数字图像处理第九章

合集下载

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲

二、课程章节主要内容及学时分配第一章、数字图像处理方法概述讲课3课时了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;了解数字图像处理的应用;了解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(DIB);了解调色板的基本概念和应用;了解CDIB类与程序框架结构介绍;了解位图图像处理技术。

重点:CDIB类与程序框架结构介绍。

难点:调色板的基本概念和应用。

第二章、图像的特效显示讲课3课时、实验2学时了解扫描、移动、百叶窗、栅条、马赛克、渐显与渐隐、浮雕化特效显示。

重点:渐显与渐隐。

难点:马赛克。

第三章、图像的几何变换讲课2课时了解图像的缩放、平移、镜像变换、转置、旋转。

重点:镜像变换。

难点:旋转。

第四章、图像灰度变换讲课3课时、实验2学时了解非0元素取1法、固定阈值法、双固定阈值法的图像灰度变换;了解灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。

重点:灰度直方图。

难点:灰度分布均衡化。

第五章、图像的平滑处理讲课3课时了解二值图像的黑白点噪声滤波、消除孤立黑像素点、3*3均值滤波、N*N 均值滤波器、有选择的局部平均化、N*N中值滤波器、十字型中值滤波器、N*N最大值滤波器、产生噪声。

重点:消除孤立黑像素点、中值滤波器。

难点:有选择的局部平均化。

第六章、图像锐化处理及边缘检测讲课3课时、实验2学时了解梯度锐化、纵向微分运算、横向微分运算、双方向一次微分运算、二次微分运算、Roberts边缘检测算子、Sobel边缘检测算子、Krisch边缘检测、高斯-拉普拉斯算子。

重点:Roberts边缘检测算子、高斯-拉普拉斯算子。

难点:梯度锐化。

第七章、图像分割及测量讲课4课时了解图像域值分割、轮廓提取、轮廓跟踪、图像的测量。

重点:轮廓提取、轮廓跟踪。

难点:图像的测量。

包括:图像的区域标记、图像的面积测量及图像的周长测量。

第八章、图像的形态学处理讲课3课时了解图像腐蚀、图像的膨胀、图像开启与闭合、图像的细化、图像的粗化、中轴变化。

数字图像处理_第九章_形态学图像处理

数字图像处理_第九章_形态学图像处理

A X ( AB1 ) ( AcB2 )
B1在A内找到匹配 B2在AC中找到匹配 根据腐蚀与膨胀间的对偶关系
A B ( AB1 ) ( Ac B2 )
以上3个公式叫形态学上的击中或击不中变换。
数字图像处理
Chapter 9 Morphological Image Processing
C A B D A B
AC {w | w A} A的补:
A B {w | w , A B} A BC
ˆ {w | w b, b B} 集合B的反对 B
集合A平移到点 z ( z1 , z 2 )
,表示为(A)z
(A)z {c | c a z, a A}
数字图像处理
Chapter 9 Morphological Image Processing
9.1 序言 图9.1为集合论基本概念图示
数字图像处理
Chapter 9 Morphological Image Processing
9.1 序言 图9.2为平移、反射图示
数字图像处理Байду номын сангаас
Chapter 9 Morphological Image Processing
数字图像处理
Chapter 9 Morphological Image Processing
9.5 一些基本的形态学算法
9.5.5 细化
A B=A-(A*B)=A (A*B)C {B}={B1 ,B2 ,B3 ...Bn }
Bi是Bi-1旋转后的形式 更有用的形式: A {B}=((...((A B1 ) B2 )...) Bn
A B ( A B)B

数字图像处理第九章解读

数字图像处理第九章解读

1.8758
0.0454
Y
B 0.0528 - 0.2040 1.1512 Z
(9-3)
3. Lab颜色模型 Lab颜色模型是CIE于1976年制定的等色空间。Lab颜色 由亮度或光亮度分量L和a、b两个色度分量组成。其中,a 在正向的数值越大表示越红,在负向的数值越大则表示越绿; b在正向的数值越大表示越黄,在负向的数值越大表示越蓝。 Lab颜色与设备无关,无论使用何种设备(如显示器、打印机、 计算机或扫描仪)创建或输出图像,这种模型都能生成一致 的颜色。Lab模型与XYZ模型的转换公式为
2 h 4
3
3
(9-11)
hh4 /3
g i(1s)
b
i1
scosh cos6( 00 h)
r 3i (x y)
4 h2
3
(9-12)
由式(9-10)~(9-12)计算出的r、g、b值的范围为 [0,1],为便于理解与显示,常将其转换为[0,255]:
R r 255
G
g
255
B b 255
F xX yYzZ
(9-1)
式中: x、y、z称为标准计色系统下的色度坐标,可表示为
x X y Y z Z X Y Z X Y Z X Y Z
显然,x+y+z≡1。Fra bibliotek(9-2)
x、y、z中,只有两个是相互独立的,因此,表示某种 颜色只需两个坐标即可。据此,CIE制定了如图9-3所示的色 度图,图中横轴代表标准红色分量x,纵轴代表标准绿色分 量y,标准蓝色分量z=1-(x+y)。
ri(1s)0.392 gi1cos6 cso(0 0hsh)0.588 b3i(xy)
(3) 计算R、G、B:

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理第9章

数字图像处理第9章

第九章 图像分割与边缘检测
分割区域的一种方法叫区域生长或区域生成。假定区域的数 目以及在每个区域中单个点的位置已知,则从一个已知点开始, 加上与已知点相似的邻近点形成一个区域。
相似性准则可以是灰度级、彩色、组织、梯度或其他特性, 相似性的测度可以由所确定的阈值来判定。
从满足检测准则的点开始,在各个方向上生长区域,当其邻 近点满足检测准则就并入小块区域中。当新的点被合并后再用 新的区域重复这一过程,直到没有可接受的邻近点时生成过程 终止。
• 连通是指集合中任意两个点之间都存在着完全 属于该集合的连通路径;
• 对于离散图像而言,连通有4连通和8连通之分, 如图9-1所示。
第九章 图像分割与边缘检测
(a)
(b)
图9-1 4连通和8连通
第九章 图像分割与边缘检测
4连通指的是从区域上一点出发,可通过4个方向,即上、 下、左、右移动的组合,在不越出区域的前提下,到达区域内 的任意像素;
第九章 图像分割与边缘检测
物体边缘的作用
图9-7 物体边缘的作用
第九章 图像分割与边缘检测
边缘的类型
• 尽管边缘在数字图像处理和分析中具有 重要作用,但是到目前为止,还没有关 于边缘的被广泛接受和认可的精确的数 学定义。
• 一方面是因为图像的内容非常复杂,很 难用纯数学的方法进行描述,另一方面 则是因为人类对本身感知目标边界的高 层视觉机理的认识在还处于善之中。
第九章 图像分割与边缘检测
• 目前,具有对边缘的描述性定义,即两 个具有不同灰度的均匀图像区域的边界, 即边界反映局部的灰度变化。
• 局部边缘是图像中局部灰度级以简单 (即单调)的方式作极快变换的小区域。 这种局部变化可用一定窗口运算的边缘 检测算子来检测。

Matlab数字图像处理9-PPT精选文档

Matlab数字图像处理9-PPT精选文档

9.2.2 MATLAB中颜色模型转换

颜色模式就是建立的一个3-D坐标系统,表示一个彩色空间,采用不同的 基本量来表示颜色,就得到不同的颜色模型(彩色空间),不同的颜色模 型都能表示同一种颜色,因此,它们之间是可以相互转换的。
9.3本章小结

本章主要介绍了彩色图像处理的一些基本知识。首先介绍了彩色图像的基 础,彩色图像的基本概念。其次,介绍了彩色图像的坐标变换,其中包括 MATLAB中支持的几种彩色模型,和基本彩色模型之间的转换。
9.1彩色图像基础

彩色图像处理和人的视觉系统有着非常密切的关系。一个彩色的光源能够 发射400~700n的电磁波,一部分被物体吸收,一部分反射至人眼,引起了 人眼对物体颜色的感知。大部分电磁波都被吸收物体时,人眼感知物体为 黑色,大部分电磁波都被物体反射时,人眼感知物体为白色,某一波段的 电磁波被物体反射回人眼,人眼感知的物体就是彩色的,例如, 569~590nm电磁波反射回人眼,人的视觉系统感知的就是黄色。本小节主 要介绍三原色概念,色调、饱和度和亮度的概念。
习题



9.1 列举两组除红绿蓝以外的其他三原色。 9.2 RGB模型的应用特点是什么? 9.3 HSV模型的应用特点是什么? 9.4 读入一幅HSV图像,将其转换成RGB图像。 9.5 读入一幅YCbCr图像,将其转换成RGB图像。
9.1.1三原色

人的视觉系统中有两种细胞,一种为杆状细胞,另一种为锥状细胞,杆状 细胞为亮度感知细胞,锥状细胞为颜色感知细胞,在亮度足够的条件下, 锥状细胞对红、绿、蓝这三种颜色波段的电磁波最为敏感,因此这三种颜 色被称为三原色,人类视觉系统锥状细胞对可见光敏感曲线如下图所示。 根据人眼的视觉特性,自然界中的任何颜色都可以由三原色按照不同比例 组合而成。

数字图像处理第八、九章

数字图像处理第八、九章

(8.3 2)
此外,常用的特征量还有区域的幅宽、占有 率和直径等 。
2.区域外部形状特征提取与分析
区域的边界、骨架空间域分析
1)方向链码描述 边界的方向链码表示既便于有关形状
特征的提取,又节省存储空间。从链码可 以提取一系列的几何形状特征。如周长、 面积某方向的宽度、矩、形心 、两点 之间的距离等。
收缩和膨胀是数学形态学最基本的变换,数学
令E = R2和E=Z2分别为二维欧几里德空间和欧几 里德栅格。二值图像目标X是E的子集。用B代表 结构元素,Bs代表结构元素B关于原点(0 , 0) 的对称集合:
Bs b : b B
即Bs是B旋转180°获得的。图给出了三种简单的 结构元素。膨胀和腐蚀变换的定义式为:
腐蚀处理的应用
• 腐蚀处理可以将粘连在一起的不同目 标物分离,并可以将小的颗粒噪声去 除。
膨胀
• 膨胀是将与目标区域的背景点合并到该目标 物中,使目标物边界向外部扩张的处理。
例:
膨胀的基本设计思想
• 设计一个结构元素,结构元素的原点定位在背景像 素上,判断是否覆盖有目标点,来确定是否该点被
膨胀为目标点。
膨胀就是把连接成分的边界扩大一层的处理。 收缩则是把连接成分的边界点去掉从而缩小一层 的处理。若输出图像为g(i,j),则它们的定义式为
膨胀:g(i,
j)

1 0
像元(i, j)为1或其4 - /8 - 邻域的一个像素为1 其他
收缩:g(i,
j)

0 1
像元(i, j)或其4 - /8 - 邻域的一个像元为0 其他
到该点; 3)判断该结构元素所覆盖范围内的像素值是否全部为1:
如果是,则腐蚀后图像中的相同位置上的像素值为1; 如果不是,则腐蚀后图像中的相同位置上的像素值为0; 4)重复2)和3),直到所有原图中像素处理完成。

数字图像处理ch9colorimageprocessing

数字图像处理ch9colorimageprocessing

22
9.2.1 RGB模型(RGB Color Model)
一幅m*n(m,n为正整数,分别表示图像 的高度和宽度)的RGB彩色图像可以用一个 m*n*3的矩阵来描述,图像中的每一个像素点对 应于红、绿、蓝三个分量组成的三元组。 在Matlab中,不同的图像类型,其图像矩阵 的取值范围也不一样。例如若一幅RGB图像是 double类型的,则其取值范围在[0, 1]之间,而 如果是uint8或者uint16类型的,则取值范围分 别是[0, 255]和[0, 65535]。
26
结果:
9.2.2 CMY和CMYK模型
• 在用彩色打印机将彩色图像打印输出时,使用的是CMY和 CMYK彩色模型。 • 红、绿、蓝称为加色基色,RGB模型称为加色混色模型。 • 在CMY彩色模型中,青(Cyan)、品红(Magenta)、黄( Yellow)是在白光中减去红、绿、蓝而得到的,它们分别是红、 绿、蓝的补色,所以,青、品红、黄称为减色基色,CMY模型 称为减色混色模型。 • 大多数在纸上沉积彩色颜料的设备,如彩色打印机和复印件, 要求输入CMY数据或在内部做RGB到CMY的转换。 • 转换操作(假设所有的彩色值都归一化为[0,1]范围) :
γ 射 线 可见光 X 射线 紫外 红外线 线 无线电波 微波 超 短 中 长 短 波 波 波 1km 100km 红 0.76(m)
0.01nm 1nm 紫 0.38 0.43
0.1μ 10μ 0.1cm 10cm 10m 电磁波谱分布 蓝 青 绿 黄 橙 0.47 0.5 0.56 0.59 0.62
9
9.1.2 彩色基础 ( Color Fundamentals )
三原色原理
其基本内容是: 任何颜色都可以用3种不同的基本颜色按照不 同比例混合得到,即 C=aC1+bC2+cC3 (9.1) 式中a,b,c >=0 为三种原色的权值或者比例, C1、C2、C3为三原色(又称为三基色)。

数字图像处理第九章至11章内容整理.

数字图像处理第九章至11章内容整理.

第九章1、设原图像f(x,y在[0,Mf],感兴趣目标的灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为2、梯度锐化法图像锐化法最常用的是梯度法。

对于图像f(x ,y,在(x ,y处的梯度定义为梯度是一个矢量,其大小和方向为伪彩色增强:密度分割法是把黑白图像的灰度级从0(黑到M0(白分成N 个区间Ii(i=1,2,…,N,给每个区间Ii 指定一种彩色Ci ,这样,便可以把一幅灰度图像变成一幅伪彩色图像。

该方法比较简单、直观。

缺点是变换出的彩色数目有限。

第十章1、图像退化模型假定成像系统是线性位移不变系统(退化性质与图像的位置无关,它的点扩散函数用h(x,y表示,则获取的图像g(x,y表示为g(x,y=f(x,y*h(x,y式中f(x,y表示理想的、没有退化的图像,g(x,y是劣化(被观察到的图像。

若受加性噪声n(x,y的干扰,则退化图像可表示为g(x,y=f(x,y*h(x,y+n(x,y这就是线性位移不变系统的退化模型。

2、图像的几何校正几何失真:图像在获取过程中,由于成像系统本身具有非线性、拍摄角度等因素的影响,会使获得的图像产生几何失真。

几何失真:系统失真和非系统失真。

系统失真是有规律的、能预测的;非系统失真则是随机的。

当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像,以免影响定量分析的精度。

几何校正方法图像几何校正的基本方法是先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。

几何校正通常分两步:①图像空间坐标变换;首先建立图像像点坐标(行、列号和物方(或参考图对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;②确定各像素的灰度值(灰度内插。

⎪⎩⎪⎨⎧≤≤+---<≤+---<≤=f f gMy x f b d b y x f b M d M b y x f a c a y x f a b c d a y x f y x f a c y x g ,(],(][/([(,(],(][/([(,(0,(/(,(⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=∂∂∂∂y y x f x y x f y x f f y x grad ,(,('',(/(/(((ygrad(x,,(,(1''12,(2,(2'2'x y x f y y x f x y y y x f x y x f y x tg f f tg f f ∂∂∂∂--∂∂∂∂==+=+=θ几何校正方法可分为直接法和间接法两种。

《数字图像处理》课件1第9章

《数字图像处理》课件1第9章

21
图9.2.1右下角部分是自适应处理(学习)部分,用训练样本 根据某些规则求出一些判别规则后,对这些训练样本逐个 进行检测,观察是否有误差。这样不断改进判别规则,直 到满足要求为止。在该系统中,图像的增强和恢复等可以 看做预处理,其输入、输出均是图像,它是传统的图像处 理的内容。而图像分割、特征提取及结构分析等称为图像 识别,其输入是图像,输出是描述或解释。
20
9.2 统计模式识别
统计模式识别是研究每一个模式的各种测量数据的统 计特性,按照统计决策理论来进行分类的方法。
统计模式识别的大致过程如图9.2.1所示。图中上半部 分是识别部分,即对未知类别的图像进行分类;下半部分 是分析部分,即由已知类别的训练样本求出判别函数及判 别规则,进而用来对未知类别的图像进行分类。
15
nm
m(u,v) f (k u 1,l v 1) t(k,l)
k1 t1
(9.1.7) 如果在坐标(u,v)处的图像中有和模板一致的图案, 则 m(u,v)的值很小,相反则较大。特别是在模板和图像 重叠部分完全不一致的场合下,如果把模板内的各像素与 图像重合部分对应像素的差的绝对值依次增加下去,其和 就会急剧地增大。因此,在做加法的过程中,如果差的绝 对值部分的和超过了某一阈值时,就认为这位置上不存在 和模板一致的图案,从而转移到下一个位置上计算m(u,v)。
8
图9.1.1 模板匹配示例
9
模板匹配是图像处理中最基本、最常用的匹配方法。 匹配的用途很多,如在几何变换中,检测图像和地图之间 的对应点;不同的光谱或不同的摄影时间所得的图像之间 位置的配准(图像配准);在立体影像分析中提取左右影像 间的对应关系;运动物体的跟踪;图像中对象物位置的检 测等。
10

遥感数字图像处理第九章 遥感图像分类

遥感数字图像处理第九章 遥感图像分类

gi ( x) p(wi | x) p(wi x) p(wi | x) p( x) p( x | wi ) p(wi ) gi ( x) p(wi | x) p( x | wi ) p(wi ) / p( x)
对于同一个像素来说,p(x)是相同的,因此可以约掉
最大似然方法
训练区:已知类别的区域,用于训练分类算法
样本区域类别的确定:实地观测,航片解译、 地图分析、个人经验等
监督分类的步骤
(1)提取样本区的光谱特性 (2)确定判别准则(最小距离?),生成判别函数 (3)将类型未知的样本值代入到判别函数中,根 据函数值对样本进行分类
样本区的选择
样本区类型:点、线、面 样本区的选择: 具有代表性(典型性) 时间或空间上的一致性 像元要足够多
A.图像预处理
确定工作范围 多源图像的几何配准 噪声处理 辐射校正 几何精校正 多图像融和(高空间分辨率和高光谱分辨率的图像)
C.特征选择和提取
特征:用于测量的属性 特征选择:变量:数据
波段数据、波段代数运算后的数据 图像变换之后的数据 非遥感图像数据
特征提取:地物光谱与图像亮度的先验关系
可分性、可靠性、独立性、数量少
XY ( X ) (Y )
2 2
p
பைடு நூலகம்
p
分类方法
(1)监督分类 (2)非监督分类 (3)其它的综合性分类方法:
模糊聚类、神经网络、决策树、专家系统分类、面 向对象的分类
工作流程
A.图像预处理 B.选择分类方法 C.特征选择和提取 D.选择合适的分类参数进行分类 E.分类后处理 F.成果输出
平行管道方法(盒式分类器,平行六面体分类器)
分类原理:每个训练区的样本的特征向量生成一个盒子,盒子 的中心为均值向量,边界为标准差的倍数(1、2、1.73等)。未 分类的向量落到哪个盒子就属于哪个类,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)A是A B的子集。
(2)如果C是D的子集,
则C B是D B的子集。
(3)(A B) B=A B
则C B是D B的子集。
(3)(A B) B=A B
多次开操作或 闭操作没有影 响,只能用一次
二值形态学中的运算对象是集合。设A为图像集合,B为 结构元/结构元素,数学形态学运算是用B对A进行操作。 需要指出,实际上结构元素本身也是一个图像集合。对每 个结构元素可以指定一个原点,它是结构元素参与形态学 运算的参考点。 应注意,原点可以包含在结构元素中,也可以不包含在结 构元素中,但运算的结果常不相同。 二值形态学中两个最基本的运算是腐蚀与膨涨 开操作:先用B对A腐蚀,然后再用B对结果进行膨胀 闭操作:先用B对A膨胀,然后再用B对结果进行腐蚀
使用3x3的结构元素:提取的边界宽度为1个像素 使用5x5的结构元素:提取的边界宽度为2~3个像素
• 使用迭代法进行区域填充/孔洞填充:
X k X k 1 B Ac
区域填充
k = 1,2,3,... Xk=Xk-1,则算法在迭代的第k步结束
初 始 点 条件膨胀:如果对上述公式的左部不加限制,则 膨胀将填充整个区域。利用与Ac的交集将 结果限制在感兴趣区域内,实现条件膨胀
多个目标孔洞的填充
第一个点填充的结果
难点:如何判断黑点是球体内部的点还是背景点? ——智能填充
连通分量的提取
令Y表示一个包含于集合A中的连通分量,并假设Y 中的一个点p是已知的。用下列迭代式生成Y的所有 元素: Xk Xk1 B A
k 1,2,3,...
x0=p,如果Xk=Xk-1,算法收敛,令Y=Xk 区域填充:寻找背景点 连通分量的提取:寻找前景 点
显示了4个结构元素 对凸壳的贡献
缺点:凸壳可能超出确保凸性所 需的最小尺寸。 解决办法:限制水平和垂直方向 上的尺寸大小,如图所示。
也可限制水平、垂直和对角线方 向上的最大尺寸。 更增加了算法的复杂性!
细化
• 用结构元素B细化集合A记作: c A B A A?? B A A?? B 或:
i Di X conv


Xi0 = A
i=1,2,3,4 k=1,2,3,...
C A D i
i 1
4
① 反复使用B1对A做击中或击不中变换,当不再发生变化时, 执行与A的并集运算,用D1表示结果。 ② 上述过程用B2、B3重复,直到不发生进一步的变化。 ③ 最后得到的4个D的并集组成了A的凸壳。
击中或击不中变换
A对B进行的击中/B在A中的匹配表示为:
A ?? B A ?? X Ac ??W X
B B1, B2 , B1 X , B2 W X


A B A?? B1 Ac ?? B2


B1是由与一个目标对象相联系的B元素构成的集合 B2是由与相应背景有关的B元素构成的集合
X用S腐蚀的结果是所有使S平移x后仍在X中的集合。 换句话说,用S来腐蚀X得到的集合是S完全包括在X 中时S的原点位置的集合。
A被B腐蚀成一条直线
腐蚀的应用
• 腐蚀在数学形态学运算中的作用是消除物体边界点。
• 如果结构元素取3×3的像素块,腐蚀将使物体的边 界沿周边减少一个像素。
• 腐蚀可以把小于结构元素的物体(毛刺、小凸起)去 除,这样选取不同大小的结构元素,就可以在原图 像中去掉不同大小的物体。
包含于指 纹噪声的 尺寸被减 小了,而 指纹纹路 间产生了 新的间断。
击中或击不中变换
是形状检测的一种基本工具。
击中-击不中变换实际上对应两个操作, 所以用到两个结构元素。
击中或击不中变换
• 设有两幅图像A和B,如果A∩B≠φ ,那么称B击中A,其 中φ 是空集合的符号; • 否则,如果A∩B=φ ,那么称B击不中A
预备知识
二值形态学中的运算对像是集合,但实际运算 中当涉及两个集合时并不把它们看作是互相对等的。 一般设A为图像集合,B为结构元素,数学形态学 运算是用B对A进行操作。 结构元素本身实际上也是一个图像集合。对每 个结构元素,先要指定一个原点,它是结构元素参 与形态学运算的参考点。注意原点可以包含在结构 元素中,也可以不包含在结构元素中(即原点并不 一定要属于结构元素),但两种情况下的运算结果 常不相同 。
集合B关于原点对称
方形结构元
长形结构元
桥接裂缝
膨胀最简单的应用之一是将裂缝桥接起来
形态学方法优于低通滤波方法的一个直接优点是 这种方法在一幅二值图像中可以直接得到结果。
左图:带有间断的图像,已知间断的最大长度为两个像素。
右图:显示了使用这个结构元素对原图进行膨胀后的结果, 修复了文字的间断。
(a)
(b)
(c)
(d)
(e)
(f)
目标区域
结构元素大于噪声
开操作将目标 周围噪声消除
闭操作将目标 内部噪声消除
背景噪声在开操作的腐 蚀过程中消除了。而包 含于亮指纹中的噪声元 素的尺寸却增加了。 不足:指纹纹路 有间断,没有被 完全修复 在开操作的基础上 再次进行膨胀,间 断被修复,但纹路 变粗了。 最后再通过腐蚀来 修正。
迭代法进行连通分量的提取
X k X k 1 B A
k 1,2,3,...
第一次迭代的结果
结构元素如 果选取4连 通的如何?
第二次迭代的结果 最终结果 X6
使用连通分量检测包装食物中的外来物
一幅含有碎骨的鸡胸脯X光 图像。
使用阈值法将骨头从背景 中提取出来形成的二值 连通分量中 图像。 的像素数 使用像素为1,大小为5x5 的结构元素进行腐蚀的 结果。
包含边长为1,3,5,7,9 和15像素正方形的二 值像
使用13×13像素大小 的结构元素腐蚀原图 像的结果
使用13×13像素大小的结 构元素膨胀图b,恢复原来 15×15尺寸的正方形
开操作和闭操作/开启和闭合
开操作:使图像的轮廓变得光滑,断开狭窄 的连接和消除细的突出物 使用结构元素B对集合A进行开操作,定义为: A B AB B 含义:先用B对A腐蚀,然后用B对结果进行膨胀 另一个定义 A B Bz | Bz A
保持它们基本的形状特性,并除去不相干的 结构。
第九章 形态学图像处理
基本思想:是用具有一定形态的结构元素,去量 度和提取图像中的对应形状,以达到对图像分析 和识别的目的。 初期的数学形态学方法仅可应用于二值图 像,所以需将灰度图像先进行二值化。后来灰度 形态学得到发展,使得数学形态学方法不仅可用 于二值图像也可直接应用于各种灰度图像和彩色 图像 。
(a)B击中A;
(b)B击不中A
一般来说,一个物体的结构可以由物体内 部各种成分之间的关系来确定。为了研究 物体(在这里指图像)的结构,可以逐个 地利用其各种成分 (例如各种结构元素)对其 进行检验,判定哪些成分包括在图像内, 哪些在图像外,从而最终确定图像的结构。 击中/击不中变换就是在这个意义上提出的。
B B , B , B ,, B A B A B1 B2 Bn
1 2 3 n
Bi是Bi-1旋转后的形式
连续使用B1,B2,…,Bn对A进行细化
击中-击不中变换用来确定应细化掉的像素,然后再 从原始集合A中除去。
常用于细化 的结构元素
转化为m连通的细化集合 以消除多重路径
预备知识
• 集合论中的几个基本概念 • 二值图像的逻辑运算
•集合论中的几个基本概念
基本概念:并、交、补、差
附加: ˆ :B的反射—关于结构元素的中心 (1) B
ˆ w w b, b B B
(2)(A)z :集合A平移到点z={z1,z2}
Az c c a z, a A
粗化—细化的形态学对偶
• 粗化定义:
或:
A ?? B A A ?? B
• 如果两个物体之间有细小的连通,那么当结构元素 足够大时,通过腐蚀运算可以将两个物体分开。
使用腐蚀除去图像的某些部分
腐蚀的一种简单用途是从二值图像中消除
不相关的细节 假设这里只要求留下最大的正方形而除去 其他的正方形,我们可以通过用比我们要 保留的对象稍小的结构元对图像进行腐蚀。 然后再用同一结构元对图像进行膨胀。
• • • • • • • • 边界提取 区域填充 连通分量的提取 凸壳 细化 粗化 骨架 裁剪
实际用途
提取用于 表示和描 述形状的 图像成分
边界提取
• 边界提取的方法:
A A A ?? B
先用B对A腐蚀,然后用A减去腐蚀的结果
一幅简单的二值图像,(b)为使用上例中3x3的结构元素进行 处理的结果。
——当B在A的边界内侧滚动时,B所能到达的A的边界的最 远点。 B对A的开操作是通过拟合到A的B的所有平移的并集得到的。
闭操作的几何解释:
A B 的边界通过B中的点建立
B在A的边界外侧滚动
开操作和闭操作彼此对偶
• 开操作的性质:
• 闭操作的性质:
(1)A B是A的子集合。
(2)如果C是D的子集,
第九章 形态学图像处理
预备知识
膨胀与腐蚀 开操作和闭操作 击中或击不中变换 一些基本的形态学算法 灰度级形态学
第九章 形态学图像处理
形态学:一般指生物学中研究动物和植物结
构的一个分支。
数学形态学(也称图像代数):以形态为 基础对图像进行分析的数学工具。
形态学图像处理的应用可以简化图像数据,
•二值图像的逻辑运算
1.主要逻辑运算
2.二值图像的基本逻辑运算
膨胀与腐蚀
• 膨胀和腐蚀是形态学算法的基础 膨胀:使图像扩大 腐蚀:使图像缩小
膨胀
相关文档
最新文档