因式分解最牛最全的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解

一、提公因式法.:ma+mb+mc=m(a+b+c)

二、运用公式法.

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1) (a+b)(a-b) = a 2-b 2 a 2-b 2=(a+b)(a-b);

(2) (a ±b)2 = a 2±2ab+b 2 a 2±2ab+b 2=(a ±b)2;

(3) (a+b)(a 2-ab+b 2) =a 3+b 3 a 3+b 3=(a+b)(a 2-ab+b 2);

(4) (a-b)(a 2+ab+b 2) = a 3-b 3 a 3-b 3=(a-b)(a 2+ab+b 2).

下面再补充两个常用的公式:

(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;

(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);

例.已知a b c ,,是ABC ∆的三边,且222

a b c ab bc ca ++=++, 则ABC ∆的形状是( )

A.直角三角形 B 等腰三角形

C 等边三角形

D 等腰直角三角形

解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++

222

()()()0a b b c c a a b c ⇒-+-+-=⇒==

三、分组分解法.

(一)分组后能直接提公因式

例1、分解因式:bn bm an am +++

分析:从“整体”看,这个多项式

的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)

am+

+

+

an

bm

)

(

(bn

=)

a+

m

+

n

+

(n

)

(

m

b

每组之间还有公因式!

=)

m+

+

n

(b

)(

a

例2、分解因式:bx

-5

+

2

10

ax-

by

ay

解法一:第一、二项为一组;解法二:第一、四项为一组;

第三、四项为一组。第二、三项为一组。

解:原式=)

ax-

+

ay

-原式

10

)

5(

2(bx

by

=)5

ax+

-

+

bx

-

(

ay

)

10

2(by

=)5

x

y

-

b

-

a-

(

(

)

5

2y

x

=)2(5)2(b a y b a x ---

=)2)(5(b a y x -- =)5)(2(y x b a --

(二)分组后能直接运用公式

例3、分解因式:ay ax y x ++-22

分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++- =)())((y x a y x y x ++-+

=))((a y x y x +-+

例4: 分解因式:2222c b ab a -+-

解:原式=222)2(c b ab a -+-

=2

2)(c b a --

=))((c b a c b a +---

四、十字相乘法.

(一)二次项系数为1的二次三项式

直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;

(2)常数项是两个数的乘积;

(3)一次项系数是常数项的两

因数的和。

思考:十字相乘有什么基本规律 例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .

解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

于是98a ∆=-为完全平方数,1a =

例5、分解因式:652

++x x

分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×

6=(-1)×(-6),从中可以发现只有2

×3的分解适合,即2+3=5。 1 2

解:652++x x =32)32(2⨯+++x x 1 3

=)3)(2(++x x 1×2+1×3=5

用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例6、分解因式:672+-x x

解:原式=)6)(1()]6()1[(2

--+-+-+x x 1 -1

=)6)(1(--x x 1 -6

(-1)+

(-6)= -7

相关文档
最新文档