乘法公式练习含答案

合集下载

乘法公式(人教版)(含答案)

乘法公式(人教版)(含答案)

乘法公式(人教版)一、单选题(共10道,每道10分)1.下列各式中能够成立的是( )A. B.C. D.答案:D解题思路:∵∴A,B选项错误;∵∴C选项错误;互为相反数的两个数,平方一定相等,∴选项D正确,∴选D.试题难度:三颗星知识点:完全平方式2.下列各式中,正确的是( )A.B.C.D.答案:D解题思路:选项A:,错误;选项B:,错误;选项C:,错误;选项D:正确.故选D.试题难度:三颗星知识点:完全平方式3.若,则的值为( )A.12B.6C.3D.0答案:A解题思路:∵故选A.试题难度:三颗星知识点:完全平方式4.若,,则的值是( )A.4B.C. D.答案:C解题思路:∵,,∴,∴,联立,可得,故选C.试题难度:三颗星知识点:平方差公式的应用5.计算的结果是( )A.1B.-1C.2D.-2答案:A解题思路:故选A.试题难度:三颗星知识点:平方差公式的应用6.已知:,,则下列计算正确的是( )A. B.C. D.答案:C解题思路:∵,,∴,A选项错误;∴,B选项错误;∴,∴,C选项正确;,D选项错误. 综上,应选C.试题难度:三颗星知识点:完全平方公式知二求二问题7.若,,则的值为( )A.1B.C.2D.答案:B解题思路:∵将,代入得,,∴,∴,∴选B.试题难度:三颗星知识点:完全平方公式知二求二问题8.已知是完全平方式,则的值为( )A.3B.±3C.-6D.±6答案:D解题思路:,,即,∴,故选D.试题难度:三颗星知识点:完全平方公式9.若实数满足,则等于( )A.-1B.0C. D.1答案:B解题思路:∵,∴,∴,又∵,∴,故选B.试题难度:三颗星知识点:完全平方公式10.若,,其中,则,的大小的关系是( )A. B.C. D.不能确定答案:A解题思路:∵∴∴,∴.故选A.试题难度:三颗星知识点:完全平方式的应用。

整式乘法公式练习题附答案

整式乘法公式练习题附答案

1、(﹣2m﹣1)2;2、(a+b+3)(a+b-3)3、计算4、(x-2y+3)(x+2y+3)5、计算:6、运用整式乘法公式计算:.7、(a+b-c)(a-b+c)8、因式分解:;9、的值是()A. B. C. D.10、只要a、b为实数,的值总是()A.正数B.负数C.非负数D.非正数11、计算的结果是:()A.B.C.D.12、已知,,则与的值分别是()A.4,1B.2,C.5,1D.10,13、不论为什么实数,代数式的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数14、若9x2+mxy+16y2是一个完全平方式,则m的值为()A.24B.﹣12C.±12D.±2415、若,,则的值为A、15B、90C、100D、11016、如图,两个正方形的边长分别为和,如果,,那么阴影部分的面积是()A. B.C. D.17、下列多项式乘法中,能用平方差计算的是()A. B.C. D.18、下列各式中与2nm﹣m2﹣n2相等的是()A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 19、若a+b=0,ab=11,则a2-ab+b2的值为()A.11B.-11C.-33D.3320、若x2+mx+1是完全平方式,则m=()。

A2B-2C±2D±421、已知,求:①②xy的值.22、已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23、已知,求的值.24、已知,,,求代数式的值。

25、已知,求代数式的值。

26、已知:=2,请分别求出下列式子的值(1);(2)27、已知x2+x-1=0,求x3+2x2+3的值.28、探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?29、计算:19902-19892+19882-19872+…+22-1.30、已知,,则___________.31、已知实数x满足x+=3,则x2+的值为_________.32、若,,则=,=。

乘法公式练习题(含答案)

乘法公式练习题(含答案)

乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.乘法公式14.2.1 平方差公式1.B 2.C 3.C4.(1)a 2-9 (2)4x 2-9a 2 (3)b 2-a 2(4)2 2 100 2 99965.解:(1)原式=136x 2-y 2. (2)原式=20182-(2018+1)×(2018-1)=20182-20182+1=1.(3)原式=(x 2-1)(x 2+1)=x 4-1.6.解:原式=4-a 2+a 2-4a =4-4a .当a =-12时,原式=4+2=6. 14.2.2 完全平方公式第1课时 完全平方公式1.C 2.D3.(1)9a 2-12ab +4b 2 (2)9x 2-12x +4(3)x 2-2xy +y 2 (4)3x -14.解:(1)原式=4m 2+4mn +n 2.(2)原式=9x 2-6xy +y 2.(3)原式=4a 2+12ab +9ab 2-4a 2+12ab -9b 2=24ab .(4)原式=(100-0.2)2=1002-2×100×0.2+0.22=9960.04.5.解:(1)∵a +b =3,∴(a +b )2=9.(2)由(1)知(a +b )2=9,∴a 2+2ab +b 2=9.∵ab =2,∴a 2+b 2=9-2ab =9-4=5.第2课时 添括号法则1.C 2.C3.(1)b -c (2)b -c(3)x +y x 2+2xy +y 2+4xz +4yz +4z 24.解:∵a -3b =3,∴8-a +3b =8-(a -3b )=8-3=5.5.解:(1)原式=(2a +3b )2-1=4a 2+12ab +9b 2-1.(2)原式=x 2-2xy +y 2-4xz +4yz +4z 2.。

乘法公式练习题及答案

乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

乘法公式练习题(带答案

乘法公式练习题(带答案

2. 完全平方公式
18. 计算: (1) (2) (3) (4) (5) (6)
. . . .
. .
7
【答案】( 1 ) (2) (3) (4) (5) (6)
【标注】【知识点】完全平方公式的计算-不含分式
19. 回答下列问题: (1) (2) (3)
. .

【答案】( 1 ) (2) (3)
【标注】【知识点】完全平方公式的计算-不含分式
( ). B. D.
【答案】 D
【解析】
, , .
, ,

【标注】【知识点】平方差公式的计算
5. 计算:

【答案】

【解析】 原式=

故答案为:

2
【标注】【知识点】完全平方公式的计算-不含分式
6. 填空: (1) (2) (3) (4) (5)
. . . .

【答案】( 1 ) (2) (3) (4) (5)
A.
B.
C.
D.
【答案】 D
【解析】 、 、 、 、
故选 .
中两项均互为相反数,故不能平方差公式计算,故本选项错误; 中两项均互为相反数,故不能平方差公式计算,故本选项错误; 中两项均互为相反数,故不能平方差公式计算,故本选项错误; ,故本选项正确.
【标注】【知识点】平方差公式的计算
4. A. C.

(2)
(3)
. .
【解析】( 1 ) 原式 ( 2 ) 原式
, .
, ,
. ,
6
( 3 ) 原式
, . , ,
, .
【标注】【知识点】完全平方公式的计算-不含分式

初中竞赛数学18.乘法公式(含答案)

初中竞赛数学18.乘法公式(含答案)

18.乘法公式知识纵横乘法公式(multiplication formula)是在多项式乘法的基础上,•将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、•又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解【例1】•(•1)•已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.(江苏省竞赛题)(2)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=________.(2000年重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000-a)·(1998-a)为整体,•由平方和想到完全平方公式(formula for the square the sum)及其变形.解:(1)设两个连续奇数为x,y,且x>y,则2220002x yx y⎧-=±⎨-=⎩得x+y=1000或x+y=-1000,解得(x,y)=(499,501)或(-501,-499).(2)4002 提示:(2000-a)2+(1998-a)2=[(2000-a)-(1998-a)]2+2(2000-a)·(1998-a)【例2】若x是不为0的有理数,已知M=(x2+2x+1)(x2-2x+1),N=(x2+x+1)(x2-x+1),则M与N 的大小关系是( ). (“祖冲之”杯邀请赛试题)A.M>NB.M<NC.M=ND.无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.解:选B【例3】计算:(1)6(7+1)(72+1)(74+1)(78+1)+1; (天津市竞赛题)(2)1.345×0.345×2.69-1.3453-1.345×0.3452. (江苏省竞赛试题)思路点拨 若按部就班计算,显然较繁,能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,•可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.解:(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1=716(2)设1.345=x,则原式=x(x-1)·2x-x 3-x(x-1)2=-x=-1.345【例4】(1)已知x 、y 满足x 2+y 2+54=2x+y,求代数式xy x y+的值. (“希望杯”邀请赛试题) (2)整数x,y 满足不等式x 2+y 2+1≤2x+2y,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是 2a b + (a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. (2003年河北省竞赛题)思路点拨 对于(1)、(2)两个未知数一个等式或不等式,•须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.解:(1)提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13(2)原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•所以可能有的结果是1010x y -=⎧⎨-=⎩或1110x y -=±⎧⎨-=⎩或1011x y -=⎧⎨-=±⎩,解得11x y =⎧⎨=⎩或21x y =⎧⎨=⎩ 或 12x y =⎧⎨=⎩或10x y =⎧⎨=⎩,x+y=1或2或3 (3)甲、乙、丙三个商场两次提价后,价格分别为(1+a)(1+b)=1+a+b+ab; (1+2a b +)·(1+2a b +)=1+(a+b)+( 2a b +)2; (1+b)(1+a)=1+a+b+ab; 因(2a b +)2-ab>0,所以(2a b +)2>ab, 故乙商场两次提价后,价格最高.【例5】已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从a 2+b 2=c 2的变形入手;a 2=c 2-b 2,运用质数、奇偶数性质证明.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a 应为奇质数,c+b 与c-b 同奇同偶,b 与c 必为一奇一偶.(2)c+b=a 2,c-b=1,两式相减,得2b=a 2-1,于是2(a+b+1)=2a+2b+2=2a+a 2-1+2=(a+1)2,为一完全平方数.学力训练一、 基础夯实1.观察下列各式:(x-1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1;(x -1)(x 3+x 2+x+1)=x 4-1.根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______.(2001年武汉市中考题)2.已知a 2+b 2+4a -2b+5=0,则a b a b+-=_____. (2001年杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655=_______;(2)19492-19502+19512-19522+……+19972-19982+19992=_________;(3) 2221999199819991997199919992+-=___________. 4.如图是用四张全等的矩形纸片拼成的图形,•请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式________.(2003年太原市中考题) 5.已知a+1a =5,则=4221a a a++=_____. (2003年菏泽市中考题)6.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( ).A.-15B.-2C.-6D.6 (2003年扬州市中考题)7.乘积(1-212)(1-213)……(1-211999)(1-212000)等于( ). A. 19992000 B. 20012000 C. 19994000 D. 20014000(2002年重庆市竞赛题)8.若x -y=2,x 2+y 2=4,则x 2002+y 2002的值是( ).A.4B.2002C.2D.49.若x 2-13x+1=0,则x 4+41x的个位数字是( ). A.1 B.3 C.5 D.710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.a 2-b 2=(a+b)(a -b)B.(a+b)2=a 2+2ab+b 2C.(a -b)2=a 2-2ab+bD.(a+2b)(a -b)=a 2+ab -2b 2 (2002年陕西省中考题)11.(1)设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值?如果是定值,•求出它的值;否则请说明理由.(2)已知x 2-2x=2,将下式先化简,再求值:(x -1)2+(x+3)(x-3)+(x-3)(x-1).(2003年上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写了一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000·2001·2002·2003+1的结果(用一个最简式子表示).(2001年黄冈市竞赛题)二、能力拓展14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,•任意一个个位数为5的自然数可写在10n+5(n为自然数),即求(10n+5)2的值,试分析n=1,n=2,n=3,……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+•25;•……752=•5625•可成写__________;852=7225可写成__________.(2)从第(1)题的结果,归纳,猜想得(10n+5)2=________.(3)根据上面的归纳猜想,请算出19952=________. (福建省三明市中考题)15.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.(2001天津市选拨赛试题)16.(1)若x+y=10,x3+y3=100,则x2+y2=________. (2)若a-b=3,则a3-b3-9ab=________.17.1,2,3,•……,•98•共98•个自然数中,•能够表示成两整数的平方差的个数是________.(全国初中数学联赛试题)18.已知a-b=4,ab+c2+4=0,则a+b=( ).A.4B.0C.2D.-219.方程x2-y2=1991,共有( )组整数解.A.6B.7C.8D.920.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤yB.x≥yC.x<yD.x>y (2003年太原市竞赛题)21.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-•ab-•bc-c a的值为( ).A.0B.1C.2D.3 (2002年全国初中数学竞赛题)22.设a+b=1,a2+b2=2,求a7+b7的值. (西安市竞赛题)23.已知a满足等式a2-a-1=0,求代数式a8+7a-4的值. (2003年河北省竞赛题)24.若x+y=a+b,且x2+y2=a2+b2,求证:x1997+y1997=a1997+b1997. (北京市竞赛题)三、综合创新25.有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1•顺次表示第一号选手胜与负的场数;用x2,y2顺次表示第二号选手胜与负的场数,……;用x10,y10•顺次表示十号选手胜与负的场数.求证:x12+x22+……+x102=y12+y22+……+y102.26.(1)请观察:25=521225=352112225=335211122225=33352……写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?答案1.x n+1-12.-133.(1)4;(2)3897326;(3)124.(a+b)2-4ab=(a-b)25.246.C7.D 提示;逆用平方差公式,分解相约8.C 提示:由已知条件得xy=09.D 提示:x≠0,由条件得x+1x=13,x4+41x=(x2+21x)2-2=[(x+1x)2-2]2-2 10.A11.(1)定值为0 提示:由条件得x-3y=-2z,原式=(x-3y)·(x+3y)+4z2+4xz=-2z·(x+3y)+4z2+4xz=4z2+2xz-6yz=4z2+2z(x-3y)=0(2)原式=3x2-6x-5=3(x2-2x)-5=1.12.提示:设这个自然数为x,由题意得224544x m x n ⎧-=⎪⎨+=⎪⎩②-①得n2-m2=89 即(n+m)(n-m)=89×1从而891n mn m+=⎧⎨-=⎩,解得4544nm=⎧⎨=⎩(m,n都为自然数) 故 x=45-44=1981.13.(1)对于自然数n,有n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,证明略.(2)由(1)得原式=(20002+3×2000+1)2=4006001214.(1)100×7×(7+1)+25;100×8×(8+1)+25.(2)(10n+5)2=10n(n+1)+25(3)19952=(10×199+5)2=10×199×(199+1)+25=398002515.216.(1)40 提示:x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy];(2)27.17.73 提示:x=n2-m2=(n+m)(n-m)(1≤m<n≤98,m,n为整数),因n+m与n-m•的奇偶性相同,故x是奇数或是4的倍数.18.B提示:把a=b+4代入ab+c2+4=0得(b+2)2+c2=019.C 提示:(x+y)(x-y)=1×1991=11×181=(-1)×(-1991)=(-11)×(-181)20.B提示:x-y=(a+2)2+(b-4)2≥021.D 提示:原式=12[(a-b)2+(b-c)2+(a-c)2]22. 718 提示:由a+b=1,a 2+b 2=2,得ab=-12, 利用a n+1+b n+1=(a n +b n )(a+b)-ab(a n-1+b n-1)•可分别求得 a 3+b 3=52,a 4+b 4=72,a 5+b 5=194 ,a 6+b 6=264. 23.48 提示:由a 2-a-1=0,得a -a -1=1,进而a 2+a -2=3,a 4+a -4=7, 所以a 8+7a -4=a 4(a 4+a -4)+7a -4-•1=7a -4+7a -4-1=7(a 4+a -4)-1=48.24.提示:设2222x y a b x y a b+=+⎧⎨+=+⎩, 则由①2-②得2xy=2ab ③ ②-③,得(x-y )2=(a -b)2,即│x-y │=│a-b │则x-y=a-b 或x-y=b-a,分别与x+y=a+b 联立解得x a y b =⎧⎨=⎩或x b y a =⎧⎨=⎩25.提示:由题意知:x i +y i =9(i=1,2,…,10)且x 1+x 2+…+x 10=y 1+y 2+…+y 10 因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=026.(1)提示:经观察,发现规律: (1)111n - 个 2225n 个=((1)3335n - 个)2 ,实际上, ((1)3335n - 个)2=(3332n + 个)2=(13×9992n + 个)2 =[13(10n -1)+2]2=(1053n +)2=2109n +1109n ++259 =21019n -+11019n +-+2529+= 2111n 个+ (1)111n + 个+3 = (1)111n - 个 2225n 个(2)一般地,设m=a 2+b 2,n=c 2+d 2,则mn=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a2c2+b2d2+2abcd+b2c2-•2abcd+a2d2=(ac+bd)2+(bc-ad)2或(a c-bd)2+(bc+ad)2.。

完整版)乘法公式专项练习题

完整版)乘法公式专项练习题

完整版)乘法公式专项练习题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()。

答案:D。

以上都可以。

2.下列多项式的乘法中,可以用平方差公式计算的是()。

答案:B。

(-a+b)(a-b)3.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()。

答案:C。

14.计算[(a-b)(a+b)]等于()。

答案:A。

a2-b25.已知(a+b)2=11,ab=2,则(a-b)2的值是()。

答案:B。

36.若x2-7xy+M是一个完全平方式,那么M是()。

答案:D。

49y27.若x,y互为不等于的相反数,n为正整数,你认为正确的是()。

答案:B。

xn、XXX一定是互为相反数。

8.下列计算中,错误的有()。

答案:D。

4个。

①(3a+4)(3a-4)=9a2-16;②(2a2-b)(2a2+b)=4a4-b2;③(3-x)(x+3)=-x2+9;④(-x+y)·(x+y)=-x2+y2.9.若x2-y2=30,且x-y=-5,则x+y的值是()。

答案:A。

5.10.已知a1996x1995,b1996x1996,c1996x1997,那么a2b2c2ab bc ca的值为()。

答案:C。

3.11.已知x0,且M(x22x1)(x22x1),N(x2x1)(x2x1),则M与N的大小关系为()。

答案:A。

XXX。

12.设a、b、c是不全相等的任意有理数。

若x a2bc,y b2ca,z c2ab,则x、y、z()。

答案:D。

至少有一个大于0,至少有一个小于0.1.$(-2x+y)(-2x-y)=4x^2-y^2$,$(-3x^2+2y^2)(3x^2+2y^2)=9x^4-4y^4$。

2.$(a+b-1)(a-b+1)=a^2+b^2-2b$,$(a+b-1)^2-(a-b+1)^2=4ab-2a$。

3.差为$(5-2)^2-(5-4)^2=9$。

4.$a^2+b^2-2a+2b+2=0$,$a^{2004}+b^{2005}=a^2+b^2-ab(a-b)^2=(a-b)^2$。

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。

初一数学下第九章 9.4 乘法公式练习题(附答案)

初一数学下第九章 9.4 乘法公式练习题(附答案)

9.4 乘法公式一.选择题1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±202.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.03.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣64.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+xy2B.x﹣3y+xy2C.x2﹣3y+xy2D.x﹣3y+x5.如果(3x2y﹣2xy2)÷m=﹣3x+2y,则单项式m为()A.xy B.﹣xy C.x D.﹣y6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.257.若(a+b)2=(a﹣b)2+A,则A为()A.2ab B.﹣2ab C.4ab D.﹣4ab8.若|a﹣b|=1,则b2﹣2ab+a2的值为()A.1 B.﹣1 C.±1 D.无法确定9.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab10.若S=(1﹣)(1﹣)(1﹣)…(1﹣),则S的值为()A.B.C.D.二.填空题11.计算:10ab3÷(﹣5ab)=.12.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.13.已知a+b=10,a﹣b=8,则a2﹣b2=.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=.15.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.16.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.17.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.三.解答题18.先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.19.先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=,b=﹣1.20.探究与思考:在计算m+m2+m3+…+m n的和时,我们可以用以下思路:令A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1;(1)试利用以上思路求出m+m2+m3+…+m n的和;(2)请利用(1)求出m+2m2+3m3+…+nm n的和.参考答案与解析一.选择题1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.0【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.【点评】此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.3.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣6【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=10a5,故A错误;(B)原式=4a4b2,故B错误;(D)原式=a2+a﹣6,故D错误;故选:C.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+xy2B.x﹣3y+xy2C.x2﹣3y+xy2 D.x﹣3y+x【分析】直接利用多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,进而求出即可.【解答】解:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+xy2.故选:B.【点评】此题主要考查了整式的除法运算,熟练进行单项式除以单项式运算是解题关键.5.如果(3x2y﹣2xy2)÷m=﹣3x+2y,则单项式m为()A.xy B.﹣xy C.x D.﹣y【分析】根据除数等于被除数除以商即可得到结果.【解答】解:根据题意得:(3x2y﹣2xy2)÷(﹣3x+2y)=﹣xy,则m=﹣xy.故选:B.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.若(a+b)2=(a﹣b)2+A,则A为()A.2ab B.﹣2ab C.4ab D.﹣4ab【分析】把A看作未知数,只需将完全平方式展开,用(a+b)2﹣(a﹣b)2即可求得A.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴A=(a+b)2﹣(a﹣b)2=4ab.故选:C.【点评】此题主要考查了完全平方式:(a+b)2=a2+2ab+b2与(a﹣b)2=a2﹣2ab+b2两公式的联系,它们的差是两数乘积的四倍.8.若|a﹣b|=1,则b2﹣2ab+a2的值为()A.1 B.﹣1 C.±1 D.无法确定【分析】先把b2﹣2ab+a2化成完全平方式,然后讨论a﹣b的正负性,最后求解.【解答】解:b2﹣2ab+a2=(a﹣b)2,又∵|a﹣b|=1∴a﹣b=1或﹣1,∴b2﹣2ab+a2=(a﹣b)2=1.故选:A.【点评】本题主要考查完全平方公式的逆用,熟练掌握公式并灵活运用是解题的关键.9.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.若S=(1﹣)(1﹣)(1﹣)…(1﹣),则S的值为()A.B.C.D.【分析】原式各括号利用平方差公式分解后,约分即可得到结果.【解答】解:S=(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××××××…××=(×××…×)×(×××…×)=×=,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题11.计算:10ab3÷(﹣5ab)=﹣2b2.【分析】根据整式的除法法则即可求出答案.【解答】解:原式=﹣a1﹣1b3﹣1=﹣2b2,故答案为:﹣2b2【点评】本题考查整式的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.13.已知a+b=10,a﹣b=8,则a2﹣b2=80.【分析】根据平方差公式即可求出答案.【解答】解:∵(a+b)(a﹣b)=a2﹣b2,∴a2﹣b2=10×8=80,故答案为:80【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.【分析】直接利用已知中的基本形式进而得出变化规律求出答案即可.【解答】解:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.故答案是:x8﹣1;x n+1﹣1.【点评】此题主要考查了平方差公式,正确得出式子变化规律是解题关键.15.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,此题得解.【解答】解:观察图形,可知:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.16.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.17.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.【点评】本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.三.解答题18.先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4﹣x2+x2+4x﹣5=4x﹣1,当x=时,原式=6﹣1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=,b=﹣1.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:a(a﹣2b)﹣(a+b)(a﹣b)=a2﹣2ab﹣a2+b2=﹣2ab+b2,当a=,b=﹣1时,原式=﹣2××(﹣1)+(﹣1)2=1+1=2.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.20.探究与思考:在计算m+m2+m3+…+m n的和时,我们可以用以下思路:令A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1;(1)试利用以上思路求出m+m2+m3+…+m n的和;(2)请利用(1)求出m+2m2+3m3+…+nm n的和.【分析】(1)根据已知条件,所求的式子乘以m,然后减去原式,即可求解;(2)求出所求的式子的二倍,相加时首项与尾项相加,然后利用(1)的结论即可求解.【解答】解:(1)设A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1.∴mA﹣A=m n+1﹣m,即(m﹣1)A=m n+1﹣m11∴A=(2)m+2m2+3m3+…+nm n+(m+2m2+3m3+…+nm n)=(n+1)(m+m2+m3+…+m n)=(n+1)∴m+2m2+3m3+…+nm n =【点评】本题考查了整式的混合运算,正确理解已知的式子i,求得(1)中式子的结果是关键.12。

14.2 乘法公式 计算题训练 (含答案)

14.2 乘法公式 计算题训练 (含答案)

14.2 乘法公式 计算训练(含答案)1.平方差公式:22()()a b a b a b +-=-.2. 平方差公式:222()2a b a ab b +=++,222()2a b a ab b -=-+ 补充:ab b a b a 4)(22=--+)(, bc ac ab c b a c b a 222)(2222---++=++ 练习:1. (1)(x +y +z )(x + y ﹣z )﹣(x + y + z )2. (2)(2x +1)2﹣(x +2)2.(3)(2x ﹣1)(2x +1)﹣(x ﹣6)(4x +3). (4)9(x ﹣2)2﹣(3x +2)(3x ﹣2)(5)(a ﹣3b )(3 b ﹣a ). (6)﹣4(a +1)2﹣(5+2a )(5﹣2a )(7)3(2x ﹣1)﹣(﹣3x ﹣4)(3x ﹣4) (8)(2x ﹣2)(x +1)﹣(x ﹣1)2﹣(x +1)2(9)(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2(10)()().(11)(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.(12).2.(1)(2a﹣3b)2﹣(3a﹣2b)2.(2)(x+2y)(x﹣2y)﹣(x+y)2.(3)(x+2y﹣1)(x﹣2y﹣1)(4)(2x﹣y﹣3)2(5)(a﹣2b+1)(a+2b+1)(6)(x+2y﹣1)2(7)(3m+n)2(3m﹣n)2.(8)(a﹣4)(a+4)﹣2(a﹣1)(2a+2).(9)(﹣2x+3y﹣1)(﹣2x﹣3y+1).(10)(a+5b)(a﹣5b)﹣(a+2b)2.(11)(x﹣2)2﹣(x+3)(x﹣3);(12)(a+1)(a2﹣1)(a﹣1).(13)(﹣1+3x)(﹣3x﹣1);(14)(x+1)2﹣(1﹣3x)(1+3x).(15)(2a+b)2[(a﹣b)2+2a(a﹣b)+a2].3.简便计算:(1)752﹣50×75+252(2)2016×2020﹣2017×2019(3)20202﹣2019×2021;(4)8.6792+1.3212+8.679×2.642.(5)(﹣202)2(6)1232﹣124×122(7)1002﹣200×99+992(8)2018×2020﹣201924.已知x+y=4,xy=3,求下列各式的值:(1)2x2y+2xy2;(2)x﹣y5.若x+y=3,xy=2,求x2﹣xy+y2的值.6.若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.7.若(4x﹣y)2=9,(4x+y)2=81,求xy的值.8.解方程(不等式):(1)(2x﹣3)(x+1)﹣2(x+1)(x﹣1)=3x﹣2;(2)2x(1﹣3x)﹣(3﹣2x)2≥﹣5x(2x﹣3).9.利用乘法公式计算:(1)(2a﹣1)(1+2a)﹣2(a﹣2)2(2)(2a﹣3b﹣1)(2a+3b﹣1)﹣(2a﹣3b+1)2(3)((x﹣2y+3)(﹣x﹣2y+3)(4)((5)((b﹣c+4)(c﹣b+4)﹣(b﹣c)2(6)(2(3+1)(32+1)(34+1)(38+1)(316+1)+1(7)x°x5+(x3)2﹣2(x2);(8)(m﹣2n+3)(m+2n﹣3);(9)4(a﹣b)2﹣(2a+b)(﹣b+2a)10.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值(3)已知x2﹣3x﹣1=0,求x2+的值.11.(1)已知m2﹣n2=24,m+n=8,求m﹣n的值;(2)已知xy=5,x+y=6,求x﹣y的值.12.分别计算下列各式的值:(1)填空:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…由此可得(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(2)求1+2+22+23+…+27+28+29+210的值;(3)根据以上结论,计算:1+3+32+33+…+397+398+399.14.2 乘法公式计算训练参考答案与试题解析1.(1)(x+y+z)(x+y﹣z)﹣(x+y+z)2=(x+y)2﹣z2﹣[(x+y)+z]2=(x+y)2﹣z2﹣[(x+y)2+2z(x+y)+z2]=(x+y)2﹣z2﹣(x+y)2﹣2z(x+y)﹣z2=﹣2z2﹣2xz﹣2yz.(2)(2x+1)2﹣(x+2)2=4x2+4x+1﹣x2﹣4x﹣4=3x2﹣3.(3)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.(4)原式=9(x2﹣4x+4)﹣(9x2﹣4)=9x2﹣36x+36﹣9x2+4=﹣36x+40.(5)原式=﹣(a﹣3b)(a﹣3b)=﹣(a﹣3b)2=﹣a2+3ab﹣9b2.(6)原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.(7)原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.(8)原式=2x2+2x﹣2x﹣2﹣(x2﹣2x+1)﹣(x2+2x+1)=2x2+2x﹣2x﹣2﹣x2+2x﹣1﹣x2﹣2x﹣1=﹣4.(9)原式=4x2﹣(4x2﹣1)+x2﹣4x+4=x2﹣4x+5.(10)(x2+)(x2﹣)=(x2)2﹣()2=x4﹣.(11)原式=a2﹣4b2﹣(a2﹣4ab+4b2)﹣4ab=a2﹣4b2﹣a2+4ab﹣4b2﹣4ab=﹣8b2.(12)=(a2﹣a++a2+a+)(2a2﹣)=(2a2+)(2a2﹣)=4a4﹣2、(1)原式=4a2﹣12ab+9b2﹣9a2+12ab﹣4b2=﹣5a2+5b2.(2)原式=x2﹣4y2﹣(x2+2xy+y2)=﹣5y2﹣2xy;(3)原式=(x﹣1)2﹣(2y)2=x2﹣2x+1﹣4y2;(4)原式=(2x﹣y)2﹣6(2x﹣y)+9=4x2﹣4xy+y2﹣12x+6y+9.(5)原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2(6)原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.(7)原式=[(3m+n)(3m﹣n)]2=(9m2﹣n2)2=81m4﹣m2n2+n4.(8)(a﹣4)(a+4)﹣2(a﹣1)(2a+2)=a2﹣42﹣4(a﹣1)(a+1)=a2﹣16﹣4(a2﹣1)=a2﹣16﹣4a2+4=﹣3a2﹣12.(9)(﹣2x+3y﹣1)(﹣2x﹣3y+1)=[(﹣2x)+(3y﹣1)][(﹣2x)﹣(3y﹣1)]=(﹣2x)2﹣(3y﹣1)2=4x2﹣9y2+6y﹣1.(10)(a+5b)(a﹣5b)﹣(a+2b)2=(a2﹣25b2)﹣(a2+4ab+4b2)=a2﹣25b2﹣a2﹣4ab﹣4b2=﹣29b2﹣4ab.(11)原式=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13;(12)(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.(13)原式=(﹣1)2﹣(3x)2=1﹣9x2;(14)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.(15)(2a+b)2[(a﹣b)2+2a(a﹣b)+a2]=(2a+b)2(a2﹣2ab+b2+2a2﹣2ab+a2)=(2a+b)2(4a2﹣4ab+b2)=(2a+b)2(2a﹣b)2=(4a2﹣b2)2.3.(1)原式=752﹣2×25×75+252=(75﹣25)2=502=2500;(2)原式=(2018﹣2)×(2018+2)﹣(2018﹣1)×(2018+1)=20182﹣22﹣(20182﹣1)=20182﹣4﹣20182+1=﹣3.(3)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+1=1;(4)8.6792+1.3212+8.679×2.642=(8.679+1.321)2=100.(5)原式=(200+2)2 =2002+2×200×2+22=40 000+800+4=40 804;(6)原式=1232﹣(123+1)(123﹣1)=1232﹣(1232﹣12)=1.(7)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(8)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.4.(1)∵x+y=4,xy=3,∴2x2y+2xy2=2xy(x+y)=2×4×3=24;(2)∵x+y=4,xy=3,∴(x﹣y)2=(x+y)2﹣4xy=42﹣4×3=4.∴.5.把x+y=3两边平方得:(x+y)2=9,即x2+2xy+y2=9,将xy=2代入得:x2+4+y2=9,即x2+y2=5,则原式=5﹣2=3.6.(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.7.∵(4x﹣y)2=9①,(4x+y)2=81②,∴②﹣①得:(4x+y)2﹣(4x﹣y)2=72,∴4×4x×y=72,整理得:xy=.8.(1)(2x﹣3)(x+1)﹣2(x+1)(x﹣1)=3x﹣22x2+2x﹣3x﹣3﹣2(x2﹣1)=3x﹣2,则2x2﹣x﹣3﹣2x2+2=3x﹣2,整理得:﹣4x=﹣1,解得:x=;(2)2x(1﹣3x)﹣(3﹣2x)2≥﹣5x(2x﹣3)2x﹣6x2﹣9﹣4x2+12x≥﹣10x2+15x,整理得:﹣x≥9,解得:x≤﹣9.9.(1)原式=4a2﹣1﹣2(a2﹣4a+4)=4a2﹣1﹣2a2+8a﹣8=2a2+8a﹣9;(2)原式=(2a﹣1)2﹣9b2﹣[(2a﹣3b)+1]2=4a2﹣4a+1﹣9b2﹣[4a2﹣12ab+9b2+2(2a﹣3b)+1]=4a2﹣4a+1﹣9b2﹣4a2+12ab﹣9b2﹣4a+6b﹣1=﹣18b2﹣8a+12ab+6b.(3)(x﹣2y+3)(﹣x﹣2y+3)=(3﹣2y)2﹣x2=9﹣12y+4y2﹣x2.(4)原式=[(p﹣)(p+)(p2+)]2=[(p2﹣)(p2+)]2=(p4﹣)2=p8﹣p4+.(5)原式=[4+(b﹣c)][4﹣(b﹣c)]﹣(b﹣c)2=42﹣(b﹣c)2﹣(b﹣c)2=16﹣2(b﹣c)2=16﹣2b2+4bc﹣2c2.(6)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)+1=(34﹣1)(34+1)(38+1)(316+1)+1=(38﹣1)(38+1)(316+1)+1=(316﹣1)(316+1)+1=332﹣1+1=332(7)原式=x5+x6﹣2x2;(8)原式=[m﹣(2n﹣3)][m+(2n﹣3)]=m2﹣(2n﹣3)2=m2﹣(4n2﹣12n+9)=m2﹣4n2+12n﹣9;(9)原式=4a2﹣8ab+4b2﹣(4a2﹣b2)=4a2﹣8ab+4b2﹣4a2+b2=﹣8ab+5b2.10.(1)因为x+y=5,xy=3,所以x2+y2=(x+y)2﹣2xy=25﹣6=19;即x2+y2的值是19;(2)∵x﹣y=5,∴(x﹣y)2=x2+y2﹣2xy=25,又∵x2+y2=51,∴2xy=26,∴(x+y)2=x2+y2+2xy=51+26=77;即(x+y)2的值是77;(3)解:∵x2﹣3x﹣1=0∴x﹣3﹣=0,∴x﹣=3,∴x2+=(x﹣)2+2=11,即x2+的值是11.11.(1)∵m2﹣n2=(m+n)(m﹣n)=24,m+n=8,∴;(2)∵xy=5,x+y=6,∴(x﹣y)2=(x+y)2﹣4xy=62﹣4×5=16,x﹣y=±4.12.(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…由此可得(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(2)计算:1+2+22+23+…+27+28+29=(2﹣1)×(29+28+27+26+25+24+23+22+2+1)=210﹣1;(3)原式==;故答案为:(1)x2﹣1,x3﹣1,x4﹣1,x10﹣1.。

人教版 八年级上册数学 14.2 乘法公式 同步课时训练(含答案) (2)

人教版 八年级上册数学 14.2 乘法公式 同步课时训练(含答案) (2)

14.2 乘法公式同步训练一、选择题1. 计算(-a-b)2的结果是()A.a2+b2B.a2+2ab+b2C.a2-b2D.a2-2ab+b22. 将202×198变形正确的是()A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+43. 若a2+ab+b2=(a-b)2+X,则整式X为()A.ab B.0 C.2ab D.3ab4. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 若(2x+3y)(mx-ny)=9y2-4x2,则m,n的值分别为() A.2,3 B.2,-3C.-2,-3 D.-2,36. 将9.52变形正确的是()A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.52 7. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)48. 若(x+a)2=x2+bx+25,则()A.a=3,b=6B.a=5,b=5或a=-5,b=-10C.a=5,b=10D.a=-5,b=-10或a=5,b=109. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b)D.(a+b)(a-2b)10. 如图,阴影部分是边长为a的大正方形剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A .①②B .②③C .①③D .①②③二、填空题11. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.12. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭13. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .14. 若x -y =6,xy =7,则x 2+y 2的值等于________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.ab ba16. 根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题17. 计算:(41)(41)a a ---+18. 阅读材料后解决问题.小明遇到一个问题:计算(2+1)×(22+1)×(24+1)×(28+1).经过观察,小明发现将原式进行适当的变形后,可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)×(22+1)×(24+1)×(28+1)=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)=(22-1)×(22+1)×(24+1)×(28+1)=(24-1)×(24+1)×(28+1)=(28-1)×(28+1)=216-1.请你根据小明解决问题的方法,试着解决下列问题:(1)计算:(2+1)×(22+1)×(24+1)×(28+1)×(216+1);(2)计算:(3+1)×(32+1)×(34+1)×(38+1)×(316+1);(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).19. 观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(1)(x-1)(x4+x3+x2+x+1)=________;(2)根据规律可得:(x-1)(x n-1+…+x+1)=________(其中n为正整数);(3)计算:(3-1)(350+349+348+…+32+3+1);(4)计算:(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1.20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.答案一、选择题1. 【答案】B[解析] 原式=(-a)2-2·(-a)·b+b2=a2+2ab+b2.2. 【答案】A[解析] 202×198=(200+2)×(200-2)=2002-4.3. 【答案】D4. 【答案】A[解析] 原式=(-2x-3)(-2x+3)=(-2x)2-32=4x2-9.5. 【答案】C[解析] 因为(2x+3y)(mx-ny)=2mx2-2nxy+3mxy-3ny2=9y2-4x2,所以2m=-4,-3n=9,-2n+3m=0,解得m=-2,n=-3.6. 【答案】D[解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.7. 【答案】C[解析] (x+1)(x2+1)(x-1)=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.8. 【答案】D[解析] 因为(x+a)2=x2+bx+25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】A [解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.10. 【答案】D [解析] 在图①中,左边的图形阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),故可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式; 在图②中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(2b +2a )(a -b )=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式;在图③中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式.二、填空题11. 【答案】±3 [解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m =±3.12. 【答案】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 【解析】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭13. 【答案】±3 [解析] ∵(x -ay )(x +ay )=x 2-a 2y 2=x 2-9y 2,∴a 2=9,解得a =±3.14. 【答案】50 [解析] 因为x -y =6,xy =7,所以x 2+y 2=(x -y)2+2xy =62+2×7=50.15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】解:(1)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)=232-1.(2)原式=×(3-1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)=. (3)若m ≠n ,则原式=(m -n )(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=;若m =n ,则原式=2m ·2m 2·……·2m 16=32m 31.19. 【答案】 解:(1)x 5-1(2)x n -1(3)(3-1)(350+349+348+…+32+3+1)=351-1.(4)因为(-2-1)[(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1]=(-2)2021-1=-22021-1,所以(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1=22021+13.20. 【答案】解:(1)由已知可得:(a+b)1展开式中共有2项,(a+b)2展开式中共有3项,(a+b)3展开式中共有4项,……则(a+b)n展开式中共有(n+1)项.(2)(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.。

乘法公式计算练习含答案

乘法公式计算练习含答案

乘法公式计算练习一.完全平方公式(共30小题)1.计算:(1)(﹣2x)3﹣4x(x﹣2x2);(2)(a﹣b)2+b(a﹣b).2.计算:(2x+1)2﹣(x+2)2.3.计算:(2a﹣3b)2﹣(3a﹣2b)2.4.计算:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2].5.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.6.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.7.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.8.运算:(x+2)29.已知:a m•a n=a5,(a m)n=a2(a≠0).(1)填空:m+n=,mn=;(2)求m2+n2的值;(3)求(m﹣n)2的值.10.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.11.已知x﹣y=1,x2+y2=9,求xy的值.12.计算:(1)9992.(2)计算()2﹣()2.13.若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x4+y4;(3)x﹣y.14.(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知a﹣b=4,ab=3求a2﹣5ab+b2的值.15.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.16.化简:(a+1)2﹣a(a+1)﹣1.17.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.18.若x+y=3,xy=2,求x2﹣xy+y2的值.19.已知x=2y﹣6,求﹣3x2+12xy﹣12y2的值.20.已知x+y=4,x2+y2=10.(1)求xy的值;(2)求(x﹣y)2﹣3的值.21.23.142﹣23.14×6.28+3.142.22.(a﹣3b)(3b﹣a).23.(3a﹣b)2.24.计算(2a﹣1)2+2(2a﹣1)+3.25.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).26.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.27.已知(a+b)2=13,(a﹣b)2=7,求下列各式的值:(1)a2+b2;(2)ab.28.若(4x﹣y)2=9,(4x+y)2=81,求xy的值.29.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.30.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.二.平方差公式(共14小题)31.计算:(a+5b)(a﹣5b)﹣(a+2b)2.32.(a+1)(a2﹣1)(a﹣1).33.利用乘法公式进行简算:(1)2019×2021﹣20202;(2)972+6×97+9.34.(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.35.计算:(x+y+z)(x+y﹣z)﹣(x+y+z)2.36.计算:(x+3)(x﹣3)﹣(2﹣x)2.37.计算(1)(2a+b)2(2)(5x+y)(5x﹣y)38.运用适当的公式计算:(1)(﹣1+3x)(﹣3x﹣1);(2)(x+1)2﹣(1﹣3x)(1+3x).39.利用整式乘法公式计算下列各题:(1)201×199(2)101240.计算:(2x+3y)(2x﹣3y).41.计算:3(2x﹣1)2﹣(﹣3x﹣4)(3x﹣4).42.化简:b(a+b)+(a+b)(a﹣b).43.(﹣2x+3y﹣1)(﹣2x﹣3y+1).44.(1﹣a)(a+1)(a2+1)(a4+1).秋季第十讲——乘法公式计算练习参考答案与试题解析一.完全平方公式(共30小题)1.计算:(1)(﹣2x)3﹣4x(x﹣2x2);(2)(a﹣b)2+b(a﹣b).【分析】(1)根据幂的乘方与积的乘方运算法则以及单项式乘多项式的运算法则计算即可;(2)根据完全平方公式以及单项式乘多项式的运算法则计算即可.【解答】解:(1)(﹣2x)3﹣4x(x﹣2x2)=﹣8x3﹣4x2+8x3=﹣4x2;(2)(a﹣b)2+b(a﹣b)=a2﹣2ab+b2+ab﹣b2=a2﹣ab.【点评】本题主要考查了整式的混合运算,熟记完全平方公式以及单项式乘多项式的运算法则是解答本题的关键.2.计算:(2x+1)2﹣(x+2)2.【分析】根据完全平方公式展开后,再合并同类项即可.【解答】解:(2x+1)2﹣(x+2)2=4x2+4x+1﹣x2﹣4x﹣4=3x2﹣3.【点评】本题主要考查了整式的混合运算,熟记完全平方公式是解答本题的关键.(a±b)2=a2±2ab+b2.3.计算:(2a﹣3b)2﹣(3a﹣2b)2.【分析】利用完全平方公式将其展开,然后合并同类项.【解答】解:原式=4a2﹣12ab+9b2﹣9a2+12ab﹣4b2=﹣5a2+5b2.【点评】本题主要考查了完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.4.计算:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2].【分析】根据平方差公式以及单项式乘以多项式的运算把括号展开,再合并同类项,最后运用平方差公式计算即可.【解答】解:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2]=(2a+b)2(a2﹣2ab+b2+2a2﹣2ab+a2)=(2a+b)2(4a2﹣4ab+b2)=(2a+b)2(2a﹣b)2=(4a2﹣b2)2.【点评】此题主要考查了整式的乘法,熟练掌握忒覅覅买基金解答此题的关键.5.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.【分析】先根据完全平方公式得出(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47),再求出即可.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键,注意:(a+b)2=a2+2ab+b26.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.【分析】①先根据完全平方公式得出x2+5xy+y2=(x+y)2+3xy,再代入求出即可;②先根据完全平方公式求出x2+y2=(x+y)2﹣2xy=19,再根据完全平方公式得出x4+y4=(x2+y2)2﹣2x2y2,代入求出即可.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=343.【点评】本题考查了完全平方公式,能正确根据完全平方公式进行变形是解此题的关键,注意:(a+b)2=a2+2ab+b2.7.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第二步开始出错,其错误原因是去括号时没有变号;(2)请你帮助他写出正确的简化过程.【分析】(1)解答过程从第2步开始算错,根据去括号法则,括号前面是“﹣”号的,去括号和它前面“﹣”号,括号里面的每项都变号.第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)正确化简过程为:a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.【点评】本题考查整式的加减,整式加减实际是去括号、合并同类项的过程.8.运算:(x+2)2【分析】根据完全平方公式求出即可.【解答】解:(x+2)2=x2+4x+4.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键.9.已知:a m•a n=a5,(a m)n=a2(a≠0).(1)填空:m+n=5,mn=2;(2)求m2+n2的值;(3)求(m﹣n)2的值.【分析】(1)利用同底数幂的乘方和幂的乘方得到m+n和mn的值;(2)利用完全平方公式得到m2+n2=(m+n)2﹣2mn,然后利用整体代入的方法计算;(3)利用完全平方公式得到(m﹣n)2=m2+n2﹣2mn,然后利用整体代入的方法计算.【解答】解:(1)∵a m•a n=a5,(a m)n=a2,∴a m+n=a5,a mn=2,∴m+n=5,mn=2,故答案为5,2;(2)m2+n2=(m+n)2﹣2mn=52﹣2×2=21;(3)(m﹣n)2=m2+n2﹣2mn=21﹣2×2=17.【点评】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.也考查了积的乘方与幂的乘方.10.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.【分析】(1)把201化为200+1,然后利用完全平方公式计算;(2)把1998化为1999﹣1,2000化为1999+1,然后利用平方差公式计算.【解答】解:(1)原式=(200+1)2=2002+2×200×1+12=40401;(2)原式=19992﹣(1999﹣1)(1999+1)=19992﹣19992+1=1.【点评】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.也考查了平方差公式.11.已知x﹣y=1,x2+y2=9,求xy的值.【分析】把x﹣y=1两边平方,然后代入数据计算即可求出xy的值.【解答】解:因为x﹣y=1,所以(x﹣y)2=1,即x2+y2﹣2xy=1;因为x2+y2=9,所以2xy=9﹣1,解得xy=4,即xy的值是4.【点评】本题考查了完全平方公式.解题的关键是掌握完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.12.计算:(1)9992.(2)计算()2﹣()2.【分析】(1)把999化为1000﹣1,然后利用完全平方公式计算;(2)利用完全平方公式展开,然后去括号后合并即可.【解答】解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.【点评】本题考查了完全平方公式:灵活运用完全平方公式.完全平方公式为(a±b)2=a2±2ab+b2.13.若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x4+y4;(3)x﹣y.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先根据完全平方公式进行变形,再代入求出即可;(3)先求出(x﹣y)2的值,再根据完全平方公式求出即可.【解答】解:(1)∵x2+y2=8,xy=2,∴(x+y)2=x2+y2+2xy=8+2×2=12;(2)∵x2+y2=8,xy=2,∴x4+y4=(x2+y2)2﹣2x2y2=82﹣2×22=64﹣8=56;(3)∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣2×2=4,∴x﹣y=±2.【点评】本题考查了完全平方公式,能熟记完全平方公式的内容是解此题的关键,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.14.(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知a﹣b=4,ab=3求a2﹣5ab+b2的值.【分析】(1)由a3m+2n=a3m•a2n=(a m)3•(a n)2,即可求得答案;(2)先根据完全平方公式进行变形,再代入求出即可.【解答】解:(1)∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=72;(2)∵a﹣b=4,ab=3,∴a2﹣5ab+b2=(a﹣b)2﹣3ab=42﹣3×3=16﹣9=7.【点评】此题考查了同底数幂的乘法与幂的乘方,完全平方公式.此题难度适中,注意掌握整式的运算法则和乘法公式是解题的关键.15.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.【点评】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练运用完全平方公式和多项式乘多项式的运算法则,本题属于基础题型.16.化简:(a+1)2﹣a(a+1)﹣1.【分析】利用完全平方公式以及整式的乘法运算法则计算得出答案.【解答】解:原式=a2+2a+1﹣a2﹣a﹣1=a.【点评】此题主要考查了单项式乘以多项式、完全平方公式,正确掌握相关运算法则是解题的关键.17.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.【分析】(1)利用(a+b)2=(a﹣b)2+4ab,变形整式后整体代入求值;(2)先因式分解整式,再利用a2+b2=(a﹣b)2+2ab变形整式后代入求值.【解答】解:(1)原式=(a﹣b)2+4ab=52+4=29;(2)原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=1×(25+2)=27.【点评】本题考查了整式的恒等变形和整体代入的思想方法,掌握和熟练运用完全平方公式的几个变形,是解决本题的关键.18.若x+y=3,xy=2,求x2﹣xy+y2的值.【分析】把x+y=3两边平方,利用完全平方公式化简,将xy=2代入计算求出x2+y2的值,即可求出所求.【解答】解:把x+y=3两边平方得:(x+y)2=9,即x2+2xy+y2=9,将xy=2代入得:x2+4+y2=9,即x2+y2=5,则原式=5﹣2=3.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.已知x=2y﹣6,求﹣3x2+12xy﹣12y2的值.【分析】由x=2y﹣6可得x﹣2y=﹣6,再把所求式子利用提公因式法以及完全平方公式因式分解即可解答.【解答】解:由x=2y﹣6得x﹣2y=﹣6,∴﹣3x2+12xy﹣12y2=﹣3(x2﹣4xy+4y2)=﹣3(x﹣2y)2=﹣3×(﹣6)2=﹣108.【点评】本题主要考查了因式分解的应用,熟记完全平方公式是解答本题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20.已知x+y=4,x2+y2=10.(1)求xy的值;(2)求(x﹣y)2﹣3的值.【分析】(1)把x+y=4两边平方得到(x+y)2=16,然后利用完全平方公式和x2+y2=10可计算出xy的值;(2)利用完全平方公式得到(x﹣y)2﹣3=x2﹣2xy+y2﹣3,然后利用整体的方法计算.【解答】解:(1)∵x+y=4,∴(x+y)2=16,∴x2+2xy+y2=16,又∵x2+y2=10,∴10+2xy=16,∴xy=3;(2)(x﹣y)2﹣3=x2﹣2xy+y2﹣3=10﹣2×3﹣3=1.【点评】本题考查了完全平方公式:灵活运用完全平方公式:(a±b)2=a2±2ab+b2.21.23.142﹣23.14×6.28+3.142.【分析】利用完全平方公式得到原式=(23.14﹣3.14)2,然后进行乘方运算即可.【解答】解:原式=23.142﹣2×23.14×3.14+3.142=(23.14﹣3.14)2=400.【点评】本题考查了完全平方公式:熟练运用完全平方公式.完全平方公式为:(a±b)2=a2±2ab+b2.22.(a﹣3b)(3b﹣a).【分析】先变形得到原式=﹣(a﹣3b)2,然后利用完全平方公式计算.【解答】解:原式=﹣(a﹣3b)(a﹣3b)=﹣(a﹣3b)2=﹣a2+3ab﹣9b2.【点评】本题考查了完全平方公式:熟练运用完全平方公式.完全平方公式为:(a±b)2=a2±2ab+b2.23.(3a﹣b)2.【分析】根据完全平方公式进行计算.【解答】解:(3a﹣b)2=(3a)2﹣2×3a×b+b2=9a2﹣6ab+b2.【点评】本题考查了完全平方公式.解题的关键是掌握完全平方公式的运用,注意:完全平方公式有:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.24.计算(2a﹣1)2+2(2a﹣1)+3.【分析】先根据完全平方公式和单项式乘以多项式算乘法,再合并同类项即可.【解答】解:原式=4a2﹣4a+1+4a﹣2+3=4a2+2.【点评】本题考查了完全平方公式,单项式乘以多项式,合并同类项法则等知识点,能正确根据运算法则和乘法公式进行化简是解此题的关键,注意:(a+b)2=a2+2ab+b2,(a ﹣b)2=a2﹣2ab+b2.25.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解答】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【点评】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.26.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)﹣8=﹣3;当a+b=﹣5时,(a+b)﹣8=﹣5﹣8=﹣13.【点评】本题考查了完全平方公式在代数式求值中的应用,熟练掌握完全平方公式并正确变形是解题的关键.27.已知(a+b)2=13,(a﹣b)2=7,求下列各式的值:(1)a2+b2;(2)ab.【分析】(1)先利用完全平方公式将等式(a+b)2=13,(a﹣b)2=7的左边展开,然后两式相加即可求得a2+b2的值;(2)先利用完全平方公式将等式(a+b)2=13,(a﹣b)2=7的左边展开,然后两式相减即可求得ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=13,(a﹣b)2=a2﹣2ab+b2=7,∴a2+b2=[(a+b)2+(a﹣b)2]÷2=(13+7)÷2=10;(2)∵(a+b)2=a2+2ab+b2=13,(a﹣b)2=a2﹣2ab+b2=7,∴.【点评】本题主要考查的是完全平方公式,能够应用完全平方公式对等式进行变形是解题的关键.28.若(4x﹣y)2=9,(4x+y)2=81,求xy的值.【分析】已知等式利用完全平方公式化简,计算即可求出所求.【解答】解:∵(4x﹣y)2=9①,(4x+y)2=81②,∴②﹣①得:(4x+y)2﹣(4x﹣y)2=72,∴4×4x×y=72,整理得:xy=.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.29.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.【分析】已知等式利用完全平方公式化简,相加减即可求出所求.【解答】解:由题意可知x2+2xy+y2=16①,x2﹣2xy+y2=4②,①+②得:2x2+2y2=20,∴x2+y2=10,①﹣②得:4xy=12,∴xy=3,∴3xy=9.【点评】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.30.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与﹣1的和的5次幂,由(1)中的结论得:25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5,计算出结果.【解答】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25﹣5×24+10×23﹣10×22+5×2﹣1.=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5.=(2﹣1)5,=1.【点评】本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.二.平方差公式(共14小题)31.计算:(a+5b)(a﹣5b)﹣(a+2b)2.【分析】根据平方差公式、完全平方公式进行计算即可.【解答】解:(a+5b)(a﹣5b)﹣(a+2b)2=(a2﹣25b2)﹣(a2+4ab+4b2)=a2﹣25b2﹣a2﹣4ab﹣4b2=﹣29b2﹣4ab.【点评】本题考查平方差公式、完全平方公式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.32.(a+1)(a2﹣1)(a﹣1).【分析】根据平方差公式、完全平方公式进行计算即可.【解答】解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.【点评】本题考查平方差公式、完全平方公式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.33.利用乘法公式进行简算:(1)2019×2021﹣20202;(2)972+6×97+9.【分析】(1)利用平方差公式将2019×2021转化为(2020﹣1)(2020+1),进而得到20202﹣1﹣20202,求出答案;(2)利用完全平方公式将972+6×97+9转化为(97+3)2即可.【解答】解:(1)2019×2021﹣20202=(2020﹣1)(2020+1)﹣20202=20202﹣1﹣20202=﹣1;(2)972+6×97+9=972+2×3×97+32=(97+3)2=1002=10000.【点评】本题考查平方差公式、完全平方公式的应用,掌握平方差公式、完全平方公式的结构特征是正确应用的关键.34.(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.【分析】先利用平方差公式和完全平方公式展开,然后去括号后合并即可.【解答】解:原式=a2﹣4b2﹣(a2﹣4ab+4b2)﹣4ab=a2﹣4b2﹣a2+4ab﹣4b2﹣4ab=﹣8b2.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.35.计算:(x+y+z)(x+y﹣z)﹣(x+y+z)2.【分析】分别根据平方差公式以及完全平方公式展开后,再合并同类项即可.【解答】解:(x+y+z)(x+y﹣z)﹣(x+y+z)2=(x+y)2﹣z2﹣[(x+y)+z]2=(x+y)2﹣z2﹣[(x+y)2+2z(x+y)+z2]=(x+y)2﹣z2﹣(x+y)2﹣2z(x+y)﹣z2=﹣2z2﹣2xz﹣2yz.【点评】本题主要考查了整式的混合运算,熟记公式是解答本题的关键.36.计算:(x+3)(x﹣3)﹣(2﹣x)2.【分析】根据平方差公式和完全平方公式展开后,再合并同类项即可.【解答】解:(x+3)(x﹣3)﹣(2﹣x)2.=x2﹣9﹣(4﹣4x+x2)=x2﹣9﹣4+4x﹣x2=4x﹣13.【点评】本题主要考查了平方差公式和完全平方公式,熟记公式是解答本题的关键.37.计算(1)(2a+b)2(2)(5x+y)(5x﹣y)【分析】(1)利用完全平方公式计算即可得到结果;(2)利用平方差公式计算即可得到结果.【解答】解:(1)原式=(2a)2+4ab+b=4a2+4ab+b;(2)原式=(5x)2﹣y2=25x2﹣y2.【点评】此题考查了整式的运算,熟练掌握乘法公式是解本题的关键.38.运用适当的公式计算:(1)(﹣1+3x)(﹣3x﹣1);(2)(x+1)2﹣(1﹣3x)(1+3x).【分析】(1)根据平方差公式进行计算即可.(2)根据平方差公式、完全平方公式进行计算即可.【解答】解:(1)原式=(﹣1)2﹣(3x)2=1﹣9x2;(2)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.【点评】本题考查了整式的混合运算,掌握运算法则是解题的关键.39.利用整式乘法公式计算下列各题:(1)201×199(2)1012【分析】(1)把原式化为(200+1)(200﹣1)进行计算即可;(2)根据101=100+1即可得出结论.【解答】解:(1)原式=(200+1)(200﹣1)=40000﹣1=39999;(2)原式=(100+1)2=1002+200+1=10000+200+1=10201.【点评】本题考查了平方差公式与完全平方公式,熟记公式是解答此题的关键.40.计算:(2x+3y)(2x﹣3y).【分析】根据平方差公式直接进行计算即可.【解答】解:(2x+3y)(2x﹣3y)=(2x)2﹣(3y)2=4x2﹣9y2.【点评】本题考查平方差公式的应用,掌握平方差公式的结构特征是正确应用的前提.41.计算:3(2x﹣1)2﹣(﹣3x﹣4)(3x﹣4).【分析】根据去括号法则以及完全平方公式和平方差公式化简计算即可.【解答】解:原式=3(4x2﹣4x+1)﹣(16﹣9x2)=12x2﹣12x+3﹣16+9x2=21x2﹣12x﹣13.【点评】本题主要考查了整式的混合运算,熟记完全平方公式和平方差公式是解答本题的关键.42.化简:b(a+b)+(a+b)(a﹣b).【分析】根据单项式乘多项式的运算法则及平方差公式化简即可.【解答】解:b(a+b)+(a+b)(a﹣b)=ab+b2+a2﹣b2=ab+a2.【点评】此题考查了整式的运算,熟练掌握运算法则是解本题的关键.43.(﹣2x+3y﹣1)(﹣2x﹣3y+1).【分析】根据平方差公式以及完全平方公式计算即可.【解答】解:(﹣2x+3y﹣1)(﹣2x﹣3y+1)=[(﹣2x)+(3y﹣1)][(﹣2x)﹣(3y﹣1)]=(﹣2x)2﹣(3y﹣1)2=4x2﹣9y2+6y﹣1.【点评】本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a﹣b)=a2﹣b2;完全平方公式:(a±b)2=a2±2ab+b2.44.(1﹣a)(a+1)(a2+1)(a4+1).【分析】根据平方差公式解答即可.【解答】解:(1﹣a)(a+1)(a2+1)(a4+1)=(1﹣a2)(1+a2)(a4+1)=(1﹣a4)(1+a4)=1﹣a8.【点评】此题考查平方差公式,关键是根据两个数的和与这两个数的差相乘,等于这两个数的平方差解答.第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x
4.
2
2 2
6.(—m n+2)(—m n—2).
2
8.(3mn—5ab).
10.(—3x2+5y)2.
12.(y—3)2—2(y+2)(y—2).
1.应用公式计算:(1)103 97;(2)1.02 0.98;
2.当x=1,y=2时,求(2x—y)(2x+y)—(x+2y)(2y—x)的值.
12 2
3.用适当方法计算:(1)(40^);⑵299.
4.若a+b=17,ab=60,求(a—b)2和a2+b2的值.
提升精练
一、填空题
a a
1
2.(—3x—5y)(—3x+5y)=.
3.在括号中填上适当的整式:
(1)(x+5)(
(3)(—1—3x)(_
)=x2—
)=
25;
(2)(m—n)(
)=n2—m2;
B、原式=(—7+a+b)[—7—(a+b)]=7+(a+b)
22
C、原式=[—(7—a—b)][—(7+a+b)]=7—(a+b)
D、原式=[—(7+a)+b][—(7+a)—b]=(7+a)2—b2
3.(a+3)(a2+9)(a—3)的计算结果是().
4444
A、a+81B、一a—81C、a—81D、81—a
乘法公式
巩固专练
一、填空题
1.直接写出结果:
(1)(x+2)(x—2)=;(2)(2x+5y)(2x—5y)=
22
(3)(x—ab)(x+ab)=;⑷(12+b )(b—12)=.
2.直接写出结果:
(1)(x+5)=;(2)(3m+2n)2=;
(3)(x—3y)2=;(4心一3)2=;
2 2
(5)(—x+y)=;(6)(—x—y)=.
1—9x2;
(4)(a+2b)(_
)=4b2—a2
4.(1)x2—10x+
=(
—5)2:
2 ,
(2)x+
+16=(_
—4)2;
2
(3)x—x+
=(x—
)2;
2
(4)4x+
+9=(_
+3)2.
5.多项式x2—8x+k是一个完全平方式,则
k=.
6.若xห้องสมุดไป่ตู้+2ax+16是一个完全平方式,则a=
、选择题
1•下列各式中能使用平方差公式的是()•
6.
(a+b+2c)(a+b—2 c).
7.(x+2y—z)(x—2y+z).
2
(a+b+c)•
1
9
四、解答题
1.一长方形场地内要修建一个正方形花坛,预计花坛边长比场地的长少8米、宽少6米,且场地面积比花
坛面积大104平方米,求长方形的长和宽.
2.回答下列问题:
(1)填空:x2
1
(2)若a5,则a—的值是多少?
a
⑶若a2—3a+1=0,则a2•2的值是多少?
a
跨越导练=
1•巧算:(1)(1*)(1 *)(1 *)(1 -28)25;
(2)(3+1)(32+1)(34+1)(38+1)…(3»+1)•
2.已知:x,y为正整数,且4x2—9『=31,你能求出x,y的值吗?试一试.
3.若x2—2x+10+ /+6y=0,求(2x—y)2的值.
3•先观察、再计算:
(1)(x+y)(x—y)=;(2)(y+x)(x—y)=;
(3)(y—x)(y+x)=;(4)(x+y)(—y+x)=;
(5)(x—y)(—x—y)=;(6)(—x—y)(—x+y)=.
4.若9x2+4y2=(3x+2y)2+M,贝V M =.
二、选择题
1•下列各多项式相乘,可以用平方差公式的有().
"/ 22、,2 | 2、
A、(x—y)(y+x)
12131213
B、(一m n)(m n)
525
C、(—2x—3y)(2x+3y)
D、(4x—3y)(—3y+4x)
2•下面计算(一7+a+b)(—7—a—b)正确的是()•
2 2
A、原式=(—7+a+b)[—7—(a+b)]= —7—(a+b)
22
2 2 2
(B)(x—y)=x—y
(D)(x—y)(x+y)=(—x—y)(x—y)
6.下列等式不能恒成立的是().
2c2c,2
(A)(3x—y)=9x—6xy+y
2(-\2
(B)(a+b—c)=(c—a—b)
.1.212 2
(C)
2244
(D)(x—y)(x+y)(x—y )=x—y
2. (xn—2)(xn+2).
4•下列式子不能成立的有()个.
①(x—y)2=(y—x)2②(a—2b)2=a2—4b2③(a—b)=(b—a)(a—b)2
④(x+y)(x—y)=(—x—y)(—x+y)⑤1—(1+x)2=—x2—2x
3.
4.
2 2
(2a+1)2(2a—1)2.
5.(x—2y)2+2(x+2y)(x—2y)+(x+2y)2.
4.若a4+b4+a2b2=5,ab=2,求a2+b2的值.
5.若厶ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,试问△ABC的三边有何关系?
乘法公式参考答案
巩固专练
一、 填空题
x2—4;(2)4x2—25y2;(3)x2—a2b2;
2.(1)
2 2 2
x+10x+25;(2)9m+12mn^4n;
2 2
(3)x—6xy+9y;
4a
3
2 2 2 2
x—2xy+y;(6)x+2xy+y.
2 2
—x;(4)
2 2
3.(1)x—y;
4.—12xy.
二、选择题
⑵x2-
-y2;(3)
1.B 2.C
3.
C 4
三、计算题
.2
4b
1.9a-
4
2.
2n
x—4.
-4 2._
9
2
6.mn—47
x+xy+
16
9.25a4—10a2b4+b8.
10.
12.—y2—6y+ 仃.
四、解答题
1.(1)9991;(2)0.9996
1
3.(1)1640;(2)89401.
提升精练
一、 填空题
2
a22
4-9.2.9x—25y.
2 2 2 2
x—y;(5)y—x;
4.下列多项式不是完全平方式的是(
2
(A)x—4x—4
(C)9a2+6ab+b2
5.下列等式能够成立的是().
2 2
(A)(a—b)=(—a—b)
( ).
(C)30(D)60
(B)(1—3m)(1+3m)=1—3m2
2 2
(D)(2ab—n)(2ab+n)=4ab2—n2
).
12
(B)m2m
4
(D)4t2+12t+9
①(—2ab+5x)(5x+2ab)②(ax—y)(—ax—y)
③(—ab—c)(ab—c)④(m+n)(—m—n)
(A)4个(B)3个(C)2个(D)1个
2.若x+y=6,x—y=5,贝U x2—y2等
(A)11(B)15
3.下列计算正确的是().
(A)(5—m)(5+m)=m2—25
2
(C)(—4—3n)(—4+3n)= —9n+16
相关文档
最新文档