控制系统的结构图及其等效变换
合集下载
系统结构图及等效变换、梅森公式
统结构图基础上应用等效变换和梅森 公式进行系统设计和实现,确保系统稳定性和可靠性。
05
结论与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
研究结论
• 通过分析和比较不同系统结构图的特点和性能,本文得出了一些重要的结论。首先,等效变换在系统分析和设 计中具有重要的作用,它可以帮助我们简化复杂的系统结构,降低分析和设计的难度。其次,梅森公式是一种 有效的系统性能评估方法,它可以用于计算系统的传递函数和频率响应等关键性能指标。最后,通过实例分析 和仿真验证,本文证明了等效变换和梅森公式在系统分析和设计中的有效性和实用性。
案例一
分析一个简单的RC电路,利用梅 森公式计算其传递函数,并与实 验结果进行对比分析。
案例二
针对一个控制系统,利用梅森公 式分析其稳定性,并给出相应的 控制器设计建议。
案例三
考虑一个复杂的信号流图,利用 梅森公式进行化简,得到简化的 数学模型,便于后续分析和设计。
BIG DATA EMPOWERS TO CREATE A NEW ERA
案例分析
案例一
串联等效变换的应用。在某控制系统中,存在两个串联的控制器,通过串联等效变换,可以将这两个控制器 合并为一个等效控制器,从而简化系统分析。
案例二
并联等效变换的应用。在某电力系统中,存在两个并联的电源,通过并联等效变换,可以将这两个电源合并 为一个等效电源,方便进行系统性能评估。
案例三
反馈等效变换的应用。在某通信系统中,存在一个反馈环节,通过反馈等效变换,可以将该反馈环节进行简 化,使得简化后的系统与原系统在性能上保持一致。
系统结构图及等效变换、
BIG DATA EMPOWERS TO CREATE A NEW
05
结论与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
研究结论
• 通过分析和比较不同系统结构图的特点和性能,本文得出了一些重要的结论。首先,等效变换在系统分析和设 计中具有重要的作用,它可以帮助我们简化复杂的系统结构,降低分析和设计的难度。其次,梅森公式是一种 有效的系统性能评估方法,它可以用于计算系统的传递函数和频率响应等关键性能指标。最后,通过实例分析 和仿真验证,本文证明了等效变换和梅森公式在系统分析和设计中的有效性和实用性。
案例一
分析一个简单的RC电路,利用梅 森公式计算其传递函数,并与实 验结果进行对比分析。
案例二
针对一个控制系统,利用梅森公 式分析其稳定性,并给出相应的 控制器设计建议。
案例三
考虑一个复杂的信号流图,利用 梅森公式进行化简,得到简化的 数学模型,便于后续分析和设计。
BIG DATA EMPOWERS TO CREATE A NEW ERA
案例分析
案例一
串联等效变换的应用。在某控制系统中,存在两个串联的控制器,通过串联等效变换,可以将这两个控制器 合并为一个等效控制器,从而简化系统分析。
案例二
并联等效变换的应用。在某电力系统中,存在两个并联的电源,通过并联等效变换,可以将这两个电源合并 为一个等效电源,方便进行系统性能评估。
案例三
反馈等效变换的应用。在某通信系统中,存在一个反馈环节,通过反馈等效变换,可以将该反馈环节进行简 化,使得简化后的系统与原系统在性能上保持一致。
系统结构图及等效变换、
BIG DATA EMPOWERS TO CREATE A NEW
控制系统结构图及其等效转换
U (s) R I(s)
0 2
1 c
i dt R i
2
1 1
R I (s)
1 1
1 Cs
I (s )
2
由 (1) 式有
I1(s) + I(s)
+ I (s) 2
对 (2)式变换 1 I1 ( s ) [U i ( s ) U 0 ( s )] R
对(4)式变换 I 2 ( s) R1CsI1 ( s)
G7
解 : 将分支点 A移至B处
G6 G1 G2
-
-
G3 G4 G5
G4
G7 得系统的闭环传递函数为
G1G2 G3G4 (S ) 1 + G1G2G3G4 G7 + G3G4G5 + G2 G3G6
另外亦可把B点后移或者相加点后移
X1(s) G1(s)
X3(s) G2(s)
X2(s)
结论:二环节串联传递函数等于二传函之积。 推广:N环节串联,传递函数等于N个环节传 函之积。
G(s) G1 (s)G2 (s)G n (s)
2、并联连接的传递函数
X3(s) G1(s) + X2(s)
X1(s)
+
G2(s) X4(s)
X 2 (s) X 3 ( s) + X 4 ( s) G(s) G1 ( s) + G2 ( s) X1 (s) X 1 ( s)
+ UI(s) U0(s)
1/R I1(s) I2(s) Cs
R1 I1(s)
对(3)式有
I(s)
R2
U0(s)
Ui(s) U0(s) -
I1(s)
自动控制原理 控制系统的结构图
其他变化(比较点的移动、引出点的移动)以此三种 基本形式的等效法则为基础。
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
自动控制原理结构图及等效变换.概要
X 2 ( s)
X ( s)
Y ( s ) G (s)
X 2 ( s)
X ( s)
Y ( s ) G (s)
X 1 ( s)
X 3 (s)
相加点和分支点在一般情况下,不能互换。
X ( s)
X 3 (s)
G (s)
所以,一般情况下,相加点向相加点移动,分支点向分支 点移动。
Saturday, January 12, 2019
[注意]: 相临的信号相加点位置可以互换;见下例
X 1 ( s) X 2 ( s)
Y ( s)
X 1 ( s)
X 3 (s)
Y ( s)
X 3 (s)
Saturday, January 12, 2019
X 2 ( s)
11
信号相加点和分支点的移动和互换
同一信号的分支点位置可以互换:见下例
X 1 ( s)
[例]:结构:
X(t)
放大器
Y(t)
结构图:
X(s)
G(s)=K
Y(s)
微分方程:y(t)=kx(t) 若已知系统的组成和各部分的传递函数,则可以画出各个 部分的结构图并连成整个系统的结构图。
Saturday, January 12, 2019
2
结构图的基本概念
[例2-10]求例2-5所示的速度控制统的结 构图。各部分传递函数见例2-6.
Saturday, January 12, 2019
16
结构图等效变换例子||例2-12
[例2-11]系统结构图如下,求传递函数 G ( s)
C (s) 。 R( s)
相加点移动
R( s )
自动控制原理--系统的结构图
R(s)
C(s)
G(s)
(-)
B(s)
R(s) G(s)
B(s) G(s)
C(s) (-)
•相 加 点 的 移 动
3. 交换或合并相加点
C(s)=E1(s)+V2(s) = R(s)-V1(s)+V2(s) = R(s)+V2(s)-V1(s)
V2(s)
R(s)
E1(s)
C(s)
(-) V1(s)
系统动态结构图
定义:将系统中所有的环节用方框图表示, 图中标明其传递函数,并且按照在系统中各 环节之间的联系,将方框图连接起来。
系统动态结构图的绘制步骤:
● (1)首先按照系统的结构和工作原理,分解出各环 节并写出它的传递函数。
● (2)绘出各环节的动态方框图,方框图中标明它的 传递函数,并以箭头和字母符号表明其输入量和输 出量,按照信号的传递方向把各方框图依次连接起 来,就构成了系统结构图。
C(s)
G(s)
R(s)
1 G(s)H(s)
• 例2.9
R(s) G1(s)
G2(s)
(-)
G3(s)
(-)
C(s) G6(s)
G4(s) G5(s)
G 236 (G 2 G 3 )G 6
G 54 G 5 G 4
G
1
G 236 G 236G 54
G1
● 比较点和引出点的移动: 等效原则:前向通道和反馈通道传递函数都不变。
G4
(a)
(b)
•其 它 等 价 法 则
1. 等效为单位反馈系统
R(s)
C(s)
G(s)
(-)
H(s)
R(s) 1
已知控制系统结构图如下图所示。试通过结构图等效变换求
一 、已知控制系统结构图如下图所示。
试通过结构图等效变换求系统传递函数C (s )/R (s )。
(10分)
二 、已知系统特征方程为 025103234=++++s s s s 试用劳思稳定判据确定系统的稳定性。
(15分)
三 、已知单位反馈系统的开环传递函数(15分) )
5)(11.0(100)(++=s s s G 试求输入分别为r (t )=2t 和 r (t )=2+2t+t 2 时系统的稳态误差。
四 、设单位反馈控制系统开环传递函数如下,(10分)
)
15.0)(12.0()(++=s s s K s G 试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d ):
五、
1 、绘制下列函数的对数幅频渐近特性曲线: (10分)
)
110)(1(200)(2++=s s s s G 2 、已知最小相位系统的对数幅频渐近特性曲线如图所示,试确定系统的开环传递函数。
(10分)
六 、已知线性离散系统的输出z
z z z z z C 5.05.112)(2323+-++=,计算系统前4个采样时刻c (0),c (T ),c (2T )和c (3T )的响应。
(15分)
七 、已知非线性控制系统的结构图如下图所示。
为使系统不产生自振,试利用描述函数法
确定继电特性参数a ,b 的数值。
继电特性的描述函数为a X X a X b X N ≥⎪⎭
⎫ ⎝⎛-= ,14)(2π。
(15分)。
自动控制原理控制系统的结构图
I1(s)
I2 (s)
CR1s
7
i2
C
i
i1 R1
ui
R2
uo
(3)
I(s) I1(s) I2 (s)
I2 (s)
I (s)
I1(s)
(4)U o (s) R2 I (s)
I (s)
Uo (s)
R2
8
(1)Ui (s)
(3)
- Uo(s)
I2 (s)
(2)
1
I1(s)
I1(s)
I2 (s)
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)
自动控制原理第二章2-2
Uc(s)
超前校正装置
4
“由内而外”化简
R(s)
-
-
G1 H1
G2
H4
G3 H2 H3
G4
C(s)
思考:是否能用基本等效法则进行简化? H3 R(s) C(s) G1 G2 G3 G4 -
-
H1 H4
“支路交错”
H2
5
H2(s)
R(s) G1(s) G2(s) G3(s) G4(s) C(s)
H3(s)
E ( s) 1 Ger ( s ) = = R( s ) 1 + G1 ( s )G2 ( s ) H ( s)
- G2 ( s ) H ( s ) E( s) Gen ( s ) = = N ( s ) 1+ G1 ( s )G2 ( s ) H ( s )
24
第二章
d = s dt
小结
微分方程
干扰信号下的闭环传递函数 【令R(s)=0】
G2 ( s ) C ( s) GBN ( s ) = = N ( s ) 1 + G1 ( s )G2 ( s ) H ( s )
22
N(s) R(s) E(s)
G1(s) H(s)
C(s)
N
G2(s)
R
1
1 E
G1
1
G2
1
C
-H
二、系统误差传递函数
G2(s)
1
R 1
G1
G2
1
C
-H
E
一、系统开环传递函数
GK ( s) = G1( s)G2 ( s) H ( s)
21
N(s) R(s) E(s)
N C(s) 1 R 1
自动控制原理02结构图及其等效变换
e)
R( s )
G 1 G 2 G3G 4 C (s) 1 G 1 G 2 G3G 4 G 2 G3 H 1 G3G 4 H 2
f)
2.3 控制系统的结构图及等效变换
2.3.4 系统传递函数
典型闭环控制系统
N (s)
R( s )
E ( s)
G1 (s)
结构图。
2.3.2 结构图的建立
例2-7 RLC电路网络的结构图
解: U (s) U (s) U (s) U (s) i R L 0
U R ( s) RI ( s)
U L ( s) LsI ( s)
{
I ( s)
U i ( s) U 0 ( s ) U R ( s ) U L ( s )
C 传输到 ( s)
单位反馈: H ( s) 1 开环传递函数:
G( s) H ( s)
2.3.3 结构图的等效变换和简化
(4)比较点的移动
R1 (s)
G(s)
R2 ( s )
a)
C (s)
R2 ( s )
R1 (s)
G(s)
C (s)
1/ G(s)
b)
R1 (s)
R2 ( s )
a)
G(s)
C (s) G(s) ( s) R( s) 1 G ( s) H ( s )
2.3.3 结构图的等效变换和简化
反馈连接中的术语:
R( s)
E (s)
G (s)
H (s)
C (s)
B( s)
前向通道:信号从 R( 传输到 s) 反馈通道:信号从
的通道 C ( s) 的通道 R( s )
R(s)
R( s )
G 1 G 2 G3G 4 C (s) 1 G 1 G 2 G3G 4 G 2 G3 H 1 G3G 4 H 2
f)
2.3 控制系统的结构图及等效变换
2.3.4 系统传递函数
典型闭环控制系统
N (s)
R( s )
E ( s)
G1 (s)
结构图。
2.3.2 结构图的建立
例2-7 RLC电路网络的结构图
解: U (s) U (s) U (s) U (s) i R L 0
U R ( s) RI ( s)
U L ( s) LsI ( s)
{
I ( s)
U i ( s) U 0 ( s ) U R ( s ) U L ( s )
C 传输到 ( s)
单位反馈: H ( s) 1 开环传递函数:
G( s) H ( s)
2.3.3 结构图的等效变换和简化
(4)比较点的移动
R1 (s)
G(s)
R2 ( s )
a)
C (s)
R2 ( s )
R1 (s)
G(s)
C (s)
1/ G(s)
b)
R1 (s)
R2 ( s )
a)
G(s)
C (s) G(s) ( s) R( s) 1 G ( s) H ( s )
2.3.3 结构图的等效变换和简化
反馈连接中的术语:
R( s)
E (s)
G (s)
H (s)
C (s)
B( s)
前向通道:信号从 R( 传输到 s) 反馈通道:信号从
的通道 C ( s) 的通道 R( s )
R(s)
第2章第4节控制系统的结构图
R(s) G1(s) U(s) G2(s) C(s) R(s) G1(s) G2(s) C(s)
C ( s ) = G 2 ( s )U ( s ) = G 2 ( s )G1 ( s ) R ( s ) = G ( s ) R ( s ) G( s) = G1 ( s)G2 ( s)
推广到n个方框串联连接
+ ψ 电位器1 up 放大器 电动机 If 励磁绕组 电位器2 Ia 发电机原动机 发电机 齿轮传 动机构 φ 负载
J.Z. Xiao, CEIE, HBU
随动系统原理结构图
6
(1)电位器组:
u p = k p (ψ − ϕ)
ψ(s) -
U p ( s ) = k pψ ( s ) − k p ϕ ( s )
ψ(s) kp
UP(s) ka -
I f (s) 1 R f (Tf s + 1)
kg
1 kd (TaTm s 2 + Tm s + 1)
kp
ω(s)
kt s
φ(s)
J.Z. Xiao, CEIE, HBU
随动系统结构框图
9
三、结构图的等效变换
等效变换原则: 变换前后各变量之间的传递关系保持不变。 三种基本连接形式: 串联、并联和反馈 1、串联连接的等效传递函数
§2.4 控制系统的结构图(方框图)
结构图的组成 结构图的绘制 结构图的等效变换
由代数关系,是否可将复杂系统视为其 各子系统间的输入输出连接形式呢?
R1
L
C1
R2
ui (t )
′ uo (t )
ui′(t )
C2
uo (t )
组合后的 系统模型 是什么?
C ( s ) = G 2 ( s )U ( s ) = G 2 ( s )G1 ( s ) R ( s ) = G ( s ) R ( s ) G( s) = G1 ( s)G2 ( s)
推广到n个方框串联连接
+ ψ 电位器1 up 放大器 电动机 If 励磁绕组 电位器2 Ia 发电机原动机 发电机 齿轮传 动机构 φ 负载
J.Z. Xiao, CEIE, HBU
随动系统原理结构图
6
(1)电位器组:
u p = k p (ψ − ϕ)
ψ(s) -
U p ( s ) = k pψ ( s ) − k p ϕ ( s )
ψ(s) kp
UP(s) ka -
I f (s) 1 R f (Tf s + 1)
kg
1 kd (TaTm s 2 + Tm s + 1)
kp
ω(s)
kt s
φ(s)
J.Z. Xiao, CEIE, HBU
随动系统结构框图
9
三、结构图的等效变换
等效变换原则: 变换前后各变量之间的传递关系保持不变。 三种基本连接形式: 串联、并联和反馈 1、串联连接的等效传递函数
§2.4 控制系统的结构图(方框图)
结构图的组成 结构图的绘制 结构图的等效变换
由代数关系,是否可将复杂系统视为其 各子系统间的输入输出连接形式呢?
R1
L
C1
R2
ui (t )
′ uo (t )
ui′(t )
C2
uo (t )
组合后的 系统模型 是什么?
自动控制原理 控制系统的结构图
R1
CR1s
I (s)
(4) I(s)
Uo (s)
R2
I1(s)
Ui (s)
- Uo(s)
1
I1(s)
I2 (s)
I (s)
Uo (s)
R1
CR1s
R2
I1(s)
9
练习
R
画出RC电路的方框(结构)图。 ui i C
uo
解: 利用基尔霍夫电压定律及电容
元件特性可得:
(a) 一阶RC网络
i
ui
◎对多回路结构,可由里向外进行变换,直至变 换为一个等效的方框,即得到所求的传递函数。
26
基本概念及术语
控制器
N( s)
被控 对象
+ E( s)
++
C(s)
R( s)
G1 ( s )
G2 (s)
反馈信号
B( s)
C(s) H( s)
反馈控制系统方块图
(1)前向通路传递函数---假设N(s)=0
C(s)与误差E(s)之比,(打开反馈后,C(s)与R(s)之比)
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
其他变化(比较点的移动、引出点的移动)以此三 种基本形式的等效法则为基础。
12
(1)串联连接
R( s)
U (s) 1
G (s) 1
G (s) 2
C( s)
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
C1 (s)
R(s)
C(s)
R( s)
3.6-1系统框图的等效变换原则.
������ ������
1 ∓ ������ ������ ∙ ������(������)
������ ������ = ������ ������ ∙ ������(������) = ������(������)[������(s) ± ������(s)] = ������ ������ [������(s) ± ������ ������ ∙ ������(������)] = ������(������) ∙ ������(s) ± ������ ������ ������ ������ ∙ ������(������)
数的代数和。
������(������)
G1
(s)
������1(������) +������
������
������2 (s)
+
������(������)
������ ������
G1(s)+������2(s)
������ ������ ������ ������ = ������(������) = G1(s) + G2(s)
引出点移动规则
������(������)
①引出点前移
������(s)
������ ������
典型机电控制系统
������ ������
������(������)
������(s)
������ ������
������(������)
������ ������
������(s)
②引出点后移
������(������) ������(s)
典型机电控制系统
反馈联接变换规则
将环节的输出量反送到输入端与输入信号进行比较后作为环节的输入量,就构
自动控制原理控制系统的结构图
系统结构图(方框图)的四要素:
(1)方框(环节): 表示输入到输出单向传输间的函数关系。
(2)信号线: 带有箭头的直线,箭头表示信号的流向,在直
线旁标记信号的函数。
信号线
r(t)
c(t)
G(s)
R(S)
C(S)
方框
3
(3)比较点(汇合点、综合点) 两个或两个以上的输入信号进行加减比较的元件
“+”表示相加,可省略不写;“-”表示相减。
5
2.3.2 绘制结构图的一般步骤
1.根据系统中信号的传递过程,将系统划分为若干 个元部件或环节。 2.分别列写每个元部件的微分方程,在零初始条件 下进行拉氏变换,得到每个元部件的传递函数,给 出每个元部件的单元结构图。 3.把系统的输入量置于最左端,输出量置于最右端, 按照系统中信号的流向,把各元部件结构图中相同 的信号连接起来,便得到系统的结构图。
N(s)
G2 (s)
H(s)
-1
+
G1(s)
误差对扰动的结构图
E(s)
利用公式(1),直接可得:
M NE (s)
E(s) N (s)
G2 (s)H (s) 1 G(s)H (s)
33
精品文档 欢迎下载
读书破万卷,下笔如有神--杜 甫
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
15
(4)比较点的移动(前移、后移)
“前移”、“后移”的定义:
按信号流向定义,也即信号从“前面”流向“后面”,而不
是位置上的前后。
比较点前移
比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
自动控制原理2.4 结构图的等效变换及简化计算
Pk—从R(s)到C(s)的第k条前向通道增益 △k —第k条前向通道的余子式
在△中,去掉与第k条前向通 道相接触的回路对应的项后
剩余的部分。
求法: 去掉第k条前向通路后所求的△ 用梅森公式求上例信号流图对应的传函。
南京工业职业技术学院机械工程学院——自动控制原理
梅森公式例1
GG44((ss))
R(s)
注:比较点和引出点之间不能换位。 3. 通过在被变换的支路上乘或除某个传函来保持等效。 4. 根据环节方框的连接方式(串联、并联和反馈)进行简化
计算。
南京工业职业技术学院机械工程学院——自动控制原理
结构图三种连接形式及其计算
串联
G1
G2
G1 G2
n
G(s) Gi (s) i 1
并联 G1 G2
反馈 G1
G5
R –
X1 G1
– G2 X2 –
G3 X3
G4
C
X3
G6
G7
南京工业职业技术学院机械工程学院——自动控制原理
G8 G5
R – G1 X1
X2 – G2
–
X3
G3
G4
C
X3 G6
G7
(2)求传函。用梅逊公式:
1 G1G2G3G4G7 G1G2G3G4G8 G2G3G6 G3G4G5
R(s)
-
G4
A
G1
-
B
G2
H1
G3 H2
C C(s)
P1 G1G2G3 1 1
P2 G1G4 2 1
C(S) P(S) P11 P22
P11 P22
R(S)
1 (L1 L2 L3 L4 L5 )
在△中,去掉与第k条前向通 道相接触的回路对应的项后
剩余的部分。
求法: 去掉第k条前向通路后所求的△ 用梅森公式求上例信号流图对应的传函。
南京工业职业技术学院机械工程学院——自动控制原理
梅森公式例1
GG44((ss))
R(s)
注:比较点和引出点之间不能换位。 3. 通过在被变换的支路上乘或除某个传函来保持等效。 4. 根据环节方框的连接方式(串联、并联和反馈)进行简化
计算。
南京工业职业技术学院机械工程学院——自动控制原理
结构图三种连接形式及其计算
串联
G1
G2
G1 G2
n
G(s) Gi (s) i 1
并联 G1 G2
反馈 G1
G5
R –
X1 G1
– G2 X2 –
G3 X3
G4
C
X3
G6
G7
南京工业职业技术学院机械工程学院——自动控制原理
G8 G5
R – G1 X1
X2 – G2
–
X3
G3
G4
C
X3 G6
G7
(2)求传函。用梅逊公式:
1 G1G2G3G4G7 G1G2G3G4G8 G2G3G6 G3G4G5
R(s)
-
G4
A
G1
-
B
G2
H1
G3 H2
C C(s)
P1 G1G2G3 1 1
P2 G1G4 2 1
C(S) P(S) P11 P22
P11 P22
R(S)
1 (L1 L2 L3 L4 L5 )
控制系统的结构图及其等效变换
Y (s)
前移 R1(s) G(s) Y (s)
注:
R2 (s)
R1 ( s )
Y (s)
G(s)
1/G(s) R2 (s)
相加点进入和出去的信号量纲必须相同,否则不能加减。
b引出点(信号由某一点分开)
分支点分出信号,数值相同
R(s) 后移
G(s)
Y (s)
R(s)
R(s) G(s)
Y (s) R(s)
4.比较点(求和点、综合点) 1.用符号“ ”及相应的信号箭头表示 2.箭头前方的“+”或“-”表示加上此信号 或减去此信号
! 注意量纲:相同量纲的物理量
例:二阶RC电气网络
结构图的等效变换和简化
➢系统的结构图通过等效变换和简化后可以方便、快速 地求取闭环系统的传递函数或系统输出量的响应。
➢等效变换和简化的过程对应于消去中间变量求系统传
信号流图的绘制 1. 根据微分方程绘制信号流图 2. 根据方框图绘制信号流图
1. 根据微分方程绘制信号流图
i
A
取Ui(s)、I1(s)、UA(s)、I2(s)、 Uo (s)作为信号流图的节点 Ui(s)、Uo(s)分别为输入及输出节点
2. 根据方框图绘制信号流图
方块图转换为信号流 图
信号流图的等效变换法则
•支路增益——支路传输定量地表明变量从支路一端沿箭头方 向传送到另一端的函数关系。用标在支路旁边的传递函数 “G”表示支路传输。
2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路 从源节点到阱节点的通路上通过任何节点 不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
信号流图梅森公式
2-3控制系统的结构图
1 1
N(s) N(s) N(s)
G2(s)
G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2
C(s) C(s) C(s)
HH (s) 1 (s) H(s) 1 1
H3(s)
H3(s) H33(s) H (s)
C(s)
G1(s)
R(s) E(S) P1= –G2H3 P1=1 H1(s)
2012-6-26
U(s) U(s) U(s)
U(s)
U(s)
U(s)±R(s)
R(s)
2-3控制系统的结构图
3
二、控制系统结构图的绘制(1)
控制系统结构图绘制步骤: 建立各元件微分方程组 确定各环节的输入输出量 按信号流向连接各环节框
拉氏变换方程组(考虑负载效应) 各环节框
2012-6-26
L1L4=(–G1H1)(–G4G3)=G1G3G4H1 2-3控制系统的结构图
梅逊公式求E(s)
G3(s) R(s) R(s) R(s) R(s)
P2= - G3G2H3 △2= 1 P2△2=?
G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
2012-6-26
1 - G1H1 + G2H2
2-3控制系统的结构图
+ G1G2H3 -G1H1G2 H2
17
五、控制系统的传递函数
1.
N(s) N(s) N(s)
G2(s)
G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2
C(s) C(s) C(s)
HH (s) 1 (s) H(s) 1 1
H3(s)
H3(s) H33(s) H (s)
C(s)
G1(s)
R(s) E(S) P1= –G2H3 P1=1 H1(s)
2012-6-26
U(s) U(s) U(s)
U(s)
U(s)
U(s)±R(s)
R(s)
2-3控制系统的结构图
3
二、控制系统结构图的绘制(1)
控制系统结构图绘制步骤: 建立各元件微分方程组 确定各环节的输入输出量 按信号流向连接各环节框
拉氏变换方程组(考虑负载效应) 各环节框
2012-6-26
L1L4=(–G1H1)(–G4G3)=G1G3G4H1 2-3控制系统的结构图
梅逊公式求E(s)
G3(s) R(s) R(s) R(s) R(s)
P2= - G3G2H3 △2= 1 P2△2=?
G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
2012-6-26
1 - G1H1 + G2H2
2-3控制系统的结构图
+ G1G2H3 -G1H1G2 H2
17
五、控制系统的传递函数
1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路
从源节点到阱节点的通路上通过任何节点
不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
回路
起点与终点重合且通过任何节点不多于一次的
闭合通路。回路中所有支路增益之乘积称为回 路增益,用Lk表示。
不接触回路
相互间没有任何公共节点的回路
反馈通路断开。 系统开环传递函数:前向通道传递函数与反馈通道传 递函数的乘积。
B( s ) Gk ( s) G1 ( s)G2 ( s) H ( s) E (s)
(反馈信号B(s)和偏差信号E (s)之间的传递函数)
系统的开环传递函数
GK (s) G1 (s)G2 (s) H (s)
注:开环传递函数并非指开环控制系统的传递函数, 而是指闭环系统断开反馈点后整个环路的传递函数。
例2.9 简化下图,求出系统的传递函数。
解: 上图是具有交叉连接的结构图。为消除交叉,可采 用比较点、引出点互换的方法处理。 (1)将相加点a移至G2之后
(2)再与b点交换
(3)因 G4与G1G2并联, G3与G2H是负反馈环节
(4)上图两环节串联,函数相乘后得系统的传递函数为
注: ①以上为原系统的闭环传递函数,不是开环系统的传递函数, 而是闭环系统简化的结果; ②分母中不能看成原闭环系统的开环传递函数,闭环系统开 环传递函数应根据定义和具体框图定。
闭环系统的传递函数
反馈控制系统的典型结构 :
R( s) E (s) G1(s) B(s)
N (s)
G2(s)
C (s)
H(s)
输入量R(s)、干扰量N(s)同时作用于系统
控制系统传递函数
1. 系统传递函数
仅控制量作用下
仅扰动量作用下
控制量和扰动共同作用下
2. 系统误差传递函数
仅扰动量作用下
源节点 只有输出支路而无输入支路的节点称为源节点或输
入节点,对应于系统的输入变量。
阱节点 只有输入支路而无输出支路的节点称为阱节点或输
出节点,它对应于系统的输出变量。
混合节点 既有输入支路又有输出支路的节点称为混合节点。
源节点
阱节点
•节点——代表系统中的一个变量或信号。用符号“
”表示。
•支路——是连接两个节点的定向线段。用符号“→”表示, 其中的箭头表示信号的传送方向。 •支路增益——支路传输定量地表明变量从支路一端沿箭头方 向传送到另一端的函数关系。用标在支路旁边的传递函数 “G”表示支路传输。
3.支路增益及其类别
通道支路增益: 通道中各支路传输的乘积。 回路支路增益: 回路中各支路传输的乘积。 前向通道支路增益: 前向通. 根据微分方程绘制信号流图 2. 根据方框图绘制信号流图
1. 根据微分方程绘制信号流图
取Ui(s)、I1(s)、UA(s)、I2(s)、 Uo (s)作为信号流图的节点
闭环系统的传递函数
1. 控制量R(S)作用, 假设扰动量N(s)=0
R(s)
G1(s) H(s)
G2(s)
C (s)
CR ( s ) G1 ( s)G2 ( s) ( s) R( s) 1 G1 ( s)G2 ( s) H ( s)
G1 ( s)G2 ( s) CR ( s ) ( s ) R ( s ) R( s) 1 G1 ( s)G2 ( s) H ( s)
(3 )系统的误差传递函数
以误差信号E(s)为输出量,以控制量R(s)或
扰动量N(s)为输入量的闭环传递函数。
1. 给定输入R(s)作用下的偏差传递函数 , 令N(s) =0
2
1
E ( s) 1 e (s) R( s) 1 G1 ( s )G2 ( s ) H ( s )
1 E ( s ) e ( s ) R( s) R( s) 1 G1 ( s)G2 ( s) H ( s)
a 比较点(对信号求和)
R1 ( s ) 后移
G(s)
R2 ( s )
Y (s)
R1 ( s )
R2 ( s )
G(s) G(s)
Y (s)
前移
R1 ( s )
G(s)
Y (s)
R2 ( s )
R1 ( s )
Y (s)
G(s)
1/G(s)
R2 ( s )
注: 相加点进入和出去的信号量纲必须相同,否则不能加减。
控制量和扰动共同作用下
反馈通道:C(s)到B(s)的信号传递通路 前向通道:R(s)到C(s)的信号传递通路 系统闭环传递函数:反馈回路接通后, 输 出量与输入量的比值。
系统对控制量R(s)的闭环传递函数 系统对拢动量N(s)的闭环传递函数
单独处理
线性叠加
补充:系统的开环传递函数
系统工作在开环状态,
例2.10 试简化下图所示系统的结构图,并求系统的传递 函数
有一条前向通道:G1G2G3G4
反馈回路开环传递函数:G1G2G3G4 H1, G3G4 H3, G2G3 H2
前向通道与反馈回路两两接触 所以
G1G2G3G4 C ( s) R( s) 1 G2G3 H 2 G3G4 H 3 G1G2G3G4 H1
b引出点(信号由某一点分开)
分支点分出信号,数值相同
R(s) Y (s)
R(s)
后移
G(s)
R(s)
G(s)
Y (s)
1/G(s)
R(s)
前移
R(s)
G(s)
Y (s) Y (s)
R(s)
G(s)
G(s)
Y (s)
Y (s)
(3)引出点之间可任意互换。比较点之间可互换 (但注意前后符号一致)。 (4)引出点和比较点之间一般不能互换变位。
信号流图的性质
1.信号流图只能用来表示代数方程组,节点表示系统变量。 2.节点把所有输入信号叠加,传到所有的输出支路。 3.信号只能沿支路的箭头方向单向传递,后一个节点对前 一个节点没有反作用。 4.对于给定的系统,节点变量的设置是任意的,因此信号 流图不是唯一的。
信号流图的常用术语
1.节点及其类别
三个回路均与前向通道接触,△1=1
G1G2G3G4G5 C ( s) 1 G( s) P 11 R( s) 1 G2G3 H1 G2G3 H 2 G1G2G3G4 H 3
• 前例:
只有一条前向通路
三个不同回路
L1、L2不接触
P1与L1、L2、L3均接触
多个前向通道
比较点
引出点 函数方框 函数方框
信号线
1.信号线 带有箭头的直线,箭头表示信号的 传递方向,直线旁标记信号的时间函 数或象函数。
2.信号引出点(线)/测量点 表示信号引出或测量的位置和传递方向。 同一信号线上引出的信号,其性质、大小完全一样。
3.函数方块(环节)
函数方块具有运算功能
X 2 (s) G(s)X1 (s)
G1 ( s) Y ( s) G(s) R( s) 1 G1 ( s ) H ( s)
信号比较点及引出点的移动
在对系统进行分析时,为了简化系统的结构 图,常常需要对信号的比较点或引出点进行变位 运算,以便消除交叉,求出总的传递函数。 变位运算的原则是, 输入和输出都不变。变
换前后的方框图是等效的。
信号流图的组成及性质
求系统的传递函数时,需要对微分方程组或经拉氏变
换后的代数方程组进行消元。而采用结构图或信号流图,
不仅便于求取系统的传递函数,还能直观地表明输入信号 以及各中间变量在系统中的传递过程。因此,结构图和信
号流图作为一种数学模型,在控制理论中得到了广泛的应
用。 信号流图起源于梅森(S. J. MASON)利用图示法来 描述一个或一组线性代数方程,是由节点和支路组成的一 种信号传递网络。
3. 控制量与扰动量同时作用
C ( s) CR ( s) C N ( s) G1 ( s )G2 ( s ) G2 ( s ) R(s) N (s) 1 G1 ( s )G2 ( s ) H ( s ) 1 G1 ( s )G2 ( s ) H ( s ) G2 ( s ) [G1 ( s ) R ( s ) N ( s )] 1 G1 ( s )G2 ( s ) H ( s )
G(s)
Y (s)
1. 表明了系统的组成、信号的传递方向; 2. 表示出了系统信号传递过程中的数学关系; 3. 可揭示、评价各环节对系统的影响; 4. 易构成整个系统,并简化写出整个系统的传递函数; 5. 直观、方便(图解法)。
任何系统都可以由信号线、方框、信号引出点 及比较点组成的方块图来表示。
2.4.2
方框间的基本连接方式:串联、并联、反馈 在简化过程中应遵循变换前后变量关系保持等效的原 则!
结构图的等效变换和简化
(1) 串联 几个环节串联,总的传递函数等于每个环节的传 递函数的乘积。
R(s)
G1(s)
R(s)
Y1 ( s )
G2(s)
Y2 ( s )
G3(s)
Y (s)
G1(s) G2(s) G3(s)
2. 扰动N(s)作用下的误差传递函数,令R(s)=0
G2 ( s) H ( s) E ( s) en ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
G2 ( s) H ( s ) E ( s ) en ( s) N ( s ) N (s) 1 G1 ( s)G2 ( s) H ( s)
注意:
有些实际系统,往往是多回路系统,形成回路交错或相 套。为便于计算和分析,常将种复杂的方框图简化为较简单 的方框图。 ① 结构图简化的关键是解除各种连接之间,包括环路与环路 之间的交叉,应设法使它们分开,或形成大环套小环的形式。 ② 解除交叉连接的有效方法是移动比较点或引出点。一般的, 结构图上相邻的引出点可以彼此交换,相邻的比较点也可以 彼此交换。但是,当引出点与比较点相邻时,它们的位置就 不能作简单的交换。