热力学统计物理课后11

合集下载

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。

”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。

我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。

”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。

A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。

A.对B.错7【判断题】(1分)温度和热是一个概念。

A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。

A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。

A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。

热力学统计物理答案精品资料

热力学统计物理答案精品资料

第一章热力学的基本规律1.1 试求理想气体的体胀系数, 压强系数和等温压缩系数。

解:已知理想气体的物态方程为pV nRT ,(1)由此易得T1 VV T1 pp T1 V V pTpVnR 1 ,pV TnR 1 ,pV T1nRT1 .Vp2p(2)(3)(4)1.2 证明任何一种具有两个独立参量T , p的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:ln V =αdTκdpT如果1, T1,试求物态方程。

T p解:以 T , p 为自变量,物质的物态方程为V V T , p ,其全微分为V Vdp.(1)dV dTT p p T全式除以 V ,有dV1VdT 1Vdp.V V T V pp T根据体胀系数和等温压缩系数T 的定义,可将上式改写为dVT dp.(2)dTV上式是以 T ,p 为自变量的完整微分,沿一任意的积分路线积分,有ln VdT T dp .(3)若1 ,T1 ,式( 3)可表为 TplnV1 1 (4)dTdp .Tp选择图示的积分路线,从 (T 0 , p 0 ) 积分到 T , p 0 ,再积分到( T , p ),相应地体积由 V 0 最终变到 V ,有ln V =ln Tln p,V 0 T 0p 0即pV p 0V 0 C (常量),TT 0或p VC. T(5)式(5)就是由所给1 , T1求得的物态方程。

确定常量 C 需要进一步的Tp实验数据。

1.8 满足pV n C 的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量C n为C n nC V n 1解:根据式( 1.6.1 ),多方过程中的热容量C n lim QT nT 0U V.(1)pTT n n对于理想气体,内能U 只是温度 T 的函数,UC V ,T n所以C n C VV(2)p.T n将多方过程的过程方程式 pV n C 与理想气体的物态方程联立,消去压强p 可得TV n 1C1(常量)。

热力学与统计物理答案(汪志诚)

热力学与统计物理答案(汪志诚)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学统计物理 课后习题 答案及热力学统计物理各章重点总结

热力学统计物理  课后习题  答案及热力学统计物理各章重点总结

第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=zy x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 l ll a U ε∑= 是系统的内能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

注:(4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。

7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lccp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lc zy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222zyxn n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα=== ?(2) 11,V p nR p T pV Tβ=== ?(3) 2111.T T V nRT V p V p pκ=-=--= ? ? ???????? (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -?如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p=+ ? ?(1)全式除以V ,有11.p TdV V V dT dp V V T V p =+ ? ?根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-? (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ??=- (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p - 即00p V pV C T T ==(常量),或.p V C T=(5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=?=?T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学与统计物理课后习题答案

热力学与统计物理课后习题答案

第六章近独立粒子的最概然分布6.1试根据式()证明:在体积V内,在到E+d£的能量范围内,三维自由粒子的量子态数为解:式()给出,在体积V L3内,在P x到P x dP x, P y到P y dP y,P x 到P xdP x的动量范围内,自由粒子可能的量子态数为V /八3 dP x dP y dP z. (h用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V内,动量大小在P到P dP范围内三维自由粒子可能的量子态数为4 n 2^ -P dp. h(2)上式可以理解为将空间体积元4 Vp2dp (体积V,动量球壳4nP2dp )除以相格大小h3而得到的状态数.自由粒子的能量动量关系为因此将上式代入式(2),即得在体积V内,在到d的能量范围内,三维自由粒子的量子态数为D()d - 2m 2 'd . (3)h6.2试证明,对于一维自由粒子,在长度L内,在到d的能量范围内,量子态数为解:根据式(),一维自由粒子在空间体积元dxdp x内可能的量子态数为在长度L内,动量大小在P到P dp范围内(注意动量可以有正负两个可能的方向)的量子态数为2Ldp.(1)h将能量动量关系代入,即得1D d 21卫為.(2)h 26.3试证明,对于二维的自由粒子,在面积L2内,在到d的D d 年 ch2d . (2)能量范围内,量子态数为解:根据式(),二维自由粒子在 空间体积元dxdydp x dp y 内的量 子态数为对d 积分,从0积分到2 n ,有可得在面积L 2内,动量大小在p 到p dp 范围内(动量方向任意) 维自由粒子可能的状态数为誓 pdp.h将能量动量关系 代入,即有D d M^md .h 26.4 在极端相对论情形下,粒子的能量动量关系为试求在体积V 内,在 到的能量范围内三维粒子的量子态数.解:式()已给出在体积V 内,动量大小在p 到P dp 范围内三维 自由粒子可能的状态数为4 V 2^ 有 pdp.将极端相对论粒子的能量动量关系 代入,可得在体积V 内,在到d 的量子态数为12 dxdydp x dp y . h用二维动量空间的极坐标 p,描述粒子的动量,为用极坐标描述时,二维动量空间的体积元为在面积L 2内,动量大小在p 到p dp 范围内,动量方向在 到 d 范 围内,二维自由粒子可能的状态数为L 2pdpd(1)P ,P , 与P x ,P y 的关系(2)(3)(4)(1)的能量范围内,极端相对论粒子a i i ei(4)a ii ei6.5 设系统含有两种粒子,其粒子数分别为 N 和N .粒子间的相互作用很弱,可以看作是近独立的.假设粒子可以分辨,处在一个 个体量子态的粒子数不受限制.试证明,在平衡状态下两种粒子的最 概然分布分别为 和其中i 和i 是两种粒子的能级,i 和i 是能级的简并度.解:当系统含有两种粒子,其粒子数分别为 N 和N ,总能量为 和a 必须满足条件 N ,(1)i a i系统的微观状态数Q 0为Q.( 3)平衡状态下系统的最概然分布是在满足式(1)的条件下使Q 0或In Q 0为极大的分布.利用斯特令公式,由式(3)可得 为求使in Q 0为极大的分布,令a i 和a 各有a i 和a i 的变化,I n Q 0将 因而有亦Q 0的变化.使i n Q为极大的分布a i 和 即 但这些色和迥不完全是独立的,它们必须满足条件 用拉氏乘子,和 分别乘这三个式子并从 餉Q 0中减去,得 根据拉氏乘子法原理,每个 即拉氏乘子,和 由条件(1)确定.式(4)表明,两种粒子各自遵 从玻耳兹曼分布.两个分布的 和 可E ,体积为V 时,两种粒子的分布 a N ,a ii a i才有可能实现.在粒子可以分辨,且处在一个个体量子态的粒子数不受限制的情 形下,两种粒子分别处在分布 aN! a! i IN ! a !和a 时各自的微观状态数为aii ,aii(2)a 和a i 必使 E 和迥的系数都等于零,所以得以不同,但有共同的.原因在于我们开始就假设两种粒子的粒子数N,N 和能量E具有确定值,这意味着在相互作用中两种粒子可以交换能量,但不会相互转化.从上述结果还可以看出,由两个弱相互作用的子系统构成的系统达到平衡时,两个子系统有相同的.6.6同上题,如果粒子是玻色子或费米子,结果如何?解:当系统含有N个玻色子,N个费米子,总能量为E,体积为V时,粒子的分布a i和a i必须满足条件Qi | Q E(1)l l才有可能实现.玻色子处在分布a i,费米子处在分布a i时,其微观状态数分别为系统的微观状态数Q 0为Q0Q Q.(3)平衡状态下系统的最概然分布是在满足式(1)条件下使Q 0或in Q0为极大的分布.将式(2)和式(3)取对数,利用斯特令公式可得令各a i和a i有词和込的变化,in Q 0将因而有3ln Q 0的变化,使用权in Q 0为极大的分布a i和Q必使即但这此致色和阳不完全是独立的,它们必须满足条件用拉氏乘子,和分别乘这三个式子并从餉Q 0中减去,得根据拉氏乘子法原理,每个色和迥的系数都等于零,所以得即iai ---- ,i e i1(4)ia i --------e i1拉氏乘子,和由条件(1)确定.式(4)表明,两种粒子分别遵从玻色分布和费米分布,其中和不同,但相等.。

热力学统计物理课后答案11

热力学统计物理课后答案11

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT =(1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

热力学与统计物理答案

热力学与统计物理答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV Rn T P P V /1)(1==∂∂=β P P nRT V P V V T T /111)(12=--=∂∂-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学 统计物理 答案

热力学 统计物理 答案

CV T
dT RT ln V b
a V
U 0 TS 0
F S T V

CV T
V
dT R ln V b S 0
U F TS
C
dT
a V
U0
例8、由麦氏关系之一导出其余三个关系,如由
S V T p p T

( p ,V )
p ( S ,V ) S V

T p V S S V
T V P S S p
引入变量S, p可得 引入变量T, V可得
S p V T T V
dp p
)
ln T ln p C
∴ 物态方程为:
pV CT
C为常数
习题1.4 解: (1)选择T、p为状态参量,则V=V(T, p)
V V dp V的全微分为: dV dT T p p T
两边同除以V: dV
1 V 1 V dT V V T p V p
Tf Ti
C p Ldx ln
Tf T1 T1 T2 L x
C p L dx ln(
T1 Tf

T1 T2 LT f
x)
均匀杆总熵变为:
S

L
0
S i

L
0
C p L dx ln(
1
T1 Tf

T1 T2 LT f
x)
根据积分公式
ln( a bx)dx b (a bx)[ln( a bx 1)

《热力学与统计物理》第四版 汪志诚 课后题答案

《热力学与统计物理》第四版 汪志诚 课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在图中两条绝热线交于点,如图所示。

设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。

热力学统计物理课后习题答案

热力学统计物理课后习题答案

热⼒学统计物理课后习题答案第七章玻⽿兹曼统计222 Un y n z ,( n x ,n y ,n z 0, 1, 2,)有 P3 V上述结论对于玻尔兹曼分布,玻⾊分布和费⽶分布都成⽴。

证明:处在边长为L 的⽴⽅体中,⾮相对论粒⼦的能量本征值为个量⼦数。

7. 2根据公式Pa iiL证明,对于极端相对论粒⼦V2 2 22 12n z ,n x ,n y ,n z0, 1, 2,有 P1 Ucp cn x n y3VL上述结论对于玻尔兹曼分布,玻⾊分布和费⽶分布都成⽴。

证明:处在边长为 L 的⽴⽅体中,极端相对论粒⼦的能量本征值为2 2 2 2 12n x ,n y ,n zCL "x⼭n x ,n y ,n z 0, 1, 2, -------(1)为书写简便,我们将上式简记为aV ----------------- -——(2)其中V=L 3是系统的体积,常量 a2 2 22 c n xn yn z‘2 ,并以单⼀指标 i 代表 n x ,n y ,n z 个量⼦数。

7. 1试根据公式a i—证明,对于⾮相对论粒⼦VP 2 1 2m 2m2 nx2 2P 21 2n x ,n y ,n z2m 2m L2 nx2 2n y n z ( n x ,n y ,n z 0, 1, 2,) (1)为书写简便,我们将上式简记为aV(2)其中V=L 3是系统的体积,常量(2 )2 2n x 2myn ;,并以单⼀指标I 代表 n x ,n y ,n z由(2)式可得」-aV 353(3)代⼊压强公式,a i2 3Va i2U 3 V(4)式中Ui上述证明未涉及分布的具体表达式,都成⽴。

注:(4 )式只适⽤于粒⼦仅有平移运动的情形。

如果粒⼦还有其他的⾃由度,式( U 仅指平动内能。

a i i是系统的内能。

因此上述结论对于玻尔兹曼分布,玻⾊分布和费⽶分布4)中的由(2)式可得L1aV 43 V31 I 3 V -------- (3)代⼊压强公式,有Pa I -IV1 a I I3V I1 U (4 )- (4⼃式中Ua , II 是系统的内能。

最新热力学统计物理 课后习题 答案资料

最新热力学统计物理  课后习题  答案资料

第三章 单元系的相变3.4求证 (1)VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ (2)PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+μdn 及偏导数求导次序的可交换性,可以得到VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ 这是开系的一个麦氏关系。

(2)由吉布斯函数的全微分方程dG=-SdT+VdP+μdn 及偏导数求导次序的可交换性,可以得到PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂μ 这是开系的一个麦氏关系。

3.5求证μ-⎪⎭⎫⎝⎛∂∂V T n U ,nV T T ,⎪⎭⎫⎝⎛∂∂-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有VT V T V T n S T n U n F ,,,⎥⎦⎤⎢⎣⎡∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ (1) 但自由能的全微分dn pdV Sdt dF μ=--=可得V T n F ,⎪⎭⎫⎝⎛∂∂=μ, V T n S T ,⎥⎦⎤⎢⎣⎡∂=-n V T ,⎪⎭⎫⎝⎛∂∂μ (2) 代入(1),即有V T n U ,⎪⎭⎫⎝⎛∂∂-μ=-T nV T ,⎪⎭⎫⎝⎛∂∂μ 3.6两相共存时,两相系统的定压热容量C P =pT S T ⎪⎭⎫⎝⎛∂∂,体胀系数 P T V V ⎪⎭⎫ ⎝⎛∂∂=1α和等温压缩系数TP V V k T ⎪⎭⎫⎝⎛∂∂-=1均趋于无穷。

试加以说明。

解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。

如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。

两相系统吸取热量而温度不变表明他的热容量 C P 趋于无穷。

在上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α也趋于无穷。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

则顶点在球心的立体角d,在太阳表面所张的面积为R2SUN d。
假设太阳是黑体,则根据斯特藩-玻耳兹曼定律,得到单位时间内在立
体角内辐射的太阳辐射能量为 T4 R2SUN d
第二步:题设给出单位时间内,投射到地球大气层外单位面积上的太阳
辐射能量为JSE=1.35103Jm-2s-1(该值称为太阳常数),
式子中的f(V)是体积V的函数.
故有 (2)
根据(2.2.7)式,在温度保持不变时,内能随体积的变化率与物态方程
的关系
(3)
得 (4)
说明:如果物质具有形式为P=f(V)T 的物态方程,则物质的内能与体积
无关,只是温度T的函数。
2.4 求证:1 2
解:1焓的全微分为 (1-1)
令=0,得 (1-2)
第二章 均匀物质的热力学性质
2.1温度维持为250C,压强在0至1000Pn之间,测得的水的实验数据如
下:
若在250C的恒温下,将水从1 Pn加压至1000Pn,求水的熵增和从外界
吸收的热量。
解:将题设定为=A+BP (1)
由吉布斯函数G的全微分dG= SdT+VdP
得麦氏关系
(2)
因此
(3)
将P1=1 Pn,P2=1000 Pn,代入得 S= 0.527Jmol1K1
和 描述。
熵函数的全微分为
在可逆绝热过程中=0有
焓H(T,P)的全微分为
节流过程中=0有 (2)
式(1)和式(2)相减,得
2.9证明,,并由此推出
和。
根据以上两式证明,理想气体的定容热容量和定压热容量只是温度T的
函数。
解:式
(1)
以T,V 状态参量,将上式求对V的偏导数,

《大学物理教程(第三版)》第十一章 热力学基础

《大学物理教程(第三版)》第十一章  热力学基础

第十一章 热力学基础本篇引言指出,统计物理学和热力学的研究对象相同,都是热现象,但研究方法不相同.统计物理学从物质是由大量分子组成以及分子作热运动的观点出发,运用统计方法建立宏观量与相应的微观量的平均值之间的关系,从物质的微观结构说明物质的宏观现象,所以统计物理学是微观理论.与此相反,热力学不涉及物质的微观结构,它以实验定律为基础,从能量观点出发,研究热现象的宏观规律,所以它属于宏观理论.热力学具有高度的普遍性和可靠性.统计物理学与热力学的研究方法虽然不同,但它们彼此联系,互相补充,使我们对现象的认识更加全面,更加深入,都是研究热现象的不可缺少的理论.§11-1 功 内能 热量一、功在热力学中通常把所研究的物体(气体、液体或固体)称为热力学系统,简称系统.而把与系统发生作用的环境称为外界.在力学中,我们将力对质点所作的功定义为力在位移方向的分量与位移大小的乘积;角位移d θ中力矩M 的功定义为d W = M d θ.此外,在电磁学中,还定义过电场力的功和磁场力的功.功的概念是很广泛的,但不论是哪一种类型的功,作功的过程始终是与能量的改变、转换以及运动形式的转化相联系.现在,我们要研究热力学系统在状态变化过程中所作的功.我们假设系统的状态变化过程进行得无限地缓慢,使系统所经历的每一中间状态无限地接近于平衡状态,也就是每一中间状态有确定的状态参量,这种过程就是上一章已讲过的准静态过程.在本章中所要讨论的过程均设为准静态过程.取封闭在气缸中的质量一定的气体为研究对象.气缸活塞的面积为S ,如图11-1(a).当气体的压强为p 时,气体作用于活塞的力为F = pS .令气体作准静态膨胀,现在来研究气体在这一膨胀过程中所作的功.当活塞移动一个微小距离d l 时,气体体积的增量为d V = S d l ,气体所作的功为d W = F d l = pS d l = p d V由于这是气体在体积发生无限小变化期间所作的功,称为元功.如果气体膨胀,d V > 0,d W 为正,表示系统对外界作功;如果气体被压缩,d V < 0,d W 为负,表示外界对系统作功.当气体由体积为V 1的状态I 变到体积为V 2的状态II 时,其状态变化过程(准静态过程)可用p -V 图上一光滑曲线表示,如图11-1(b).元功p d V 可用此图上有阴影的窄条面积表示.气体从状态I 变到状态II 所作的总功等于曲线下面所有这样的窄条面积的总和,即面积I II V 2V l I ,用积分表示则为(a) (b)图11-1⎰=21d V V V p W (11-1) 显然这个功与过程曲线的形状有关,也就是与过程有关.即使初末状态相同,只要过程路径不同,整个过程中气体所作的功就不相同.所以气体所作的功不仅与气体的初末状态有关,而且还与气体所经历的过程有关.功是一个过程量不是状态量.二、系统的内能为了精确地测定热运动与机械运动之间的转化关系,焦耳从1840年开始的20多年期间,反复进行了大量的实验.实验中,工作物质(水或气体)盛在不传热的量热器中,以致没有热量传递给系统,这样的过程称为绝热过程.例如,图11-2(a)中,重物下降带动量热器中的叶轮搅拌使水温升高,通过机械功使系统内能的状态发生改变.图11-2(b)中,将水与电阻丝视为一个系统,重物下降驱动发电机,发电机产生的电流通过电阻丝,使水温升高,即电功使系统的状态发生改变.焦耳通过大量的实验发现,在绝热过程中,无论用什么方式作功,使系统升高一定的温度所作功的数量是相等的.即在绝热过程中外界对系统所作的功仅与系统的初末状态有关,与过程无关.由于功是能量变化的量度,在热力学中定义系统内能E 的增量等于绝热过程中外界对系统所作的功ΔE = E 2 – E 1 = W 绝热系统的内能和系统的机械能一样完全取决于系统的状态,是系统状态的单值函数,即是它的状态参量的单值函数.在上一章中用气体动理论的观点已经说明,系统的内能包括物体内部大量分子的无规则运动(平动、转动及振动)的动能和分子间相互作用的势能.例如,对给定的理想气体来说,其内能RT i M m E 2=是温度T 的单值函数.对实际气体来说,由于分子间的相互作用力不能忽略,除了分子的各种运动的动能以外,还有分子间的势能,这势能与分子间的距离有关,也就是与气体的体积有关,所以实际气体的内能是气体的温度T 及体积V 的函数.E = E (T ,V )如果用统计物理学方法来研究系统的内能,就要计算分子的动能和势能,为此就要知道系统由什么样的分子组成,分子间的相互作用力以及分子有哪几种运动等.但除了理想气体之外,这个要求是很难满足的.所以用统计物理学的方法来研究系统的内能是有困难的.我们用热力学方法来研究系统的内能,并以统计物理学中建立的内能概念为基础,从能量观点出发来研究系统的内能与被传递的(a) (b)图11-2热量和所作的功之间的关系,可以不需要知道系统的微观结构.三、热量热与功的等效性前面已经说明,对系统作功可以使系统的状态(如温度)发生变化,并改变系统的内能.经验表明,当系统与外界之间存在温度差时,外界与系统发生热传递也可以使系统的状态发生变化,改变系统的内能.例如把一杯冷水与高温物体接触,这时高温物体传热给水,水的温度逐渐升高,内能增加.在图11-2(b)中,如果将量热器中的水视为一个系统,电流通过电阻丝发热并传递给水,水温升高,内能增加.所以向系统传热也是向系统传递能量,传热和作功都是传递能量的方式,传热和作功是等效的.热力学中定义热量为在不作功的传热过程中系统内能变化的量度.当系统在一个不作功的传热过程中内能由E1改变为E2时,系统从外界所吸收的热量为Q,则Q = ΔE = E2-E1上式表明,热量与功和能量的单位完全相同,在国际单位制中都是焦耳.焦耳曾经用实验证明:如果分别用传热和作功的方式使系统的温度升高,则当系统升高的温度相同时,所传递的热量和所作的功总有一定的比例关系.过去,习惯上热量用卡(cal)为单位,功用焦耳(J)为单位,根据焦耳的实验结果,向系统传递1 cal的热量使它升高的温度与对它作4.18 J的功使它升高的温度相同.此二单位的关系为1 cal = 4.18 J§11-2 热力学第一定律根据上一节的讨论,作功和传递热量是等效的,都是能量传递的方式.如果能量、功和热量都用相同的单位,则根据能量守恒定律,当对系统作功时,系统的能量的增加等于所作的功;当向系统传递热量时,系统的能量的增加等于所传递的热量.在实际过程中,作功和传递热量往往是同时进行的.设外界对系统作功W’,同时又向系统传递热量Q,使系统从平衡状态1变到平衡状态2,则系统的内能的增量等于两者之和,即ΔE= E2-E1= W’+ Q(11-2)其中E2和E1分别为系统在平衡状态1和平衡状态2的内能.在生产技术上往往要研究的是系统吸热对外作功的过程.设W表示系统对外界所作的功,则W’ = -W,则上式可改写为Q= E2-E1+ W(11-3)这就是热力学第一定律的数学表达式.它表示:系统从外界吸取的热量,一部分用于增加系统的内能,另一部分用于对外作功.显然热力学第一定律就是包括热现象在内的能量守恒定律.由于内能的改变与过程无关,而所作的功与过程有关,所以系统吸取的热量与系统所经历的过程有关.在(11-3)式中,Q、E2-E1及W各量可以是正值,也可以是负值,一般规定系统从外界吸热时,Q为正,向外界放热时,Q为负;系统对外界作功时,W 为正,外界对系统作功时,W为负;系统的内能增加时,E2-E1为正,内能减少时,E2-E1为负.又Q、E2-E1及W各量要用同一种单位,在国际单位制中,统一用焦耳为单位.对于微小的状态变化过程,热力学第一定律可写为d Q = d E + d W(11-4)历史上曾有不少人企图制造一种循环动作的机器,使系统经历状态变化后又回到原来的状态,在这过程中不需要外界供给能量而可以不断地对外作功,这种机器叫做第一类永动机.这种企图经过多次尝试都失败了.这些尝试的失败导致了热力学第一定律的建立.反过来,我们从热力学第一定律也可以证明第一类永动机是不可能造成的.因为这种机器作功后又回到原来状态,内能不改变,即E 2 - E 1 = 0,根据热力学第一定律有Q = W ,亦即系统所作的功等于供给它的热量或其他形式的等值的能量,不供给系统能量却要它不断地对外作功是不可能的.在热功转换过程中.虽然热量可以转变为功,功也可以转变为热量,但热量和功的转换不是直接的,而是通过热力学系统来完成的.例如向系统传递热量的直接结果是增加系统的内能,再由内能的减少系统对外界作功,外界对系统作功的直接结果也是增加系统的内能,再由内能的减少系统向外界传递热量.如果脱离开系统,就无法实现功与热量之间的转换,但为了叙述简便起见,通常就说“热转变为功”或“功转变为热”.现在我们进一步研究图11-1中气体从状态I 变到状态II 所经历的过程.(11-1)式给出了在这一过程中系统所作的总功为⎰=21d V V V p W 将上式代入(11-3)式,得气体在从状态I 变到状态Ⅱ的过程中从外界吸取的热量为Q = E 2 - E 1 +⎰21d V V V p (11-5) 在一微小的气体状态变化过程中,热力学第一定律(11-4)式又可写为d Q = d E + p d V (11-6)§11-3 热力学第一定律对理想气体等体、等压和等温过程的应用本节将根据上一章中给出的理想气体状态方程及理想气体的内能公式,应用热力学第一定律分别计算理想气体在等体、等压和等温过程中所作的功、内能的变化及吸收的热量,所得结果将在下面§11-4及§11-6中用到.等体过程 气体的等体过程的特征是气体的体积保持不变,即V 为常量,d V = 0.设气体被封闭在一气缸中,气缸的活塞保持固定不动(图11-3a).为了实现准静态的等体过程,必须有一系列温度一个比一个高但相差极微的热源,令气缸依次与这一系列热源接触,与每一热源接触时要等到气体达到平衡状态后再令其与另一温度次高的热源接触.这样,气体的温度逐渐升高,压强亦逐渐增大,但体积保持不变,这样的过程就是等体过程.在p -V 图上可用一平行于p 轴的直(a) (b)图11-3线表示,如图11-3(b),此直线称为等体线.在等体过程中,因气体的体积保持不变,所以气体不作功,d W = p d V = 0,W = 0(图11-3b).由热力学第一定律得在一微小等体过程中(d Q )V = d E (11-7)对于一有限等体过程,当气体从状态I(p 1,V ,T 1)变到状态II(p 2,V ,T 2)时,根据热力学第一定律,考虑到理想气体的内能公式RT i M m E 2=,得 )(21212T T R i M m E E Q V -=-= (11-8) 下标V 表示体积保持不变.上式表示在等体过程中,气体没有对外作功,外界供给的热量全部用于增加系统的内能.等压过程 气体的等压过程的特征是气体的压强保持不变,即p 为常量,d p = 0.设气体被封闭在一气缸中,气缸的活塞上放置砝码并保持不变(图11-4a).令气缸与一系列温度一个比一个高但相差极微的热源接触,气体的温度便逐渐升高,体积也逐渐增大,但压强保持不变,这样的过程就是等压过程.在p -V 图上,可用平行于V 轴的直线表示,如图11-4(b),此直线称为等压线. 根据理想气体状态方程RT Mm pV =在一微小变化过程中d p = 0,气体所作的功为T R Mm V p W d d d == 根据热力学第一定律,气体吸收的热量为T R Mm E V p E Q p d d d d )(d +=+= (11-9) 在一有限过程中,当气体从状态I(p ,V 1,T 1)变到状态Ⅱ(p ,V 2,T 2)时,有 )()(d 121221T T R M m V V p V p W V V p -=-==⎰ (11-10) )(1212V V p E E Q p -+-= (11-11)下标p 表示压强保持不变.上式表示在等压过程中,气体吸收的热量一部分用于增加内能,另一部分用于对外作功,如果用温度表示,则有(a) (b)图11-4)()(21212T T R Mm T T R i M m Q p -+-= 或 )(2212T T R i M m Q p -+= (11-12) )(21212T T R i M m E E -=- (11-13) 比较(11-8)及(11-13)两式看出,不论是等体过程或等压过程,只要是温度变化相同时,内能的变化就相等,这是因为理想气体的内能仅与温度有关之故. 等温过程 气体的等温过程的特征是气体的温度保持不变,即T = 常量,d T = 0.设气体被封闭在气缸中,气缸活塞上放置砂粒(图11-5a).为了实现准静态等温过程,必须令气缸与一恒温热源接触并一粒一粒地从活塞上取下砂粒,使气体的压强逐渐减小,体积逐渐增大,而温度保持不变,这样的过程就是等温膨胀过程.在p -V 图上可用一曲线表示,如图11-5(b),这条曲线称为等温线.当温度保持不变时,气体的压强p 与体积V 的关系为pV = C (常量),所以等温线为双曲线的一支.在等温过程中.因气体的温度保持不变,由理想气体内能公式RT i M m E 2=得知气体的内能保持不变,当气体从状态I(p 1,V 1,T )变到状态II(p 2,V 2,T )时,E 2 - E 1 = 0由热力学第一定律得 ⎰==21d V V T T V p W Q (11-14) 下标T 表示温度保持不变.上式表示在等温过程中气体吸收的热量完全用于对外作功,因为气体的内能保持不变.由理想气体状态方程RT Mm pV = 可解出VRT M m p 1=,代入(11-14)式,便得到 12ln d 21V V RT M m V V RT M m W Q V V T T ===⎰ (11-15)(a) (b)图11-5又因p 1V 1 = p 2V 2,上式亦可写为21ln p p RT M m W Q T T == (11-16) 例题11-1 设质量一定的单原子理想气体开始时压强为3.0×105 Pa ,体积为1.0 L ,先作等压膨胀至体积为2.0 L ,再作等温膨胀至体积为 3.0 L ,最后被等体冷却到压强为1.0×105 Pa .求气体在全过程中内能的变化、所作的功和吸收的热量 解 如图11-6所示,ab 、bc 及cd 分别表示等压膨胀、等温膨胀及等体冷却等过程.由玻意耳定律得Pa 102.0Pa 100.3100.2100.35335⨯=⨯⨯⨯⨯==--c b b c V V p p 在全过程中,由理想气体内能公式及理想气体状态方程得内能的变化ΔE 为)(2)(2Δa a d d a d a d V p V p i T T R i M m E E E -=-=-= 对于单原子理想气体,i = 3,代入数字得0J )100.1100.3100.3100.1(23Δ3535=⨯⨯⨯-⨯⨯⨯⨯=--E 气体在全过程中所作的功等于在各分过程中所作的功之和,即W = W p + W T + W V由(11-10)式得W p = p a (V b - V a ) = 3.0×105×(2.0 -1.0) ×10-3 J = 304 J由(11-15)式及理想气体状态方程得J 246J 100.2100.3ln 100.2100.3 ln ln 3335=⨯⨯⨯⨯⨯⨯===---b cb b bc b T V V V p V V RT M m W在等体过程中气体不作功,即W V = 0所以 W = W p + W T + W V = (304+246+0) J = 550 J在全过程中吸收的热量等于在各分过程吸收的热量之和,即Q = Q p + Q T + Q V由(11-12)式及理想气体状态方程得 J 760J 10)0.10.2(100.3223 )(22)(2235=⨯-⨯⨯⨯+=-+=-+=-a b a a b p V V p i T T R i M m Q由(11-16)式得Q T = W T = 246 J由(11-8)式及理想气体状态方程得图11-6J 456J )100.3100.2100.3100.1(23 )(2)(23535-=⨯⨯⨯-⨯⨯⨯⨯=-=-=-=--c c d d c d c d V V p V p i T T R i M m E E Q “-”号表示气体放热.所以 Q = Q p + Q T + Q V = (760+246-456) J= 550 J在全过程中吸收的热量亦可用热力学第一定律求出Q = W + ΔE = (550 + 0) J = 550 J与上面所得结果相同.§11-4 气体的热容根据实验,质量为m 的物体,温度从T l 升高到T 2时,它吸收的热量Q 与T 2 - T l 成比例,又与m 成比例,设c 为比例系数,则Q = mc (T 2 - T l )c 称为组成该物体的物质的比热容.mc 称为该物体的热容.如果物体的物质的量为1摩尔,即mol 1=Mm ,则其热容Mc 称为摩尔热容,它的物理意义是:1 mol 的物质温度升高1 K 时吸收的热量,用C 表示,C = Mc .摩尔热容的单位是焦耳每摩尔开,符号为J/(mol·K).气体吸收的热量与气体所经历的过程有关,所以气体的摩尔热容有无限多个,其中最简单而又最重要的是定体摩尔热容和定压摩尔热容.气体的定体摩尔热容 1 mol 的气体在等体过程中,温度升高1 K 时吸收的热量称为定体摩尔热容,记号为C V ,m .如果1 mol 气体在等体过程中温度升高d T 时吸收的热量为(d Q )V ,则TQ C V V d )d (m ,= (11-17) 由(11-7)式,(d Q )V = d E ,代入上式得TE T Q C V V d d d )d (m ,== (11-18) 如果气体是理想气体,则1 mol 气体的内能为RT i E 2= 代入(11-18)式得R i T E C V 2d d m ,== (11-19) 式中i 是气体分子的自由度,R 是摩尔气体常量.R = 8.31 J/(mol·K),因此理想气体的定体摩尔热容与气体的自由度有关,而与气体的温度无关.对于单原子理想气体,i = 3,C V ,m =23R = 12.5 J/(mol·K) 对于双原子理想气体,i = 5,C V ,m =25R = 20.8 J/(mol·K) 对于多原子理想气体,i = 6,C V ,m = 3R = 24.9 J/(mol·K)有了定体摩尔热容,就可以计算气体在等体过程中吸收的热量.因为质量为m 的气体的摩尔数为Mm ,故由定体摩尔热容定义,当气体的温度由T l 升高到T 2时吸收的热量为)(12m ,T T C Mm Q V V -=(11-20) 此式适用范围不限于理想气体,但式中C V ,m 应是所讨论的气体在相应温度范围内的平均定体摩尔热容.气体的定压摩尔热容 1 mol 的气体在等压过程中温度升高l K 时吸收的热量称为定压摩尔热容,记号为C p ,m ,如果l mol 气体在等压过程中温度升高d T 时吸收的热量为(d Q )p ,则 T Q C pp d )d (m ,= (11-21)由(11-9)式,(d Q )p = d E + p d V ,代入上式得TV p T E C p d d d d m ,+= (11-22) 对于1 mol 理想气体来说,d E = C V ,m dT ,p d V = R d T ,代入(11-22)式得C p ,m = C V ,m + R (11-23)上式称为迈耶公式.它表示理想气体的定压摩尔热容比定体摩尔热容大一常量R = 8.31 J/(mol·K).即是说,1 mol 理想气体在等压过程中温度升高1 K 时吸收的热量比在等体过程中吸收的热量多8.31 J .这多吸收的热量是用来对外作功的.因R i C V 2m ,=,代入(11-23)式得 R i C p 22m ,+= (11-24) 对于单原子理想气体,i = 3,C p ,m =25R = 20.8 J/(mol·K) 对于双原子理想气体,i = 5,C p ,m =27R = 29.1 J/(mol·K) 对于多原子理想气体,i = 6,C p ,m = 4R = 33.2 J/(mol·K)有了定压摩尔热容,就可以计算气体在等压过程中吸收的热量.因为质量为m 的气体的物质的量为Mm ,故由定压摩尔热容定义,当气体的温度从T l 升高到T 2时吸收的热量为)(12m ,T T C Mm Q p p -= (11-25) 此式适用的范围也不限于理想气体.热容比 定压摩尔热容与定体摩尔热容的比值称为气体的热容比,用γ表示:m ,m ,V p C C =γ (11-26) 对于理想气体,R i C p 22m ,+=,R i C V 2m ,=,代入(11-26)式得 ii 2+=γ (11-27)对于单原子理想气体,i = 3,γ =35 = 1.67 对于双原子理想气体,i = 5,γ = 57 = 1.40 对于多原于理想气体,i = 6,γ = 68 = 1.33 表11-1列举了在常温常压下几种气体的定体和定压摩尔热容的实验值.从表中可以看出:(1) 对各种气体来说,两种摩尔热容之差C p ,m - C V ,m 都接近于R ;(2) 对单原子及双原子气体来说C p ,m 、C V ,m 、γ的实验值与理论值都比较接近,这说明古典热容理论近似地反映了客观事实.但是对分子结构复杂的气体即三原子以上的气体来说,理论值与实验值有较大偏离.这说明上述理论是个近似理论,只有用量子理论才能较好地解决热容的问题.§11-5 热力学第一定律对理想气体绝热过程的应用气体与外界无热量交换的变化过程称为绝热过程,它的特征是Q = 0.为了实现绝热过程,必须使容器壁是绝热的.例如气体在用绝热材料包起来的容器内或在杜瓦瓶(如热水瓶胆)内进行的变化过程可近似地看作绝热过程,又如声波传播时所引起的空气的膨胀和压缩,内燃机气缸内爆炸过程后的膨胀作功过程等,由于过程进行得很快,来不及与四周交换热量,也可近似地看作绝热过程. 在绝热过程中,因为Q = 0,热力学第一定律可写为E 2 - E 1 + W Q = 0 (11-28)对于微小的变化过程有d E + p d V = 0 (11-29)由(11-28)式得W Q = - (E 2 - E 1) (11-30)此式表示;气体作绝热膨胀时,对外作功是以气体内能的减少为代价的,由R i C V 2m ,=及(11-13)式得 )(12m ,12T T C Mm E E V -=- (11-31) 以(11-31)式代入(11-30)式得)()(12m ,12T T C Mm E E W V Q --=--= (11-32) 由此式看出,当气体作绝热膨胀对外作功时,它的内能减少,温度降低;反之,当气体作绝热压缩时,外界对气体作功,气体的内能增加,温度升高.总起来讲,不论气体作绝热膨胀或绝热压缩,它的体积和温度都要发生变化,又由理想气体状态方程RT Mm pV =知气体的体积、温度变化时,压强也要发生变化.所以在绝热过程中,气体的p 、V 、T 三个状态参量都同时发生变化.可以证明(推导过程见后面小字部分)在绝热过程中p 、V 、T 三个量中任意两个量之间的关系为pV γ = 常量 (11-33)V γ-1T = 常量 (11-34)p γ-1T -γ = 常量 (11-35) 式中m ,m,V p C C =γ是气体的热容比.以上三个方程中的常量的值各不相同,每一方程中的常量的值可由气体的初始状态决定.以上三个方程中每一方程都表示同一过程.应区别过程方程与状态方程,状态方程适用于任何平衡状态,故RT Mm pV =适用于任何平衡状态,而过程方程只适用于特定过程中的平衡状态,例如绝热过程方程pV γ = 常量,只适用于某一绝热过程中的平衡状态.绝热过程方程pV γ = C (常量)可用p -V 图上一曲线表示,如图11-7中的实线,此曲线称为绝热线.图中虚线表示同一气体的等温线,A 点是两条曲线的交点.从图上看出,绝热线比等温线陡些.这可以从两方面加以解释. 从数学角度看,等温线的方程是pV = C ,所以等温线于A 点的斜率是 V p V p T-=⎪⎭⎫ ⎝⎛d d 绝热线的方程是pV γ = C ’,所以绝热线在A 点的斜率是 V p V p Q γ-=⎪⎭⎫ ⎝⎛d d 因γ > 1,所以在交点A 处绝热线的斜率的绝对值大于等温线的斜率的绝对值,即是说,绝热线比等温线陡些.从物理方面来看,假设从状态A 开始,令气体体积增加ΔV .不论气体作等温膨胀或绝热膨胀,其压强p 都要降低.但因为当气体作等温膨胀时,引起压强降低的因素只有一个,即体积的增加.而当气体作绝热膨胀时,引起压强降低的因素有两个,即体积的增加和温度的降低.所以气体作绝热膨胀时引起的压强降低比气体作等温膨胀时降低得多些,即图中Δp Q 比Δp T 大些,所以绝热线比等温线陡些.图11-7*绝热过程方程的推导 由理想气体内能公式RT i M m E 2=及R i C V 2m ,=,并利用微分得 T C Mm E V d d m ,=代入(11-29)式得 0d d m ,=+V p T C Mm V (11-36) 又由理想气体状态方程RT Mm pV =及微分得 T R Mm p V V p d d d =+ (11-37) 由(11-36)及(11-37)两式消去d T 得C V ,m (p d V + V d p )+ Rp d V = 0因C p ,m = C V ,m + R ,上式可写为C p ,m p d V + C V ,m V d p = 0即 0d d =+VV p p γ 其中m ,m,V p C C =γ.积分上式得ln p + γ ln V = 常量或 ln pV γ = 常量或 pV γ = 常量这就是绝热过程方程(11-33)式.将上式与状态方程RT Mm pV =依次消去p 和V ,便得到(11-34)及(11-35)式.例题11-2 1.2×10-2 kg 的氦气(视为理想气体)原来的温度为300K ,作绝热膨胀至体积为原来体积的2倍,求氦气在此过程中所作的功.如果氦气从同一初态开始作等温膨胀到相同的体积,问气体又作了多少功?将此结果与绝热过程中的功作比较.并说明其原因.解 氦气的摩尔质量M = 4.0×10-3 kg/mol ,已知氦气质量m = 1.2×10-2 kg ,T 1 = 300 K ,V 2 = 2V 1.因为把氦气当作单原子理想气体,i = 3,γ = 1.67,R i C V 2m ,=,则由绝热过程方程(11-34)式111212T V T V --=γγ得 K 189K 30021167.111212=⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--T V V T γ由(11-30)式,气体在绝热过程中的功为)(2)()(1212m ,12T T R i M m T T C M m E E W V Q --=--=--= J 104.2J )300189(31.823100.4102.1332⨯=-⨯⨯⨯⨯⨯-=-- 如果氦气作等温膨胀至体积为原来体积的2倍,由(11-15)式,气体所作的功为J 105.2J 2ln 30031.8100.4102.1ln 332121⨯=⨯⨯⨯⨯⨯==--V V RT M m W T 由此可以看出W T > W Q ,这是因为绝热线比等温线陡,从同一初态开始膨胀到同一体积的条件下,等温线下面的面积大于绝热线下面的面积之故.§11-6 循环过程 卡诺循环 热机的效率一、循环过程在生产实践中需要持续不断地把热转变为功,但依靠一个单独的变化过程不能够达到这个目的.例如,气缸中的气体作等温膨胀时,它从热源吸热对外作功,它所吸收的热量全部转变为功.但由于气缸的长度总是有限的,这个过程不可能无限制地进行下去,所以依靠气体等温膨胀所作的功是有限的.为了持续不断地把热转变为功,必须利用循环过程.定义:如果物质系统经过一系列状态变化过程后又回到原来的状态,则这全部变化过程称为循环过程,简称循环,这个系统称为工作物质.在p -V 图上工作物质的循环过程可用一闭合曲线表示,如图11-8(a)中的ABCDA 曲线.工作物质经历一系列状态变化过程后又回到原来状态时,它的内能没有变化,即E 2 – E 1 = 0.这是循环过程的重要特征.现在讨论从状态A 开始沿顺时针方向,即沿ABCDA 方向进行的循环,这样的循环称为正循环过程.工作物质完成一个正循环回到原始状态A 时,其内能不变,但工作物质对外界作了功,并且与外界有热量交换.在ABC 过程中工作物质膨胀对外作功,所作的功在数值上等于曲线ABC 下面的面积,在CDA 过程中工作物质被压缩,外界对工作物质作功,所作的功等于曲线CDA 下面的面积.所以在整个循环中工作物质所作的净功W 等于闭合曲线ABCDA 所包围的面积.在循环过程中工作物质要从外界吸热,也会向外界放热,根据热力学第一定律,因E 2 – E 1 = 0,工作物质从外界吸收的总热量Q 1必然大于放出的总热量Q 2(取绝对值).设工作物质吸收的净热Q = Q 1 - Q 2,故得Q = Q 1 - Q 2 = W (11-38)上式表示,在循环过程中工作物质吸收的净热等于它对外所作的净功,即净热 = 净功 = 循环过程曲线所包围的面积(11-38)式可以写为Q 1 = W + Q 2此式表示,在每一循环中,工作物质从高温热源吸取热量Q l 一部分用于对外作(a) (b)图11-8。

热力学与统计物理学习题答案

热力学与统计物理学习题答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由 得:nRT PV =V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnTP P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=−−=∂∂−=κ习题1.2 试证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数p T ,α及等温压缩系数T κ,根据下述积分求得:∫−=)(ln dp dT V T κα如果,试求物态方程。

解: 因为,所以,我们可写成0),,(=p V T f ),(p T V V =,由此, dp pV dT T VdV T p ()(∂∂+∂∂=,因为T T p pVV T V V (1,)(1∂∂−=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα−=−=,所以, ,当∫−=dp dT V T καln p T T /1,/1==κα.CT pV pdpT dT V =−=∫:ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为和,可近似看作常量,今使铜块加热至。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少 1510*85.4−−=K α1710*8.7−−=n T p κT κα,解:分别设为,由定义得:V xp n Δ;74410*8.7*10010*85.4;10*858.4−−−−=Δ=V x T κ所以,410*07.4,622−=Δ=V p x n 习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在下进行,其体积变化可忽略。

线胀系数定义为n p 1ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学统计物理课后习题答案

热力学统计物理课后习题答案

1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。

诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。

解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。

1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。

线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。

一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。

解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。

(完整word版)热力学统计物理_答案分解(word文档良心出品)

(完整word版)热力学统计物理_答案分解(word文档良心出品)

1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰ 如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dV dT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3) 若11,T T pακ==,式(3)可表为11ln .V dT dp T p ⎛⎫=- ⎪⎝⎭⎰ (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln =ln ln ,V T p V T p - 即000p V pV C T T ==(常量), 或.p VC T = (5) 式(5)就是由所给11,T T p ακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.10 声波在气体中的传播速度为s p αρ⎛⎫∂= ⎪∂⎝⎭ 假设气体是理想气体,其定压和定容热容量是常量,试证明气体单位质量的内能u 和焓h 可由声速及γ给出:()21a a u u h h γγγ=+=+-200,-1 其中00,u h 为常量。

解:根据式(1.8.9),声速a 的平方为2v,a p γ= (1)其中v 是单位质量的气体体积。

理想气体的物态方程可表为,m pV RT m+= 式中m 是气体的质量,m +是气体的摩尔质量。

对于单位质量的气体,有 1v ,p RT m +=(2) 代入式(1)得2.a RT m γ+= (3)以,u h 表示理想气体的比内能和比焓(单位质量的内能和焓)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2) 将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。

(3)将上式微分,有12(1)0,n n V dT n V TdV --+-=所以.(1)nV V T n T ∂⎛⎫=- ⎪∂-⎝⎭ (4) 代入式(2),即得,(1)1n V V pV n C C C T n n γ-=-=-- (5) 其中用了式(1.7.8)和(1.7.9)。

1.9 试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,多方指数n p n VC C n C C -=-。

假设气体的定压热容量和定容热容量是常量。

解:根据热力学第一定律,有đđ.dU Q W =+ (1)对于准静态过程有đ,W pdV =-对理想气体有,V dU C dT =气体在过程中吸收的热量为đ,n Q C dT =因此式(1)可表为().n V C C dT pdV -= (2)用理想气体的物态方程pV vRT =除上式,并注意,p V C C vR -=可得()().n V p V dT dVC C C C T V-=- (3) 将理想气体的物态方程全式求微分,有.dp dV dT p V T+= (4) 式(3)与式(4)联立,消去dTT,有 ()()0.n V n p dp dV C C C C p V-+-= (5) 令n p n VC C n C C -=-,可将式(5)表为0.dp dV n p V+= (6) 如果,p V C C 和n C 都是常量,将上式积分即得n pV C =(常量)。

(7)式(7)表明,过程是多方过程。

1.12 假设理想气体的p V C C γ和之比是温度的函数,试求在准静态绝热过程中T V 和的关系,该关系式中要用到一个函数()F T ,其表达式为()ln ()1dTF T Tγ=⎰-解:根据式(1.8.1),理想气体在准静态绝热过程中满足0.V C dT pdV += (1)用物态方程pV nRT =除上式,第一项用nRT 除,第二项用pV 除,可得0.V C dT dVnRT V+= (2) 利用式(1.7.8)和(1.7.9),,,p V p VC C nR C C γ-==可将式(2)改定为10.1dT dVT Vγ+=- (3)将上式积分,如果γ是温度的函数,定义1ln (),1dTF T Tγ=-⎰(4) 可得1ln ()ln F T V C +=(常量), (5)或()F T V C =(常量)。

(6) 式(6)给出当γ是温度的函数时,理想气体在准静态绝热过程中T 和V 的关系。

1.13 利用上题的结果证明:当γ为温度的函数时,理想气体卡诺循环的效率仍为211.T T η=-解:在γ是温度的函数的情形下,§1.9就理想气体卡诺循环得到的式(1.9.4)—(1.9.6)仍然成立,即仍有2111ln ,V Q RT V = (1) 3224ln,V Q RT V = (2)32121214lnln .V V W Q Q RT RT V V =-=- (3) 根据 1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有1223()(),F T V F T V = (4) 2411()(),F T V F T V = (5)从这两个方程消去1()F T 和2()F T ,得3214,V V V V = (6) 故2121()ln,V W R T T V =- (7) 所以在γ是温度的函数的情形下,理想气体卡诺循环的效率仍为2111.T WQ T η==- (8)1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在p V -图中两条绝热线交于C 点,如图所示。

设想一等温线与两条绝热线分别交于A 点和B 点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程ABCA 中,系统在等温过程AB 中从外界吸取热量Q ,而在循环过程中对外做功W ,其数值等于三条线所围面积(正值)。

循环过程完成后,系统回到原来的状态。

根据热力学第一定律,有W Q =。

这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,这违背了热力学第二定律的开尔文说法,是不可能的。

因此两条绝热线不可能相交。

1.17 温度为0C o 的1kg 水与温度为100C o 的恒温热源接触后,水温达到100C o 。

试分别求水和热源的熵变以及整个系统的总熵变。

欲使参与过程的整个系统的熵保持不变,应如何使水温从0C o 升至100C o ?已知水的比热容为114.18J g K .--⋅⋅解:0C o 的水与温度为100C o 的恒温热源接触后水温升为100C o ,这一过程是不可逆过程。

为求水、热源和整个系统的熵变,可以设想一个可逆过程,它使水和热源分别产生原来不可逆过程中的同样变化,通过设想的可逆过程来求不可逆过程前后的熵变。

为求水的熵变,设想有一系列彼此温差为无穷小的热源,其温度分布在0C o 与100C o 之间。

令水依次从这些热源吸热,使水温由0C o 升至100C o 。

在这可逆过程中,水的熵变为37331273373373ln10 4.18ln 1304.6J k .273273p p mc dT S mc T-∆===⨯⨯=⋅⎰水 (1) 水从0C o 升温至100C o 所吸收的总热量Q 为3510 4.18100 4.1810J.p Q mc T =∆=⨯⨯=⨯为求热源的熵变,可令热源向温度为100C o 的另一热源放出热量Q 。

在这可逆过程中,热源的熵变为514.18101120.6J K .373S -⨯∆=-=-⋅热源(2)由于热源的变化相同,式(2)给出的熵变也就是原来的不可逆过程中热源的熵变。

则整个系统的总熵变为1184J K .S S S -∆=∆+∆=⋅总水热源 (3)为使水温从0C o 升至100C o 而参与过程的整个系统的熵保持不变,应令水与温度分布在0C o 与100C o 之间的一系列热源吸热。

水的熵变S ∆%水仍由式(1)给出。

这一系列热源的熵变之和为37312731304.6J K.p mc dT S T-∆=-=-⋅⎰%热源 (4)参与过程的整个系统的总熵变为0.S S S ∆=∆+∆=%%%总水热源(5)1.19 均匀杆的温度一端为1T ,另一端为2T ,试计算达到均匀温度()1212T T +后的熵增。

解:以L 表示杆的长度。

杆的初始状态是0l =端温度为2T ,l L =端温度为1T ,温度梯度为12T T L-(设12T T >)。

这是一个非平衡状态。

通过均匀杆中的热传导过程,最终达到具有均匀温度()1212T T +的平衡状态。

为求这一过程的熵变,我们将杆分为长度为dl 的许多小段,如图所示。

位于l 到l dl +的小段,初温为122.T T T T l L-=+(1)这小段由初温T 变到终温()1212T T +后的熵增加值为121221222ln ,T T l p p TT T dT dS c dl c dl T T T T l L++==-+⎰(2)其中p c 是均匀杆单位长度的定压热容量。

根据熵的可加性,整个均匀杆的熵增加值为()12122012121212222120121122121212112212ln ln 2ln ln 2ln ln ln 2ln ln ln 12lLp Lp p p p p S dS T T T T c T l dlL c T T T T T T T T c L T l T l T l T T L L L L c L T T c L T T T T T T T T T T T T T T C T T ∆=⎡+-⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦+⎡---⎤⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦+=---+-+-=-+-⎰⎰.⎛⎫⎪⎝⎭(3)式中p p C c L =是杆的定压热容量。

1.21 物体的初温1T ,高于热源的温度2T ,有一热机在此物体与热源之间工作,直到将物体的温度降低到2T 为止,若热机从物体吸取的热量为Q ,试根据熵增加原理证明,此热机所能输出的最大功为max 212()W Q T S S =--其中12S S -是物体的熵减少量。

相关文档
最新文档