从算式到方程教学设计及反思
七年级数学《从算式到方程》教案设计
![七年级数学《从算式到方程》教案设计](https://img.taocdn.com/s3/m/a768fa0058eef8c75fbfc77da26925c52cc59179.png)
七年级数学《从算式到方程》教案设计方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。
接下来是小编为大家整理的七年级数学《从算式到方程》教案设计,希望大家喜欢!七年级数学《从算式到方程》教案设计一一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解. 例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当,,时,求式子的值.答案:,, .通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+继续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数= .问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程中的的值吗?分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程. 由于表示月份,是正整数,不妨让,,……分别代入方程算一算.由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发现:当时,的值是,也就是,当时,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5. 所以,方程的解就是 .教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思考:你能估算方程和方程的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.怎样检验一个数是否是方程的解呢?七年级数学《从算式到方程》教案设计二目标1.使学生初步掌握一元一次方程应用题的设未知数和列方程;2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯. 教重难点重点:从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?难点:师生共同分析、研究利用等式的性质解一元一次方程和根据实际问题设未知数和列方程。
人教版七年级数学上册《从算式到方程》教学设计 (1)
![人教版七年级数学上册《从算式到方程》教学设计 (1)](https://img.taocdn.com/s3/m/68dee78bdc3383c4bb4cf7ec4afe04a1b071b0b3.png)
《从算式到方程》教学设计课题 3.1.1从算式到方程
重难点重点:设未知数、列出方程
难点:找等量关系,会用方程解决简单的实际问题
教学目标基础知
识
了解方程及一元一次方程的概念.
基本技
能
根据等量关系,会列方程
思想方
法
学习过程中体会转化和建模的数学思想
德育目
标
通过学习,培养学生分析问题,解决问题的能力。
环节内容个人备
课
复案与
集备
情境导入一、创设情境、引入课题:
1.看微课
2.归纳方程的定义
学习目标根据实际问题,能找到等量关系,从而设未知数列方程解决问题
教学环节3.巩固练习,总结判定方程的关键条件
二、探索一元一次方程的定义
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间达到规定 的检修时间2450 h ?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 1.归纳一元一次方程的定义:
_____________________________________________
2.练习:下列式子____________是方程, ____________是一元一次方程?
3.解方程:求方程的解的过程。
4.方程的解:使方程中等号左右两边相等的
121
() x +22153() m +=33554
() -=+x x 24260() +-x x =53915
() a +>24
65x π
+
=()。
从算式到方程—教学设计及点评
![从算式到方程—教学设计及点评](https://img.taocdn.com/s3/m/9febb80df6ec4afe04a1b0717fd5360cba1a8d21.png)
从算式到方程—教学设计及点评一、教学设计1.教学目标:(1)知识目标:了解算式和方程的概念,认识算式和方程之间的关系。
(2)能力目标:能够通过给定的算式写出相应的方程,并能够根据方程解决问题。
(3)情感目标:培养学生的数学思维能力和问题解决能力,增强他们对数学的兴趣和信心。
2.教学重点:(1)理解算式和方程的定义。
(2)掌握从算式到方程的转换方法。
(3)理解方程的意义和用途。
3.教学难点:(1)理解方程的意义和用途。
(2)掌握根据给定的算式写出方程的方法。
4.教学过程:步骤一:导入新课(1)引入问题:有一些运算式,例如:"5+2=7",你能发现其中的规律吗?(2)学生回答并解释规律:等号左边的算式和等号右边的值相等。
(3)教师引导学生总结:这种形式的式子叫做算式,其中有一个等号,左右两边相等。
步骤二:引入方程的概念(1)引导学生思考问题:如果我们把算式中的一些数用一个字母表示,如"5+x=7",这种式子叫什么?(2)学生回答并解释:这种式子叫做方程,字母代表的是一个未知数。
(3)教师解释:方程和算式的结构非常相似,只不过其中有一个未知数,我们可以通过解方程来求出未知数的值。
步骤三:从算式到方程(1)教师出示一些算式,并要求学生根据算式写出相应的方程。
(2)学生通过思考和分析,用未知数表示算式中的一些数,并写出方程。
(3)学生互相交流并对答案进行讨论。
步骤四:解决问题(1)教师给出一些实际问题,并要求学生用方程去解决问题。
(2)学生根据问题提供的信息写出方程,然后解方程求出未知数的值。
(3)学生互相交流并对答案进行讨论。
步骤五:巩固练习(1)教师出示一些练习题,让学生自己用方程来解决。
(2)学生独立完成练习,并互相交换答案进行对比。
(3)教师进行讲评,梳理学生解题思路和方法。
步骤六:总结和拓展(1)教师引导学生总结今天学习的内容:什么是方程?怎样从算式到方程?(2)教师拓展讲解方程的更复杂形式,如多项式方程、二元一次方程等。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册
![5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册](https://img.taocdn.com/s3/m/fd07070d3d1ec5da50e2524de518964bcf84d239.png)
4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
从算式到方程教学设计教案
![从算式到方程教学设计教案](https://img.taocdn.com/s3/m/c097744af68a6529647d27284b73f242336c31fc.png)
从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。
二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。
三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。
让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。
2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。
让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。
3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。
4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。
七年级数学上册《从算式到方程》教案、教学设计
![七年级数学上册《从算式到方程》教案、教学设计](https://img.taocdn.com/s3/m/88a9045abfd5b9f3f90f76c66137ee06eef94e5f.png)
3.突破重难点,循序渐进:针对重难点,设计梯度性的问题和练习,帮助学生逐步掌握方程求解的方法和技巧。
4.拓展思维,提升能力:通过变式练习和拓展性问题,培养学生的逻辑思维和数学思维能力,提高他们解决实际问题的能力。
5.课堂小结,巩固提升:在课堂小结环节,引导学生总结本节课所学内容,强化对方程概念和求解方法的理解,提高学生的归纳总结能力。
1.导入新课:以一个简单的实际问题的视频引入,如“小明的年龄问题”,让学生从算式的角度解决问题,进而引导学生思考如何用方程来表示这个问题。
2.探究新知:
(1)让学生回顾算式的知识,引导他们发现算式与方程的关系。
3.讲解一元一次方程的求解步骤,包括移项、合并同类项、化简等。
4.结合具体例子,让学生了解未知数在方程中的意义,以及如何求解未知数。
5.强调一元一次方程在实际问题中的应用,让学生体会数学的实用价值。
(三)学生小组讨论,500字
在学生小组讨论环节,我将:
1.将学生分成若干小组,每组选择一个实际问题进行讨论。
(2)通过小组合作,让学生尝试将实际问题转化为方程,并讨论求解方程的方法。
(3)教师引导学生总结一元一次方程的求解步骤,并强调未知数在方程中的意义。
3.实践应用:
(1)设计不同类型的实际问题,让学生独立完成方程的建立和求解。
(2)针对学生的解答,进行点评和指导,强调解题过程中的注意事项。
4.知识拓展:
(1)引入一元一次方程的复杂情境,如含括号、分数等,培养学生的思维灵活性。
(2)设计开放性问题,让学生尝试用方程解决更多实际问题,提高他们的创新意识。
初中七年级上册数学《从算式到方程》教案
![初中七年级上册数学《从算式到方程》教案](https://img.taocdn.com/s3/m/806eda08ae45b307e87101f69e3143323968f561.png)
初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
从算式到方程教学反思
![从算式到方程教学反思](https://img.taocdn.com/s3/m/8434d806bf1e650e52ea551810a6f524ccbfcb2c.png)
从算式到方程教学反思在教学中从算式到方程的转化过程中,我发现学生们普遍存在一些困惑和难点,需要我进行反思和改进。
首先,我发现学生对于解决问题的步骤和思路理解不够清晰。
他们往往仅仅看到了算式的表达形式,但未能理解其中隐藏的问题和解决方法。
为了解决这个问题,我需要在教学过程中注重培养学生的问题意识和思考能力,让他们能够更深入地理解问题,并学会运用适当的数学知识和方法进行求解。
其次,我的教学方法可能欠缺启发式和探究性学习的元素。
我往往会直接告诉学生如何将算式转化为方程,不给他们足够的时间和机会去发现和探索解决问题的方法。
为了改进这个问题,我应该设计一些富有启发性的问题,引导学生自主思考和发现。
同时,还应该让学生进行一些具体的实例分析和实践操作,让他们亲手解决问题,从中积累经验和体会。
此外,我还应该注意在教学中减少学生的被动接受和机械记忆。
一些学生可能只是简单地记住算式和方程的模式,而不了解其中的内在逻辑和原理。
我应该通过举例和实践演练的方式,让学生深入理解方程的本质,掌握相关的解题方法和技巧。
同时,还需要经常与学生进行交流和互动,让他们能够独立思考和表达自己的观点。
最后,我认识到我在教学中过于关注知识点的传授,而忽视了学生的学习兴趣和动机。
这样很容易导致学生对于数学的学习产生抵触情绪,从而影响他们的学习效果和兴趣。
为了解决这个问题,我应该注重激发学生的学习兴趣,找到他们的内在动机,让他们愿意主动参与到学习中来。
同时,还需要多样化的教学手段和资源,提供丰富多样的学习体验,让学生能够从中获得乐趣和成就感。
总结起来,从算式到方程的转化需要我们进行教学反思和改进。
我们应该注重培养学生的问题意识和思考能力,采用启发式和探究性的教学方法,减少学生的被动接受和机械记忆,并注重激发学生的学习兴趣和动机。
通过不断的实践和调整,相信我们可以更好地帮助学生理解和掌握这一知识点。
从算式到方程教研活动(3篇)
![从算式到方程教研活动(3篇)](https://img.taocdn.com/s3/m/42ec9e47492fb4daa58da0116c175f0e7dd1194b.png)
第1篇一、活动背景数学是一门逻辑严谨、抽象思维的学科,从算式到方程的学习过程是学生数学思维从具体到抽象、从数量关系到关系式的转变。
为了提高学生对方程的理解和应用能力,本教研活动旨在探讨如何引导学生从算式到方程的过渡,提升学生的数学思维能力。
二、活动目标1. 使教师了解从算式到方程的教学策略,提高教学效果。
2. 培养学生的抽象思维能力,提高学生的数学素养。
3. 促进教师之间的交流与合作,共同探讨数学教学中的问题。
三、活动内容1. 算式与方程的关系(1)算式与方程的区别与联系算式是数学表达式的基本形式,用于表示数量关系。
方程则是含有未知数的等式,它表示未知数与已知数之间的数量关系。
算式是方程的基础,方程是算式的升华。
(2)算式到方程的过渡策略教师在教学过程中,应注重引导学生从算式到方程的过渡,具体策略如下:a. 从具体的实例出发,让学生感受未知数的存在。
b. 通过实际问题引入方程,让学生体会方程的应用价值。
c. 利用图形、表格等直观工具,帮助学生理解方程的意义。
2. 方程的教学方法(1)概念教学教师在讲解方程的概念时,要注重引导学生从算式到方程的思维转变,让学生理解方程的本质。
(2)解题教学教师在解题教学中,要注重培养学生的逻辑思维能力和运算能力,让学生掌握方程的解法。
(3)应用教学教师在应用教学中,要注重引导学生将方程应用于实际问题,提高学生的数学素养。
3. 案例分析(1)案例一:一元一次方程的应用问题:小明有10个苹果,给了小红5个,还剩几个?分析:这是一个一元一次方程的应用问题。
设小明原来有x个苹果,根据题意可列出方程x - 5 = 10。
解方程得到x = 15,即小明原来有15个苹果。
(2)案例二:二元一次方程组的应用问题:小明和小红一共有15元,如果小明买2元一支的铅笔,小红买3元一支的铅笔,他们各买几支?分析:这是一个二元一次方程组的应用问题。
设小明买了x支铅笔,小红买了y支铅笔,根据题意可列出方程组:2x + 3y = 15x + y = 15解方程组得到x = 6,y = 9,即小明买了6支铅笔,小红买了9支铅笔。
新人教版七年级数学上册3.1《从算式到方程》教学设计
![新人教版七年级数学上册3.1《从算式到方程》教学设计](https://img.taocdn.com/s3/m/eb12725c591b6bd97f192279168884868662b81f.png)
新人教版七年级数学上册3.1《从算式到方程》教学设计一. 教材分析新人教版七年级数学上册3.1《从算式到方程》是学生在学习了整数和分数的基础上,开始接触代数的知识。
本节课主要让学生了解方程的概念,学会将实际问题转化为方程,从而解决实际问题。
教材通过丰富的实例,引导学生认识方程,理解方程的含义,并掌握方程的解法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整数和分数有了深入的理解。
但是,对于代数知识,尤其是方程,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中发现方程,理解方程,并掌握解方程的方法。
三. 教学目标1.让学生了解方程的概念,理解方程的含义。
2.培养学生将实际问题转化为方程,并解决实际问题的能力。
3.引导学生掌握方程的解法,提高学生的数学素养。
四. 教学重难点1.重点:方程的概念,方程的解法。
2.难点:将实际问题转化为方程,并解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生认识方程,理解方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现规律,掌握方法。
3.合作学习法:鼓励学生之间相互讨论,共同解决问题。
六. 教学准备1.准备相关实例,用于引导学生认识方程。
2.准备练习题,用于巩固学生对方程的理解。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生认识方程。
例如:小明有2个苹果,小红的苹果数是小明的3倍,请问小红有多少个苹果?让学生尝试用数学语言表述这个问题,从而引出方程的概念。
2.呈现(15分钟)呈现一组实际问题,让学生尝试用方程来解决。
例如:甲车和乙车同时出发,甲车每小时行驶60公里,乙车每小时行驶80公里,请问甲车追上乙车需要多少时间?引导学生发现实际问题中存在的等量关系,并将其转化为方程。
3.操练(15分钟)让学生分组讨论,尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
在这个环节中,重点让学生掌握方程的解法,并能够将实际问题转化为方程。
七年级上册数学教案《从算式到方程》
![七年级上册数学教案《从算式到方程》](https://img.taocdn.com/s3/m/74dc876feffdc8d376eeaeaad1f34693dbef1005.png)
教学计划:《从算式到方程》一、教学目标1.知识与技能:学生能够理解方程的概念,掌握从具体问题的算式表达转化为方程表达的方法,初步学会解一元一次方程。
2.过程与方法:通过实例分析,引导学生经历从实际问题抽象出数学问题的过程,培养学生的数学建模能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生运用数学知识解决实际问题的意识,以及探索未知、追求真理的科学态度。
二、教学重点和难点●重点:方程的概念、从算式到方程的转化过程、一元一次方程的解法。
●难点:如何从实际问题中准确抽象出方程,以及如何设置恰当的未知数。
三、教学过程1. 引入新课(5分钟)●情境导入:通过一个贴近学生生活的实际问题(如购物找零、路程速度时间关系等),引出传统算式解法的局限性,激发学生思考更高效的解题方式。
●概念引入:介绍方程的概念,强调方程是描述相等关系的数学语言,是解决实际问题的一种有力工具。
●目标明确:阐述本节课的学习目标,让学生明确学习方向。
2. 新知讲授(15分钟)●方程构建:以实际问题为例,引导学生逐步将文字信息转化为数学符号,设置未知数,构建方程。
强调设置未知数的技巧和方法。
●方程解析:详细讲解方程的结构,包括未知数、系数、常数项等,以及方程与算式的主要区别。
●解方程示例:选取简单的一元一次方程作为示例,展示解方程的基本步骤和注意事项。
3. 互动探究(15分钟)●小组合作:将学生分组,每组分配一个实际问题,要求他们合作讨论,尝试将问题转化为方程,并初步求解。
●成果展示:各小组选派代表展示他们的方程构建过程和求解结果,其他同学和老师进行评价和反馈。
●问题解决:针对小组展示中出现的问题和疑惑,进行集体讨论,共同解决。
4. 巩固练习(10分钟)●分层练习:设计不同难度的练习题,包括直接给出条件求方程的题目、根据实际问题构建方程并求解的题目等,以满足不同层次学生的需求。
●即时反馈:学生完成练习后,教师巡视指导,及时发现并纠正学生的错误。
从算式到方程教案
![从算式到方程教案](https://img.taocdn.com/s3/m/4fa8a1acf9c75fbfc77da26925c52cc58bd690a6.png)
从算式到方程教案一、教学目标1.了解算式和方程的概念及区别2.学习将问题转化为算式和方程的过程3.掌握解一元一次方程的方法二、教学重点1.算式和方程的概念及区别2.将问题转化为算式和方程的过程3.解一元一次方程的方法三、教学内容及方法1. 算式和方程的概念及区别教学内容1.什么是算式2.什么是方程3.算式和方程的区别和联系教学方法1.通过例题介绍算式和方程的概念2.分组讨论,让学生自己总结算式和方程的区别和联系2. 将问题转化为算式和方程的过程教学内容1.问题的解法方法2.如何将问题转化为算式3.如何将算式转化为方程教学方法1.通过举例的方式,让学生了解问题的解法方法2.指导学生借助关键词、逻辑关系等方法将问题转化为算式3.指导学生将算式转化为方程,学生可以通过试误法、平衡法等方法进行转化3. 解一元一次方程的方法教学内容1.一元一次方程的定义2.解一元一次方程的步骤3.解一元一次方程的常见方法教学方法1.通过例题,让学生了解一元一次方程的定义2.指导学生掌握解一元一次方程的步骤,如整理方程、移项、消元、求解等3.介绍解一元一次方程的常见方法,如代入法、等式法、消元法等,并通过例题进行讲解和练习。
四、教学过程1.引入:通过生活中的例子和问题,让学生了解算式和方程的概念。
2.讲解:介绍算式和方程的概念及区别,指导学生如何将问题转化为算式和方程。
3.练习:分组讨论,解决一些常见问题和案例,学生通过实践了解如何将问题转化为算式和方程。
4.讲解:介绍一元一次方程的定义和解法步骤。
5.练习:通过例题辅导学生解一元一次方程,指导学生掌握解一元一次方程的方法。
6.总结:通过学生的回答和讨论梳理本课内容,强化学生认识和掌握。
五、教学评价1.以评价分组讨论的结果,是否能准确转化问题为算式和方程为主2.提供每组邀约的同学回答,根据回答多少得到得分3.搜集家庭作业中,学生对一元一次方程解法的掌握情况,整理汇报考核结果六、教学反思1.整合教材内容,重点突出和疏通,实现了既考查学生思维能力,又强化了技能巩固。
人教版七年级上数学《 从算式到方程 》教学反思
![人教版七年级上数学《 从算式到方程 》教学反思](https://img.taocdn.com/s3/m/67b7b03c5bcfa1c7aa00b52acfc789eb162d9e6c.png)
《从算式到方程》教学反思一、尽量体现“从算式到方程”的发展过程,体现符号表示的优越性。
本节内容是小学里学过的基础知识,也是中学阶段学习代数初步知识的基础。
教材首先通过一些生活实例,让学生用算式表示出来,体会代数式比算式具有优越性。
再通过分析具体数量之间的关系,引出方程的概念,体会用方程表示等量关系的优越性。
二、尽量体现“由具体到抽象”的认知规律。
本节课所学的知识都是学生小学里学过的知识,因此教师在设计时不能只注重细枝末节,要充分发挥学生的主动性,体现学生的主体地位。
在引导学生用字母表示数时,要尽量让学生自己体会用字母表示数的优越性;在引导学生由具体实例建立方程的过程中,要让学生充分体会方程比算式更具有优越性;在安排练习时,要让学生通过解决实际问题进一步体会方程的实用价值。
三、尽量体现“从简单到复杂”的认知规律。
本节课在例题的选择上遵循了由简单到复杂的认知规律。
开始安排了两个简单的例题,旨在让学生通过列算式解决实际问题,体会算式的优越性;然后安排一个难度较大的例题,旨在通过分析具体数量关系引出方程的概念,体会用方程表示等量关系的优越性;最后再安排一个例题,旨在让学生学会列方程解决实际问题。
这样由简单到复杂,步步深入,让学生从已有的知识出发,自然地得出新知识。
四、尽量体现“从特殊到一般”的认知规律。
本节课在引导学生用字母表示数时,先让学生用一个字母表示数,再让学生用多个字母表示数;在引导学生由具体实例建立方程的过程中,先让学生用一个未知数表示未知量,再让学生用两个未知数表示未知量;在安排练习时,先安排只有一个未知数的练习,再安排有两个未知数的练习。
这样由特殊到一般,步步推进,让学生从已有的知识出发,自然地得出新知识。
从算式到方程教学反思
![从算式到方程教学反思](https://img.taocdn.com/s3/m/f883ca4dfd0a79563d1e7233.png)
从算式到方程教学反思这是从算式到方程教学反思,是优秀的数学教案文章,供老师家长们参考学习。
从算式到方程教学反思第1篇这节课的内容是一元一次方程第一课时。
课后,我对本节课从四方面进行了如下反思:一:对选择引例的反思在小学学生已接触过方程,但没有过多的研究。
而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。
学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。
那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。
”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。
刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。
听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。
事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。
二:对选题的反思我在备课中【活动3】最初选用的题是:(1)21+2 =23(2)5x+4(3)6x+2=8 (4)9x+2>3(5)6y+2y=4修改后的题是:判断下列各式是方程的有:(1)(2)(3)(4)(5)考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。
数学人教版(2024版)七年级初一上册 5.1.1 从算式到方程 教学教案 教学设计01
![数学人教版(2024版)七年级初一上册 5.1.1 从算式到方程 教学教案 教学设计01](https://img.taocdn.com/s3/m/a304b98c77eeaeaad1f34693daef5ef7bb0d1209.png)
第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
人教版七年级上数学《 从算式到方程 》教案
![人教版七年级上数学《 从算式到方程 》教案](https://img.taocdn.com/s3/m/a175c65fa200a6c30c22590102020740be1ecd30.png)
《从算式到方程》教案【教学目标】1.掌握方程的概念,了解方程与代数式之间的区别与联系。
2.学会用方程解决简单的实际问题,感受方程的实用价值。
3.培养学生的数学思维能力和解决问题的能力,激发学生对数学的兴趣。
【教学重点】掌握方程的概念,学会用方程解决简单的实际问题。
【教学难点】理解方程与代数式之间的区别与联系,感受方程的实用价值。
【教具准备】多媒体课件、小黑板、练习纸。
【教学过程】一、导入新课1.通过多媒体展示一些简单的数学问题,如计算人数、重量、长度等,让学生用算式来表示。
2.引导学生回顾算式和方程的概念,并思考算式和方程之间的区别与联系。
3.引出本节课的主题:从算式到方程。
二、探索新知1.通过实例讲解方程的概念和特点。
2.通过例题的解析,让学生理解如何用方程解决实际问题。
3.通过多个例题的讲解,让学生掌握用方程解决简单实际问题的技巧和方法。
4.引导学生自主探究和合作交流,鼓励他们提出问题和解决问题。
5.总结从算式到方程的思路和方法:首先分析问题中的等量关系,然后用字母代替未知数,建立方程,最后解方程求出未知数的值。
三、巩固提高1.通过一系列的练习题,让学生进一步巩固所学的知识。
2.通过一些实际问题,让学生应用所学的知识解决实际问题。
3.通过一些拓展性问题,激发学生的思维能力和创新能力。
四、课堂小结1.回顾本节课所学的知识点,让学生再次明确从算式到方程的概念和方法。
2.引导学生总结用方程解决简单实际问题的思路和方法。
3.强调数学思维能力和解决问题的能力在数学学习中的重要性。
从算式到方程反思
![从算式到方程反思](https://img.taocdn.com/s3/m/46dd8c11227916888486d708.png)
“从算式到方程”一课的教学反思一、教材分析本课程的教学目标是从知识与技能、过程与方法、情感态度与价值观三个方面,根据《全日制义务教育数学课程标准(试验稿)》中关于“一元一次方程”的教学要求,结合学生的实际情况确定的。
知识与技能方面:通过对多个实际问题的分析,学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用。
过程与方法方面:在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、解决问题的能力。
情感态度与价值观方面:使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想。
二、教学方面采取的措施:学生在知识内容上比较容易接受,在列方程解应用题时,学生存在以下几个方面的困难:(1)学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
(2)习惯于用小学算术解法,对用代数方法分析应用题不适应,不知道要抓怎样的相等关系;抓不准相等关系。
(3)找出相等关系后不会列方程。
针对以上问题在教学过程中:1、要求学生仔细审题,认真阅读例题的内容,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后。
2、特别是学生抓不准相等关系这方面,如例1在分析过程中通过线段图写出等量关系式让学生直观、清楚解决列方程的难点。
在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点、区别或最佳列法,以开阔学生的思路。
2024从算式到方程人教版数学七年级上册教案
![2024从算式到方程人教版数学七年级上册教案](https://img.taocdn.com/s3/m/b775f37c492fb4daa58da0116c175f0e7cd119df.png)
2024从算式到方程人教版数学七年级上册教案一、教学目标1.让学生理解方程的概念,掌握方程的解法。
2.培养学生运用方程解决实际问题的能力。
3.培养学生的逻辑思维和推理能力。
二、教学重点与难点1.教学重点:理解方程的概念,掌握方程的解法。
2.教学难点:列方程解实际问题,方程的变形和化简。
三、教学过程1.导入新课教师通过展示一些简单的算式,引导学生回顾已学的数学知识。
提问:同学们,我们已经学过很多算式,那么你们知道算式和方程有什么区别吗?2.探究方程的概念教师通过展示一些具体的方程,让学生观察方程的特点。
提问:同学们,你们觉得方程和算式有什么不同?方程有什么特殊的地方?3.学习方程的解法教师通过示例,引导学生学习方程的解法。
示例:解方程2x+3=7第一步:将方程中的常数项移至等式的右边,得到2x=73。
第二步:将方程两边同时除以2,得到x=2。
4.实际应用教师通过设计一些实际问题,让学生运用方程解决。
问题1:小明的年龄是爸爸的1/3,今年小明12岁,求爸爸的年龄。
解:设爸爸的年龄为x,根据题意得到方程x/3=12,解得x=36。
问题2:一本书的价格是另一本书的2倍,两本书的总价是60元,求两本书的价格。
解:设便宜的书价格为x元,贵的书价格为2x元,根据题意得到方程x+2x=60,解得x=20,贵的书价格为40元。
5.巩固练习教师设计一些练习题,让学生独立完成,巩固所学知识。
练习题:解方程:3x4=19解方程:5x+2=32解方程:2(x3)=86.课堂小结提问:同学们,你们在本节课中学到了什么?有什么收获?7.作业布置教师布置一些作业,让学生课后巩固所学知识。
作业:解方程:4x+5=37解方程:3(x2)=12解方程:2(3x4)=14四、教学反思五、教学拓展教师可以引导学生进一步学习方程的变形和应用,如一元二次方程、不等式等。
通过本节课的教学,让学生掌握方程的概念和解法,培养学生运用方程解决实际问题的能力,为今后的数学学习打下坚实基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章、一元一次方程: 2.1 从算式到方程
教学目标:
1.了解什么是方程,什么是一元一次方程;
2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;
3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;
4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:
1.了解什么是方程、一元一次方程;
2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:
分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:
一、游戏激趣
同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。
现在,我们就来“比一比,说儿歌”(屏幕出示)。
要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。
规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。
(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)
这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、创设情境,引入课题
1、同学们都挺喜欢吃巧克力吧!假如你妈妈从县城买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?
好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?
如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。
此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)
2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。
今天这一节课我们就共同来研究“2.1节从算式到方程”。
3、什么是方程?同学们还记得吗?请大家回忆一下。
、
4、刚才的问题是用列方程的方法解答的请举手。
确实,方程也是解决问题的一种好方法。
(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)
三、呈现问题,自主探索
1、请你用算术方法或列方程解决下列问题:
每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。
注意:我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。
所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。
现在开始。
2、学生自由到黑板上写
3、现在请各位同学解释一下自己的方法。
(学生在座位上回答,教师适当提醒学生说出等式两边的含义和列方程所依据的相等关系。
针对解题格式上的问题加以提醒。
)
统计每道题用算术方法和用代数方法的人数。
4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?(生答)
其实呀,方程确实是一种应用很广泛的数学工具,在现实生活中有好多好多的问题可以用方程解决。
下面我们不妨来试试看。
好吗?
(设计意图:通过几道例题,1、让学生初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,2、渗透建立方程模型的思想)
四、巩固练习,提高发展
1、现在我们就用列方程的方法解决问题,请拿出学案纸,完成第一大题。
要求是:(屏幕出示)根据下列问题,设未知数并列出方程,同样不需要求出结果。
2、学生独立完成。
3、哪位同学来讲讲你做的第一题,说说你的解题思路和过程。
4、通过刚才的研究,我们发现利用方程解决问题要经过哪些步骤呢?
先设未知数,然后根据相等关系列出方程,这样,就将实际问题转化成了数学问题。
(设计意图:通过练习让学生继续学会分析实际问题中的数量关系,利用其中的相等关系列出方程。
)
五、合作学习,开拓创新
1、我们知道,数学来源于生活,又应用于生活。
今天,老师在来滨江初中的过程中,遇到了这样一个问题:
汽车匀速行驶,7:00从实验初中出发,7:30途经常青初中到达滨江初中是7:50,吴庄在常青初中、滨江初中两地之间,距常青初中6千米,与滨江初中的距离是总路程的,问实验初中到吴庄的路程有多远?
现在,就请大家运用你所掌握的知识、方法,结合线段图解决它。
请拿出学案纸,看第二大题,只需要列式,并说出理由,不需要求出结果。
请大家先独立思考,然后学习小组内互相交流,互相讨论,看看谁想到的方法多。
现在开始。
2、学生完成
3、学生展示不同的方法。
(设计意图:改变书上的引例,把它换成现实生活中的实例,鼓励学生探索、合作、交流,有利于激发学生的学习兴趣)
六、交流收获,归纳总结
各组同学都积极开动脑筋,想出了各种方法解决问题,看来同学们今天都是“学有所获”,我们共同来对今天的学习活动作一个总结与回顾。
通过本节课的学习,你有哪些收获?
七、课后作业,拓展视野
1.必做题:阅读课本第86页“阅读与思考”;完成课本第84页第1题,第2题。
2.选做题:课本第85页第10题。
教学反思:
本节课我在初一(2)班教学的时候效果较好,而到初一(1)班上这一节课,结果却不尽如人意,甚至没有能完成预定的教学任务。
通过这一节课,我感受最深的一点是:要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。