大小和起始地址*/ printf("Alloca(0x%X) returned %p\n",len,newstack);
else/* 失败则报告错误,我们是做实验,目前无需退出*/ printf("Alloca(0x%X) failed\n",len);
} /* 函数退出,内存自动释放,无需干预*/
void main()
{
/* 申请一块256字节大小的内存空间,观察输出情况*/ test(256);
/* 再申请一块更大内存空间,观察输出情况*/
test(16384);
}
调试结果截图如下:
根据练习二改编程序如下:
#include <stdio.h>
#include <malloc.h>
#include <string.h>
int main(void)
{
char *str;
/* 为字符串申请分配一块内存 */
if ((str = (char *) malloc(20)) == NULL)
{
printf("Not enough memory to allocate buffer\n"); return(1); /* 若失败则结束程序 */
}
/* 复制 "Hello" 字符串到分配到的内存 */
strcpy(str, "My name is Li Caihong!");
/* 打印出字符串和其所在的地址 */
printf("String is %s\n Address is %p\n", str, str); /* 重分配刚才申请到的内存空间,申请增大一倍 */
if ((str = (char *) realloc(str, 40)) == NULL)
{ printf("Not enough memory to allocate buffer\n"); return(1);
/* 监测申请结果,若失败则结束程序,养成这个好习惯 */
}
/* 打印出重分配后的地址 */
printf("String is %s\n New address is %p\n", str, str);
/* 释放内存空间*/
free(str);
return 0; }
在该程序中,我将程序中的“Hello”改为“My name is Li Caihong!”首次调试出来的结果显示内存太小,出现的结果有很多不认识的代码。

然后,我将程序中的“10”和“20”分别改成“20”和“40”再进行调试,得出结果截图如下:
注:《实验内容及步骤》项目的内容如果较多,可以加附页。

实验结果及心得:
虽然本次试验我的改编程序没有什么技术含量,但是通过我仔细地阅读各个程序了解了他们的作用,并且能很快的知道哪个地方是最终现实的结果,结果的内存是有那个地方决定的。

我觉得这对我来说也是一个不小的收获,为我未来更能编写出属于自己的程序打下了一个良好的基础。

教师评语:
成绩:
教师签字:年月日。

相关文档
最新文档