概率论答案第三章测试题

合集下载

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论 第三章测试题

概率论 第三章测试题

第三章测试题1、已知随机变量,ξη的分布列分别为求(),()E D ξξ2、设随机变量(,)ξη的分布列为求(),(),(),(|1),(|1),(),(),(,),E E E E E D D Cov ξηξηξηξηηξξηξηρ=-=。

3、设随机变量ξ的概率密度函数为1|1|,02()0,x x f x --<<⎧=⎨⎩其它,求(),()E D ξξ。

4、设随机变量ξ的概率密度函数为2,01()0,ax bx c x f x ⎧++<<=⎨⎩其它,且已知()0.5,()0.15E D ξξ==,求系数,,a b c 。

5、某机场的送客车一次载有20名旅客自机场开出,沿途有10个停车点,若到达停车点无人下车则车不停下,设每名旅客在各个停车点下车是等可能的,求送客车停车次数的数学期望。

6、设()4,()9,0.6D D ξηξηρ===,求(32)D ξη-。

7、设随机变量ξ的方差()D ξ存在且有限,已知(0,,a b a a b ηξ=+≠常数),求ξηρ。

8、设随机变量(,)ξη在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,求()D ξη+。

9、设随机变量ξ的概率密度函数为,0()0,x e x f x x -⎧>=⎨≤⎩, 2Y eξξ-=+,21Z ξ=-,求(),()E Y E Z 。

10、设随机变量(,)ξη的协方差矩阵为4339-⎛⎫⎪-⎝⎭,求ξηρ。

11、设随机变量(,)ξη的概率密度函数为212,01(,)0,y y x f x y ⎧≤≤≤=⎨⎩其它,求(),(),(),(),(,),E E D D Cov ξηξηξηξηρ。

12、设随机变量(,)ξη的概率密度函数为,01,0(,)0,cxy x y x f x y <<<<⎧=⎨⎩其它,求(1)常数c ;(2)(),(),(),()E E D D ξηξη;(3)边缘密度函数(),()f x f y ξη,并判断,ξη是否相互独立;(4)条件概率密度函数(|)f y x ,1(|)4f y ,(|)f x y ,1(|)2f x ,(5)条件数学期望1(|)4E η,1(|)2E ξ。

最新概率论与数理统计第三章习题及答案

最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论第三章习题及答案

概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。

概率论与数理统计第三章自测题与答案

概率论与数理统计第三章自测题与答案

第三章 多维随机变量及其分布 自测题(90分钟)一、单项选择题(每题3分,共15分)1.设),1,0(~,21N X X 则21X X Y += ( )(A ))2,0(~N Y (B ))1,0(~N Y (C ))2,0(~N Y (D )Y 不一定服从正态分布 2.设Y X ,相互独立,都服从区间[0,1]上的均匀分布,则服从区间或区域上的均匀分布的是( )(A )()Y X , (B )Y X + (C )2X (D )Y X -3.设随机变量X 和Y , 已知,73}0{}0{,71}0,0{=≤=≤=≤≤Y P X P Y X P =≤}0),{min(Y X P 则( ) (A )73 (B )72 (C )75 (D )49164.设Y X ,相互独立,且都服从标准正态分布,则( )(A )41}0{=≥+Y X P (B )41}0{=≥-Y X P (C )41}0),{max(=≥Y X P (D )41}0),{min(=≥Y X P5.设两个随机变量Y X ,相互独立,且5.0}1{}1{}1{}1{=====-==-=Y P X P Y P X P ,则下列各式中正确的是( )(A )1}{==Y X P (B )5.0}{==Y X P (C )25.0}0{==+Y X P (D )25.0}0{==XY P 二、填空题(每空3分,共24分)1.设()Y X ,的联合分布律如下,且事件{X=0}与{X+Y=1}相互独立,则a= , b= .2.设Y X ,相互独立,表中列出()Y X ,的联合分布律和关于X 和Y 的边缘分布律的部分数值,3.设Y X ,相互独立,且均服从区间[0,3]上的均匀分布,则=≤}1),{max(Y X P 。

4.设随机变量X 和Y 相互独立都服从b (2,p ),且95}1{=≥X P ,则}1{=+Y X P = 。

5.已知()Y X ,的概率密度为⎩⎨⎧<<=-其他,00,),(yx e y x f y ,则=≤+}1{Y X P ,}21{≤Y X P = 。

概率论习题第三章答案

概率论习题第三章答案

第三章连续型随机变量3.1设随机变量 ξ 的分布函数为F (x ),试以F (x )表示下列概率: 。

)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。

)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3.2函数x211F(x)+=是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。

在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=01)()(~x x X F x F -则)(~x F 可以是某一随机变量的分布函数。

3.3函数 sinx 是不是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。

,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不是随机变量的分布密度。

3.4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。

--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3.5设)(1x F 与)(2x F都是分布函数,证明F(x)=aF(x)+bF(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型? 证:因为)(1x F与 )(2x F 都是分布函数,于是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也是分布函数。

概率论第三章习题及答案

概率论第三章习题及答案
i

PX x , Y y
j i

j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21

y2 p12
p22

… … … … …
yj
p1 j
… … …

pi
p1
p2
x1
x2

p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.


2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,


X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2

概率论课后习题答案第三章

概率论课后习题答案第三章

概率论课后习题答案第三章第三章概率论课后习题答案概率论是一门研究随机现象的数学学科,它在现代科学和工程领域中有着广泛的应用。

而习题则是巩固和加深对概率论知识的理解和应用的重要手段。

在第三章的习题中,我们将探讨一些与随机变量和概率分布相关的问题,并给出相应的答案和解析。

1. 设随机变量X服从参数为λ的指数分布,即X~Exp(λ),其概率密度函数为f(x) = λe^(-λx),x≥0。

求以下概率:(a) P(X > 2)(b) P(X ≤ 1)(c) P(1 ≤ X ≤ 3)答案:(a) P(X > 2) = ∫[2,∞] λe^(-λx) dx = e^(-2λ)(b) P(X ≤ 1) = ∫[0,1] λe^(-λx) dx = 1 - e^(-λ)(c) P(1 ≤ X ≤ 3) = ∫[1,3] λe^(-λx) dx = e^(-λ) - e^(-3λ)解析:根据指数分布的性质,我们可以利用概率密度函数求解概率。

对于(a),我们计算X大于2的概率,即求解X在区间[2,∞]上的概率密度函数的积分。

对于(b),我们计算X小于等于1的概率,即求解X在区间[0,1]上的概率密度函数的积分。

对于(c),我们计算X在1到3之间的概率,即求解X在区间[1,3]上的概率密度函数的积分。

2. 设随机变量X服从参数为μ和σ^2的正态分布,即X~N(μ,σ^2),其概率密度函数为f(x) = (1/(σ√(2π))) * e^(-(x-μ)^2/(2σ^2)),-∞<x<∞。

求以下概率:(a) P(X > μ)(b) P(X ≤ μ)(c) P(μ-σ ≤ X ≤ μ+σ)答案:(a) P(X > μ) = 1 - P(X ≤μ) = 1 - 0.5 = 0.5(b) P(X ≤ μ) = 0.5(c) P(μ-σ ≤ X ≤ μ+σ) = P(X ≤ μ+σ) - P(X ≤ μ-σ) = 0.6827 - 0.3173 =0.3654解析:对于正态分布,我们可以利用概率密度函数求解概率。

概率论与数理统计第三章测验题答案更新

概率论与数理统计第三章测验题答案更新

第三章测验题答案(2010-05-11)班级______ 姓名______ 学号______ 做题时间____分钟********************************************************************************************一. 填空(共17分)1. (5分)设随机变量()X P λ:且{2}{4}P X P X ===,则λ= 解:因为()X P λ:,属离散型随机变量,故{},0,1,2 0kP X k e k k λλλ-===>.由题设条件{2}{4}P X P X ===可知242!4!ee λλλλ--=,所以212.λ=又因为0,λ>所以λ=2. (12分,每空2分)根据定义完成下列各式:()()()(,(11)(,))1;(12)(,)1;(21);(22)(31)(,);(32)(,;()(.))X xxy X X xY Xx dx x dx x f f x y dxdy f F f f x y dx x y dx f dx f x y dy F dy F x y y x +∞+∞+∞-∞-∞-∞-∞-∞-∞+∞+∞-∞-∞-∞-=-=-=--===-⎰⎰⎰⎰⎰⎰⎰⎰⎰二. 选择(共20分,每题5分)1. 设随机变量X 的绝对值不大于1,且{1}1,8P X =-=1{1}4P X ==,则{11}P X -<<=[ A ](A) (B) (C) (D)解:因为随机变量X 的绝对值不大于1,所以必定有X 的所有取值只可能在-1到1之间,即{||1}1P X ≤=,所以{11}{||1}{1}{1}P X P X P X P X -<<=≤-=--=1151.848=--=2. 设X 与Y 相互独立且同分布,1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,在下列各式中成立的是 [ A ] (A) 1{}2P X Y ==(B) {}1P X Y == (C)1{0}4P X Y +==(D) 1{1}4P XY == 解:因为111,22+=所以X 和Y 的取值只能是1或-1,因此利用X 与Y 的边缘分布律和两者独立性的条件可知(X , Y )的联合分布律,如下表所示:{1}{1}P X Y P X Y ===-+==111442=+=,故选项(A)正确,(B)错误;(){0}{1,1}{1,1}P X Y P X Y X Y +===-=⋃==- {1,1}{1,1}P X Y P X Y ==-=+==-111442=+=,故选项(C)错误;(){1}{1}{1}P XY P X Y X Y ====⋃==- {1}{1}P X Y P X Y ===+==-111442=+=,故选项(D)错误.3. 已知3{0,0}7P X Y ≥≥=,且4{0}{0}7P X P Y ≥=≥=,则{max(,)0}P X Y ≥=[ C ].(A)37 (B)47 (C)57 (D) 1649解:本题关键是分析max 函数的含义,从而利用概率的加法公式来解. 具体过程如下:{max(,)0}{00}P X Y P X Y ≥=≥≥或者(){0}{0}P X Y =≥⋃≥(){0}{0}{0}{0}P X P Y P X Y =≥+≥-≥⋂≥({0}{0})X Y ≥≥因为事件和事件不互斥,所以只能利用加法公式{0}{0}{0,0}P X P Y P X Y =≥+≥-≥≥ 44357777=+-=4. 设随机变量2(,)X N μσ:,则随着σ的增大,{}P X μσ-<[ ]. (A)增大 (B)减小 (C)保持不变 (D)增减不定 解:||{||}{1}{11}(1)(1)2(1)1X X P X P P μμμσσσ---<=<=-<<=Φ-Φ-=Φ-,与σ无关,所以选(C).(0,)σσ>因为两边同时除以以后不等号不变号 三. 解答题(请写明求解过程,共63分)1. (18分,每小题6分)已知随机变量X 的分布函数为0,0()sin ,0,21,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩求(1) A ; (2){||}6P X π<; (3)()f x .解:(1)利用分布函数的右连续性可知,在2x π=点,右连续性表现为2lim (x))2(x F F ππ→+=,根据(x)F 定义可知,当1x >时,()1F x =,所以左边=2lim (x)x F π→+=2lim 11x π→+=,右边(si 22)n F A A ππ===,故A =1.所以得到0,0()sin ,02,1,2x F x x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩(2) 注意到这个(x)F 在整个实轴都是连续的,根据第二章的结论:只要分布函数是连续函数,那么随机变量在单点处的概率就为0,因此有{||}{}{}66666X X P X P P πππππ<=-<=≤-<<()()66F F ππ=--0sin 6π=-=12=.(3)已知分布函数求概率密度,只需要在密度函数的连续点处对x 求导即可:因此有cos ,0().20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(此题没有()f x 无定义的点,否则需要修改相应区间,例如第二章测验解答题第一题.)2. (15分)某元件寿命X 服从参数为11000λ=的指数分布,则三个这样的元件使用1000小时后,都没有损坏的概率是多少解:随机变量X表示元件寿命,由题意可知其概率密度为1000,01(),.1000xxothe sfeexrwi->⎧⎪=⎨⎪⎩又因为11000100010001{1000}()1000.xP X f x dx e dx e-+∞+∞-≥===⎰⎰即元件能够使用超过1000小时的概率是1e-,又因为三个元件的寿命是相互独立的,所以最后所求概率值即为()313e e--=.3.(10分)已知二维随机向量(X, Y)的联合密度函数为8,01(,)0,xy x yf x y≤≤≤⎧=⎨⎩其它求(X, Y)的关于Y的边缘密度函数.解:通过以下四个步骤求边缘密度:①写定义:()(,)Yf y f x y dx∞-∞+=⎰②定区间: ____,001,y <<⎧=⎨⎩其它③化积分: 08,0,10y y xydx ⎧⎪=⎨⎪⎩<<⎰其它④求积分: 34,00,1y y <<⎧=⎨⎩其它.4. (10分)设(1,2),X U :求2X Y e =的概率密度函数.解:因为(1,2),X U :所以有1,12().0,X x f x <<⎧=⎨⎩其它因为函数2x y e =是严格单调函数,所以可以利用书中第52页定理直接求Y 的密度函数.21ln ()2x y h y y e ==是的原函数,且242412,,,x e y e e e αβ<<<=<=当时则有即定理中的;1ln (2)2(,)1y h y ∈=所以(())1X f h y =. 又注意到'()12h y y=, 所以由定理可知·|'((()|)),0,()X Y h y h y f y y f αβ<<⎧=⎨⎩其它241,0,2e y e y⎧<<⎪=⎨⎪⎩其它(10分)已知(X , Y )的概率密度为1(),0(,,)810x y f x y x y ≤≤⎧≤+⎪=⎨⎪⎩其它求1{}P X Y +≤.解:本题所求的是二维随机变量(X , Y )落在某区域中的概率,则{}(,)1GP X Y f x y dxdy ≤+=⎰⎰现要将此二重积分化成累次积分,则要确定这个区域{}(,)|1G x y x y =+≤与0(,)f x y ≠的区域的交集,如下图所示故{}(,)1GP X Y f x y dxdy ≤+=⎰⎰11201()8y ydy x y dx -=+⎰⎰1.48= 四. 选做题(10分,100分以外)设(X , Y )的分布函数为(,)(arctan 2)(arctan 3)F x y A B C x y=++,求(1) A,B,C; (2)(,)f x y ; (3)X 和Y 是否相互独立 解:(1)法一:利用二维随机变量的分布函数的性质:(,)0,(,)0,(,)1F y F x F -∞=-∞=+∞+∞=得到()(arctan )0(1)23(arctan )()0(2)22()()1(3)22y A B C x A B C A B C ππππ⎧-+=⎪⎪⎪+-=⎨⎪⎪++=⎪⎩式式式.由(3)式可知,0A ≠. 又因为(,)1F +∞+∞=, 所以(,)(arctan )(arctan )023x F x y A B C y=++≠故00.23arctanarctan B y C x ++≠≠并且 则又(1)(2)式可知21,2B C A ππ===. 因此21(,)(arctan )(arctan )2223x yF x y πππ=++. 法二:利用一维随机变量的分布函数的性质()0,()1F F -∞=+∞=来做:因为边缘分布()(,)lim (,)(arctan )()22X y x F x F x F x y A B C π→+∞=+∞==++()(,)lim (,)()(arcta )23n Y x F y F y F x y A B C yπ→+∞=+∞==++作为一维随机变量的分布函数是满足上述性质的,故1()lim (,)lim (arctan )(arctan 23)()()22X x x y F F x A B B x C A C y ππ→+∞→+∞→+∞=+∞=+∞=++=++0()lim (,)lim (arctan )(arctan 23)()()22X x x y F F x A B B x C A C y ππ→-∞→-∞→+∞=-∞=+∞=++=-+0()lim (,)lim (arctan )(arctan )3()22()2Y y x y F F y A B B x C A C y ππ→-∞→+∞→-∞=-∞=+∞=++=+-解此方程组得到21,2B C A ππ===.(2)22222222222(,)(,)1(arctan )(arctan )2211(arct 2313an )2111246.(4)(921213119)F x y f x y x yx y yx x y y x x y y πππππππ∂=∂∂⎡⎤∂++⎢⎥⎣⎦=∂∂⎡⎤⎢⎥⎢⎥∂⨯+⨯⨯⎢⎥⎛⎫⎢⎥ ⎪⎝⎭⎣⎦=∂=⨯⨯⨯=+++++(3)要判断独立性,就要先求边缘分布;法一:因为此题给出的条件是分布函数,所以这里我们先求X 和Y 的边缘分布函数. 根据分布函数的定义,我们有1()(,)lim (,)(arctan )()(arctan )2222X y x x F x F x F x y A B C πππ→+∞=+∞==++=+1()(,)lim (,)()(arctan )(arctan )3322Y x F y F y F x y A B C y yπππ→+∞=+∞==++=+所以对任意的x, y , 有(,)()()X Y F x y F x F y =成立,故X 与Y 独立. 法二:利用第(2)题联合密度求边缘密度后,判断是否独立.()(,)X f x f x y dy +-∞∞=⎰222222222222226(4)(9)61(4)9611(4)91arct 3613|(4)93613(4)924an 22()dyx y dy x y dy x y y x x x ππππππππ+-+-+-∞∞∞∞∞∞+∞-∞=++=++=⨯⨯+⎛⎫+ ⎪⨯⨯⎛⎫⨯⨯+ ⎪⎝⎭=⨯+=⎝⎭⨯+=+⎰⎰⎰ ()(,)Y f y f x y dx +-∞∞=⎰222222222222226(4)(9)61(9)4611(9)41arct 2612|(9)42612(9)439an 22()dxx y dx y xdy y x x y y y ππππππππ+-+-+-∞∞∞∞∞∞+∞-∞=++=++=⨯⨯+⎛⎫+ ⎪⨯⨯⎛⎫⨯⨯+ ⎪⎝⎭=⨯+=⎝⎭⨯+=+⎰⎰⎰ 22222623(,)(),(4)(9)(4)(9)()X Y f x y f y x y x y x f πππ==⨯=++++x y 对任意,均成立, 故X 与Y 独立.。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

概率论与数理统计答案 第三章习题

概率论与数理统计答案 第三章习题


f
X
(
x)
fY
(
y)
2x(1
0,
|
y |),0
x 1,| y|1 其它
f (x, y)
故X和Y不相互独立.
14.设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,
Y的概率密度为
fY
(
y)
1 2
e
y
2
,
y
0
(1)求X和Y的联合概率密度;
0, y 0
(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.
(X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
X0 1 2
pk 1 2 1
4 44
Y0 1 2 3
pk 1 3 3 1
8 88 8
X Y0123
012
1 10 0 88
0 220
88
00 11
88
1 P{Y=j} 8
3 8
3 8
1 8
P{X=i}
0 25/36 5/36 5/6
0 45/66 10/66 5/6
1 5/36 1/36 1/6
1 10/66 1/66 1/6
P{X=i} 5/6 1/6 1
P{X=i} 5/6 1/6 1
13(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立.
y)dy y (4)
4
(2)
2

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。

利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。

概率论第三章习题参考解答

概率论第三章习题参考解答

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D。

概率论第三章答案

概率论第三章答案

习题三1. 箱子里装有12只开关,其中只有2 只次品,从箱中随机地取两次,每次取一只,且设随机变量X ,Y 为⎩⎨⎧=⎩⎨⎧=.,1,0;,1,0若第二次取得次品若第二次取得正品若第一次取得次品若第一次取得正品,Y ,X试就放回抽样与不放回抽样两种情况,写出X 与Y 的联合分布律. 解:先考虑放回抽样的情况:.361122122}1,1{,3651210122}0,1{,3651221210}1,0{,362512101210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P则此种情况下,X 与Y 的联合分布律为再考虑不放回抽样的情况.661111122}1,1{,3351110122}0,1{,3351121210}1,0{,22151191210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P2. 将一硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值,试写出(X,Y )的联合分布律及边缘分布律.解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为1,3;则由硬币出现正面和反面的概率各为21,可知83212121}1,2{,0}3,1{,83212121}1,1{,81212121}3,0{(0}0,0{2313=⨯⨯=======⨯⨯====⨯⨯======C Y X P Y X P C Y X P Y X P Y X P 此种情况不可能发生).81212121}3,3{0}1,3{0}3,2{=⨯⨯=========Y X P Y X P Y X P3. 把三个球随机地投入三个盒子中去,每个球投入各个盒子的可能性是相同的,设随机变量X 与Y 分别表示投入第一个及第二个盒子中的球的个数,求二维随机变量(X,Y)的概率分布及边缘分布. 解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为0,1,2,3;则271313131}0,0{=⨯⨯===Y X P , 91313131}1,0{13=⨯⨯===C Y X P 91313131}2,0{23=⨯⨯===C Y X P ,271313131}3,0{=⨯⨯===Y X P91313131}0,1{13=⨯⨯===C Y X P ,92313131}1,1{1213=⨯⨯===C C Y X P 91313131}2,1{13=⨯⨯===C Y XP 0}3,1{===Y X P ,91313131}0,2{23=⨯⨯===C Y X P91313131}1,2{23=⨯⨯===C Y XP0}3,2{}2,2{======Y X P Y X P 271313131}0,3{33=⨯⨯===C Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P则二维随机变量(X,Y )的概率分布及边缘分布为4. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧<<<<--=.,0,42,20),6(81),(其它y x y x y x f求:(1) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x<1,y<3﹜; (2) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x+y<3﹜. 解:(1) ∵D={(x,y)|x<1,y<3}∴83)6(81),(}),{(103213=--==∈⎰⎰⎰⎰∞-∞-dxdy y x dxdy y x f D y x P(2) ∵D={(x,y)|x+y<3}∴245)6(81),(}),{(1032=--==∈⎰⎰⎰⎰-xDdxdy y x dxdy y x f D y x P 5. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧≤++-=.,0,),(),(22222其它R y x y x R c y x f 求:(1) 系数c ;(2) (X,Y)落在圆()R r r y x <≤+222内的概率. 解:(1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得1)(22222=+-⎰⎰≤+dxdy y x R c R y x ,可求得33R c π=(2) 设222|),{(r y x y x D ≤+=,则)321(3)(3),(}),{(3223222R r R dxdy y x R R dxdy y x f D Y X P Dr y x -=+-==∈⎰⎰⎰⎰≤+ππ6. 已知随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f求X 和Y 的联合分布函数.解:∵随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f∴当x<0,或y<0时,F(x,y)=0; 当10,10≤≤≤≤y x 时,2204=y} Y x, P{X =y)F(x,y x XYdXdY x y⎰⎰=≤≤当1,10>≤≤y x 时,20104=y} Y x, P{X =y)F(x,x XYdXdY x ⎰⎰=≤≤当10,1≤≤>y x 时,21004=y} Y x, P{X =y)F(x,y XYdXdY y⎰⎰=≤≤当1,1>>y x 时,14=y} Y x, P{X =y)F(x,1010⎰⎰=≤≤XYdXdY综上可得,X 和Y 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤<<1,1 110,1 1,10 10,10 0,00=y)F(x,2222y x y x y y x x y x yx y x 或7. 设二维随机变量(X,Y)的概率密度为⎩⎨⎧<<<≤+=.,0,60,60),(),(其他y x y x k y x f(1) 求常数k ;(2) 求 P ﹛0<x<2,1<y ≤3﹜; (3) 求X,Y 的边缘概率密度; (4) 判断X 与Y 是否相互独立.解:(1) 由概率密度的性质有⎰⎰+∞∞-+∞∞=1),(dxdy y x f 即1)(6060⎰⎰=+dxdy y x k ,有2161=1216k k ∴= (2) ⎰⎰=+=≤<<<2031181)(2161}31,20{dxdy y x y x P (3) X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(∴当0≤x<6时,363)(2161)(6+=+=⎰x dy y x x f X 当x<0或x ≥6时,显然有0)(=x f X⎪⎩⎪⎨⎧<≤+=∴.,0,60,363)(其他x x x f XY 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()( ∴当0<y<6时,363)(2161)(6+=+=⎰y dy y x y f Y 当y ≤0或x ≥6时,显然有0)(=y f Y⎪⎩⎪⎨⎧<<+=∴.,0,60,363)(其他y y y f Y(4) 的表达式易知,及从)()(y f x f Y X ),()()(y x f y f x f Y X ≠ ∴X 与Y 不相互独立.8.已知随机变量X 1和X 2的概率分布为而且P{X 1X 2=0}=1.(1) 求X 1和X 2的联合分布; (2) 问X 1和X 2是否独立?为什么? 解:由1}0{21==X X P ,可知021=X X 必然成立.0}0{21=≠∴X X P由}1,1{}1,0{}1,1{}1{2121212=======-===X X P X X P X X P X P 得21}1{}1,0{221=====X P X X P 同理可得:41}0,1{,41}0,1{2121=====-=X X P X X P , 而}0,1{}1,0{}0,1{}0,0{}0{2121212121==+==+=-=+====X X P X X P X X P X X P X X P 04141211}0,1{}1,0{}0,1{}0{}0,0{2121212121=---===-==-=-=-====X X P X X P X X P X X P X X P 综上可得,1X 和2X 的联合分布为(2)}0{}0{}0,0{2121==≠==X P X P X X P可知1X 和2X 不独立.9. 设随机变量X 与Y 相互独立,且都服从()b b ,- 上的均匀分布,求方程02=++Y tX t 有实根的概率.解:方程02=++Y tX t 有实根的充要条件是042≥-Y X ,由于随机变量X 与Y 相互独立,所以随机变量(X ,Y )的联合概率密度为⎪⎩⎪⎨⎧<<-<<-=其他,0,,,41),(2b y b b x b by x f下面分两种情况讨论: (1)当40≤<b 时,如图24214),(}4{4222b dy dx b dxdy y x f y X P Dbbx b+===≥⎰⎰⎰⎰-- (2) 当4>b 时,如图bdy dx b dxdy b dxdy b dxdy y x f y X P Dbbbx D D32141414),(}4{224222221-=-=-===≥⎰⎰⎰⎰⎰⎰⎰⎰-综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X另解:方程02=++Y tX t 有实根的充要条件是 042≥-Y X令),(,121x F X Z Z 其分布函数为=),(,422x F Y Z Z 其分布函数为-= 则当x<0时,0)(1=x F Z 则当0≤x ≤b 2时{}x X x P x X P X Z P x F Z ≤≤-=≤=≤=}{}{)(211由于X 与Y 都服从()b b ,-上的均匀分布,即其密度函数各为⎪⎩⎪⎨⎧≤≤-=⎪⎩⎪⎨⎧≤≤-=其他其他,0,21)(,0,21)(Y by b by f bx b bx f X 当0≤x ≤b 2时,bxdt b x F xx Z ==⎰-21)(1 当x >b 2时显然有.1)(1=x F Z∴Z 1的概率密度函数为⎪⎩⎪⎨⎧≤≤=.00,2)(21其他b x bxx F Z而当时,b x 4≥1)4(01}4{1}4{)(2=-≤--=-<-=≤-=b x x Y P x Y P x F Z 当-4b<x<4b 时,bxb x b dt b x Y P x F xb Z 821)4(211}4{1)(42+=≤-≤--=-<-=⎰--当x ≤-4b 时,0)4(11}4{1)(2=≥--=-<-=b xx Y P x F Z∴Z 2的概率密度函数为⎪⎩⎪⎨⎧≤≤-=.44,81)(2其他b x b b x F Z又由于随机变量X 与Y 相互独立,∴Z 1 和Z 2也相互独立. 又设Z= Z 1 +Z 2,,则,分布函数为其密度函数为dx x z f x f f x F x Z Z Z Z Z ⎰+∞∞--=)()()z ()()(f 而⎰∞--=-=≥=≥-02)(1)0(1}0{}04{dz z f F Z P Y X P Z Z ∵b>0,而当z ≤-4b ,]4,4[b b x -∈时,04≤+b z 此时0)(=z f Zb dx b xb z f b b z b b z Z 818121)(44402=⋅=-≤<-⎰+时,当 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥-≤<-+-≤=.4,81,44,84,4,0)(222b b z bb b z b b bz b z z f Z ),时,(即当04402≤-≤<b b b242182112181841}04P{04442222bb b dz b dz bb z Y X b b bb b+=+--=-+-=≥-⎰⎰--- ),时,(即》当0442>-b b b bdz b b z Y X b321841}04P{0422-=+-=≥-⎰- 综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X10. 设(X,Y )的概率密度为⎩⎨⎧<<=-.,0,0,),(其他y x e y x f y求边缘概率密度和{}.1≤+Y X P 解:X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(,当x ≤0时,0)(=x f X 当x>0时,⎰+∞--==x x y X e dy e x f )( Y 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()(当x ≤0时,0)(=y f Y ,当y>0时,⎰--==yy y Y ye dx e y f 0)(⎩⎨⎧>≤=⎩⎨⎧>≤=∴--000)(.000)(y yey y f x ex x f yY xX而⎰⎰⎰⎰⎰-------+=-==≤+==≤+2102111210121)(}1|),{((),(1}Y P{X ee dx e e dy e dx y x y x D dxdy y xf x x xxy D其中11. 设X,Y 相互独立,其概率密度为⎩⎨⎧≤>=⎩⎨⎧≤≤=-.0,0,0,)(.,0,10,1)(y y e y f x x f y Y X 其他求Z=X+Y 的概率密度.解:由已知得 ⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当z<0时,)0,10(0)(≤-≤≤=x z x z f Z 时当 当0≤z ≤1时,z z z x Z e dx e z f ---==⎰1)(0 当z >1时,z z x Z e e dx e z f ---==⎰)1()(1∴Z=X+Y 的概率密度为⎪⎩⎪⎨⎧>-≤≤-<=--1)1(10100)(z e e z e z z f z zZ12. 设随机变量(X,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f求Z=X —Y 的概率密度. 解:∵Z=X —Y 的分布函数为 ⎰⎰⎰⎰≤-+∞∞-+∞-==≤-=≤=zY X zx Z dyy x f dx dxdy y x f z Y X P z Z P z F ),(),(}{}{)(∴Z=X —Y 的概率密度为⎰+∞∞--==dx z x x f z F z f Z Z ),()()('⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f0)(,0x 1=∴≤-≥z f z z Z 时,当, ,0)(,x 0=∴≥-≤z f x z z Z 时,当),1(23xdx 3)(1021z z f z Z Z -==<<⎰时,当 ∴Z=X —Y 的概率密度为⎪⎩⎪⎨⎧<<-=.,0,10),1(23)(2其他z z z f Z13. 设随机变量(X,Y )的概率密度为(),,21),(22222+∞<<∞-=+-y x ey x f y x σπσ求22Y X Z +=的概率密度.解:设22Y X Z +=的分布函数为)(z F Z当0≤Z 时,0}{}{)(22=≤+=≤=z Y X P z Z P z F Z 当0>Z 时,222222222222022222212121}{)(σπσσσπσθπσz zY X y x y x Z erdred dxdy ez Z P z F -≤++-+-===≤=⎰⎰⎰⎰∴22Y X Z +=的概率密度⎪⎩⎪⎨⎧>≤=-.0,21,0,0)(222z ez z F z Z σσ14. 设二维随机变量(X,Y )在矩形(){}10,20|,≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度f(s). 解:由已知可得随机变量(X,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤=.,010,20,21),(其他,y x y x f设边长为X 和Y 的矩形面积S 的分布函数为F(s),则 ⎰⎰≤=≤=≤=sxy )f(x,s}{}{)dxdy y XY P s S P s F (∴.0)0=≤s F S (时,当2)ln 2(ln 2222121)y ,()20220102ss s s dx x s dy dx dy dx dy x f dx s F S sx s s s x s +-=+=+==<<∴⎰⎰⎰⎰⎰⎰⎰(时,当)1(121)22≥==≥⎰⎰xsdy dx s F S x s(时,当 ∴矩形面积S 的概率密度⎪⎩⎪⎨⎧≥≤<<-=2,0,020),ln 2(ln 21)(s s s s s f 或15.设X 和Y 为两个随机变量,且{}{},740{}0,730,0=≥=≥=≥≥Y P X P Y X P 求{}.0),max(≥Y X P解:{}{}0,00,0}0{<≥+≥≥=≥Y X P Y X P X P {}{}173740,0}0{0,0=-=≥≥-≥=<≥∴Y X P X P Y X P 同理可求{}710,0=≥<Y X P{}{}{}{}10,00,00,00,0=<<+≥<+<≥+≥≥Y X P Y X P Y X P Y X P 又{}7271717310,0=---<<∴Y X P {}{}{}.757210,010),max(10),max(=-=<<-=<-=≥∴Y X P Y X P Y X P16. 设(X,Y )的联合概率密度为 (),,10021),(1001002122+∞<<∞-•=⎪⎪⎭⎫ ⎝⎛+-y x ey x f y x π求:(1){};Y X P < (2)边缘概率密度; (3) ).|(|x y f X Y 解:(1)由已知,得⎰⎰⎰⎰<∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-•=•=<yxy x y x dy edx dxdy e Y X P x 100100211001002122221002110021}{ππ同理可知⎰⎰∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-•=>yy x dx edy Y X P 100100212210021}{π}{}{Y X P Y X P >=<∴而0}{==Y X P又1}{}{}{==+>+<Y X P Y X P Y X P21}{}{=>=<∴Y X P Y X P (2)X 的边缘概率密度为)(210110021),()(20010010021222+∞<<-∞=•==-∞+∞-⎪⎪⎭⎫ ⎝⎛+-∞+∞-⎰⎰x edy edy y x f x f x y x X ππ由于f(x,y)关于x,y 地位的对称性,得)(2101)(2002+∞<<-∞=-y ey f y Y π17. 设X,Y 是相互独立且服从同一分布的两个随机变量,已知X 的分布律为),3,2,1(31}{===i i X P 又设},,min{},,max{Y X Y X ==ηξ试写出变量),(ηξ的分布律及边缘分布律并求}.{ηξ==P解:由已知得:,913131}1{}1{}1,1{}1,1{=⨯=========Y P X P Y X P P ηξ0}3,1{}2,1{======ηξηξP P,9231313131}2{}1{}1{}2{}2,1{}1,2{}1,2{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,913131}2{}2{}2,2{}2,2{=⨯=========Y P X P Y X P P ηξ,0}3,2{===ηξP,9231313131}3{}1{}1{}3{}3,1{}1,3{}1,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,9231313131}3{}2{}2{}3{}3,2{}2,3{}2,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ913131}3,3{}3,3{=⨯======Y X P P ηξ则变量),(ηξ的分布律及边缘分布律为:而.31919191}{=++===ηξP18. 设X 关于Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,0,0,3)|(32|y x yx y x f Y X而Y 的概率密度为⎩⎨⎧<<=其他,,0,10,5)(4y y y f Y求.21⎭⎬⎫⎩⎨⎧>X P解:由已知得:⎩⎨⎧<<<<=•=其他,010,0,15)()|(),(2|y y x y x y f y x f y x f Y Y X ⎰⎰⎰⎰==+∞<<-∞>==>∴121212644715}),21x {D (),(}21{P Y Dydx x y dxdy y x f X 其中19. 设(X,Y )的概率密度为 ⎩⎨⎧≤≤≤≤+=其他,0,10,10,),(y x y x y x f求:(1)},max{Y X Z =的概率密度; (2)},min{Y X Z =的概率密度.解:(1) 设},max{Y X Z =的分布函数为)(z F Z ,概率密度为)(z f Z ,则当0≤Z 时,0),(}},{max{}{)(},max{==≤=≤=⎰⎰≤zY X Z dxdy y x f z Y X P z Z P z F当10≤<Z 时,33302},max{22)2()(),(}{)(z zz dx xz z dyy x dx dxdy y x f z Z P z F zz zzY X Z =+=+=+==≤=⎰⎰⎰⎰⎰≤当z>1时, ⎰⎰≤≤≤≤=+=≤=10101)(}{)(y x Z dxdy y x z Z P z F},max{Y X Z =∴的概率密度为⎩⎨⎧≤≤=.,0,10,3)(2其他z z z f Z(2) 设},min{Y X Z =的分布函数为的分布函数为)(z F Z ,概率密度为)(z f Z ,则当1≥Z 时,101},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当0≤Z 时,11},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当10<<Z 时,⎰⎰-+=+-=>>-=≤=1132)(1},{1}{)(zz Z z z z dy y x dx Z Y Z X P z Z P z F},min{Y X Z =∴的概率密度为⎩⎨⎧≤≤-+=.,0,10,321)(f 2其他z z z z Z20. 假设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作.试求电路正常工作的时间T 的概率分布.解:用)3,2,1(=i X i 表示第i 个电气元件无故障工作的时间,则321,,X X X相互独立且同分布,其分布函数为⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ 设G(t)是T 的分布函数.当t ≤0时,G(t)=0;当t>0时,有t e t F t X P t X P t X P t X t X t X P t T P t T P t G λ333213211)](1[1}{}{}{1},,{1}{1}{)(--=--=>>>-=>>>-=>-=≤=⎩⎨⎧≤>-=∴-.0,0,0,1)(3t t e t G t λ 电器正常工作的时间T 的概率分布服从参数为λ3的指数分布.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。

概率论第三章练习答案

概率论第三章练习答案

(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D

A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00

第三章试题答案概率论与数理统计

第三章试题答案概率论与数理统计

第三章历年考题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设二维随机变量(X ,Y )的分布律为, 则P {X +Y =0}=( ) A.0.2答案:CYX -1 0 1 0 1度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( )A.41B.21答案:A律为设p ij =P{X=i,Y=j}i,j=0,1,则下列各式中错误..的是( ) A .p 00<p 01 B .p 10<p 11 C .p 00<p 11D .p 10<p 01答案:DY X 0 1 0 1,律为 YX0 1 20 01 2 0则P{X=Y}=( ) A . B . C . D .答案:A5.设随机变量(X ,Y )的联合概率密度为f(x,y)=.;0y ,0x ,0,e Ae y 2x 其它>>⎪⎩⎪⎨⎧--则A=( )A.21B.1C.23答案:D6.设二维随机变量(X 、Y )的联合分布为( )则P{XY=0}=( ) A. 41B.125C.43答案:C7.已知X ,Y 的联合概率分布如题6表所示 X -10 2YX0 5 0 4161 231 41Y 0 0 1/6 5/12 1/3 1/12 0 0 1 1/3 0 0题6表F (x,y )为其联合分布函数,则F (0,31)=( )A .0B .121C .61D .41答案:D8.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧>>+-其它00,0)(y x e y x则P (X ≥Y )=( ) A .41 B .21C .32D .43 答案:B9.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163C .41D .83答案:D10.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0B .)(x F XC .)(y F YD .1答案:B11.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为()Y0 1 2X-10 0 02 0则F(0,1)=A.0.2 答案:B12.设二维随机变量(X,Y)的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.32答案:B13.设二维随机变量(X ,Y )的分布律为 Y X1 231 2101103102101102101则P{XY=2}=( )A .51B .103C .21D .53答案:C14.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( )A .x 21B .2xC .y 21D .2y答案:D15.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα答案:B 因为91,92==βα31)91(91}1{}2{}1,2{3131********αβα+=======----=+Y P X P Y X P 解方程组即得15. .设二维随机变量(X ,Y )的联合概率密度为⎩⎨⎧>>=+-;,0,0,0,2),()2(其它y x e y x f y x 则P{X<Y}=( )A .41B .31C .32 D .43答案:B15. .设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧>>+-其它0y ,0x e )y x (则P (X ≥Y )=( )A .41B .21C .32 D .43 答案:B二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

概率论与数理统计课程第三章练习题及解答

概率论与数理统计课程第三章练习题及解答

第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。

(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。

分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。

分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章测试题
1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下:
0X=1⎧⎨⎩,若第一次取出正品,若第一次取出次品 0Y=1⎧⎨⎩
,若第二次取出正品,若第二次取出次品
(1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。


(2)
2 设二维随机变量
X Y (,)的概率密度Cy(2-x),0x 1,0y x,
f(x,y)=0,.≤≤≤≤⎧⎨⎩
其他
(1)试确定常数C ;(2)求边缘概率密度。

解 (1)1)(=⎰⎰+∞∞-+∞∞-dy dx x f 即1)2(100=⎰⎰-x
dxdy x Cy x ,5
12
=
∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)
4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为:
y
212Y e ,y 0
f (y )0,y 0
-⎧⎪>=⎨
≤⎪⎩ (1)求X 和Y 的联合概率密度;
(2)设含有a 的二次方程为2
a 2Xa Y 0++=,试求a 有实根的概率。

解 (1)X 1,0x 1
f (x )0,other <<⎧=⎨

⎪⎩⎪
⎨⎧><<==∴-other y x e y f x f y x f y
Y X ,
00,10,21)()(),(2
(2)2
a 2Xa Y 0++=有实根,则0442≥-=∆Y X ,即求02
≥-Y X 的概率
⎰-=⎰⎰=⎰⎰=≥---≥-1
01
00
20
2
2
22
121),(}0{dx e dy e dx dxdy y x f Y X P x x y
y x
3413.0)0()1(211
2
2=Φ-Φ=⎰-
dx e x π
,π23413.010
22=⎰∴-dx e
x。

相关文档
最新文档