函数定义域 值域 习题及答案

合集下载

定义域和值域(含答案)

定义域和值域(含答案)

D.
【答案】C
10.函数
的值域为( ) A.{y|y≥﹣1} C.{y|y∈R且y≠4} 【答案】(分离常数法)D 11.函数的值域是( ) A.或 B.或 C. D.或 【答案】(法)A. 12. 函数
的值域是( )
A.(0,1)
B.
C.
D.
B.{y|y∈R且y≠0} D.{y|y∈R且y≠﹣1}
定义域和值域(含答案)
一:例题讲解
1.下列四组函数,表示同一函数的是( )
A.
B.
C.
D.
【答案】D
2.函数的定义域是( )
A.
B.
C. D.
【答案】D
3.函数
的定义域为( ) A.
B.(-2,+∞) C.
D.
【答案】C 4.若
,则f(x)的定义域为( ) A.
B.
C.
D.
【答案】C
5.函数的定义域为

A.
B.
C.
D.
【答案】B
28.函数的值域是

【答案】
29.函数y=的值域是
A.[0,+∞)
B.[0,4]
4)
【答案】D
【解析】因为,所以,所以.
30.函数y=
C.(0,4)
D.[0,
的值域是( )
A[-1,1]
B(-1,1]
C[-1,1)
D.(-1,
1)
【答案】B
31.求下列函数的值域:
(1) (2) (3)
【答案】(反解法)A
13.函数的值域是

【答案】
14.设,则函数的值域为

【答案】(换元法)

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。

因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。

⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。

然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

函数的定义域与值域 8题含答案

函数的定义域与值域 8题含答案

函数定义域值域一、选择题1.下列各组函数中表示同一函数的是(A )x x f =)(与2)()(x x g = (B )||)(x x x f =与⎪⎩⎪⎨⎧-=22)(x x x g )0()0(<>x x(C )||)(x x f =与33)(x x g = (D )11)(2--=x x x f 与)1(1)(≠+=t t x g[答案]D2.函数2y =的值域是( )A .[2,2]-B .[1,2]C .[0,2] D.[[答案]C3.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14,C. []-55,D. []-37,[答案]A4.若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是()A .(]4,0B .3[]2,4C .3[3]2, D .3[2+∞,)[答案]C二、填空题5.函数y =1x 2+2的值域为________.[解析] 因为x 2+2≥2,所以0<1x 2+2≤12.所以0<y ≤12.[答案] ⎩⎨⎧⎭⎬⎫y |0<y ≤126. 函数x xy -+=43 的值域为________[解析]∵3(4)77=1444=-1+得+--+=≠----xx y y x x x ,∴值域为{}|1y y ≠- [答案]{}|1y y ≠-三、解答题7.求函数y =2x -1-13-4x 的值域.[解析] (换元法)设13-4x =t ,则t ≥0,x =13-t 24, 于是y =g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6, 显然函数g (t )在[0,+∞)上是单调递减函数,所以g (t )≤g (0)=112, 因此函数的值域是⎝⎛⎦⎤-∞,112. 8.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],求函数f (x )的值域.[解析] 由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2], 当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域是()A.[0,12]B.[-,12]C.[-,12]D.[,12]【答案】B.【解析】因为函数,所以,当时,;当时,;所以函数的值域为.故应选B.【考点】二次函数的性质.2.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.3.函数的定义域是_______.【答案】.【解析】由可知,函数的定义域为.【考点】函数的定义域.4.已知,函数.(1)当时,画出函数的大致图像;(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;(3)试讨论关于x的方程解的个数.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)当a=2时,,作出图象;(2)由(1)写出函数y=f(x)的单调递增区间,再根据单调性定义证明即可;(3)由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数.试题解析:(1)如图所示3分(2)单调递减区间: 4分证明:设任意的5分因为,所以于是,即6分所以函数在上是单调递减函数 7分(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数又,注意到,当且仅当时,上式等号成立,借助图像知 8分所以,当时,函数的图像与直线有1个交点; 9分当,时,函数的图像与直线有2个交点; 10分当,时,函数的图像与直线有3个交点;12分.【考点】1.绝对值的函数;2.函数的值域;3.函数的零点.5.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.6.已知函数(1)求函数的定义域和值域;(2)若函数有最小值为,求的值。

【答案】(1)定义域为,当时,值域为,当时,值域为;(2)【解析】(1)根据对数函数的定义域为,则由函数,可得,解之得,从而可得所求函数的定义域为;根据对数函数当时为单调递增函数,当时为单调递减函数,又由复合函数的“同增异减”性质(注:两个复合函数的单调性相同时复合函数为单调递增,不同时复合函数为单调递减),可将函数对其底数分为与两情况进行分类讨论,从而求出函数的值域;(2)由(1)知当时函数有最小值,从而有,可解得.试题解析:(1)由已知得,解之得,故所求函数的定义域为.原函数可化为,设,又,所以.当时,有;当时, .故当时,函数的值域为,当时,值域为.(2)由题意及(1)知:当时,函数有最小值,即,可解得.【考点】对数函数的定义域、值域、单调性、最值7.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。

(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

复合函数定义域和值域练习搜集整理向真贤一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y = ⑽4y =⑾y x =6、已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。

又因为分式中有$x-1$的项,所以还要满足$x\neq1$。

所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。

⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。

所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。

⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。

分式中有$x-1$的项,所以还要满足$x\neq1$。

分母不能为0,所以$x\neq\pm\sqrt{2}$。

所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。

2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。

3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。

4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。

由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。

解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。

⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。

⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。

2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。

若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。

3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。

同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。

要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。

根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域是()A.B.C.D.【答案】D【解析】由得且,选.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.函数的定义域是.【答案】【解析】根据偶次根式下被开方数非负得:,因此函数的定义域是.【考点】函数定义域6.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.【答案】(1)y=2π•,(0,2](2)【解析】(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=7. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).8.函数的定义域为__________。

定义域和值域相同10题-含解析

定义域和值域相同10题-含解析

故只需
12
4a
0
,解得
a
<
1 4

结合
a
0
,可得
0
a
1 4
.
故选:D
3.(2021 秋·河南驻马店·高三校考阶段练习)对于函数 y f x ,其定义域为 D ,如果
存在区间m, n D ,同时满足下列条件:
① f x 在m, n 上是单调函数;
②当 f x 的定义域为m, n 时,值域也是m, n ,则称区间m, n 是函数 f x 的“ K 区间”.
m a n
所以

n a m
所以 m n n m m n m n ,
所以 m n 1,
试卷第 2页,共 13页
a n n 1


a m m 1
欲使得关于 m , n 的方程组在 m n 0 时有解,需使 y a 与 y x2 x 1( x 0 )的
x 围是( )
试卷第 1页,共 13页
A. 0, 2
【答案】D
B. 0, 4
C.
1,
1 2
D.
0,
1 4
【分析】函数在区间m, n 是单调的,由 f m m , f n n 可得 m 、 n 是方程
x2 x a 0 的两个同号的不等实数根,由 12 4a 0 ,解不等式即可.

g(0) Δ 1
0 4
(3
k
)
0
,即
3 k 0 4k 11
0
,解得
k
11 4
,
3

故选:B.
2.(2023 秋·河南周口·高一周口恒大中学校考期末)对于函数 y=f x ,如果存在区间

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.的定义域为【答案】【解析】要使函数有意义,则需,解得。

【考点】函数定义域的求法,2.函数的定义域为 .【答案】【解析】本题主要考查函数定义域.由,得:,即:;由,得:,所以.【考点】函数定义域,集合的运算.3.函数的定义域是.【答案】【解析】由定义域的求法知,函数的定义域为,解得.【考点】函数定义域的求法.4.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.5.已知函数,则的值域为 .【答案】(-2,1).【解析】当x<1时,0<3x<3,故-2<f(x)=1-3x<1,故f(x)的值域为(-2,1).【考点】函数的值域.6.已知函数,那么的定义域是A.B.C.D.【答案】B【解析】由已知得,所以函数,则有,故函数的定义域为.所以正确答案为B.【考点】1.函数解析式;2.函数的定义域.7.若函数的定义域是,则函数的定义域是()A.B.C.D.【答案】C【解析】利用复合函数的定义域求法,的值域是的定义域,因为函数的定义域是,所以得所以函数的定义域是故选C【考点】函数的定义域及其求法.8.函数的定义域是【答案】【解析】函数有意义,则,所以函数的定义域为.【考点】函数的定义域,对数真数大于0,偶次根式大于等于0.9.函数的定义域为.【答案】【解析】函数的定义域是使函数式有意义的自变量的取值集合,本题中即.【考点】函数的定义域.10.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.11.若,则的定义域为()A.B.C.D.【答案】A【解析】要使函数有意义,则满足解得.【考点】函数的定义域.12.已知函数,且.(1)求的值,并确定函数的定义域;(2)用定义研究函数在范围内的单调性;(3)当时,求出函数的取值范围.【答案】(1),定义域:;(2)上是减函数,上是增函数;(3).【解析】(1)直接代入列出关于的方程即可;(2)要正确理解单调性的定义,明确用定义研究(或证明)函数的单调性的格式过程,设,然后比较和的大小,通常是作差(也可),确定差的正负;(3)由(2)中的单调性,可容易求出函数的取值范围.试题解析:(1),定义域:; 3分(2)令,则,6分故当时,;当时,,∴函数在上单调减,在上单调增; 8分(3)由(2)及函数为奇函数知,函数在为增函数,在为减函数,故当时,, 10分,∴当时,的取值范围是. 12【考点】(1)函数值的意义;(2)函数的单调性的定义;(3)函数的值域.13.函数的定义域是.【答案】【解析】要使函数有意义需满足,解得;所以函数的定义域为【考点】1.函数的定义域;2.指数不等式.14.函数的定义域 .【答案】【解析】由,当时,,得,故定义域为.【考点】函数定义域.15.函数的定义域是_ ____.【答案】【解析】要使函数有意义,需满足,定义域为点评:函数定义域是使函数有意义的自变量的范围或题目中指定的自变量的取值范围16.定义在R上的函数的值域是,又对满足前面要求的任意实数都有不等式恒成立,则实数的最大值为A. 2013B. 1C.D.【答案】A【解析】函数的值域是,,设,是增函数,最小值为恒成立,最大值2013【考点】函数求最值及不等式性质点评:本题主要应用的知识点有:二次函数求最值,均值不等式求最值,利用函数单调性求最值,综合性较强,有一定难度17.函数的值域是__________.【答案】【解析】因为在(0,+)是减函数,所以=-2,故函数的值域是。

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。

3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。

2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。

& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。

3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。

2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。

高二数学函数的定义域与值域试题答案及解析

高二数学函数的定义域与值域试题答案及解析

高二数学函数的定义域与值域试题答案及解析1.已知函数在定义域上的值域为,则实数的取值范围是.【答案】【解析】由已知得,令解得,由二次函数的对称性可知。

【考点】二次函数给定区间的最值问题。

2.下列函数中,与函数有相同定义域的是( ).A.B.C.D.【答案】A【解析】的定义域为,的定义域为选A.【考点】函数的定义域.3.已知直角坐标平面上任意两点,定义.当平面上动点到定点的距离满足时,则的取值范围是.【答案】.【解析】为了研究方便,取,又,所以M点的轨迹是以A为圆心,4为半径的圆,而定义所映的是P,Q两点横坐标的差距的绝对值大(包括相等)时,d的值为横坐标的差距的绝对值,而纵坐标的差距的绝对值大时,d的值为纵坐标的差距的绝对值,由圆的对称性因此只需以上图中第一象限的圆弧为研究对象即可,当M点在弧BC的中点时,M,A的横坐标差距与纵坐标的差距的绝对值相等且为,当M点向B运动,横坐标的差距变大,当到B点时,横坐标差距的绝对值最大为4,同样,当M向C运动时,纵坐标的差距变大,当到C点时,纵坐标差距的绝对值最大为4,综上可知的取值范围是.【考点】新定义下的信息题,圆的定义与性质,绝对值的意义,分段函数,函数的值域.4.若函数的值域是,则函数的值域是()A.B.C.D.【答案】B【解析】设=t,则,从而的值域就是函数的值域,由“勾函数”的图象可知,,故选B.【考点】函数的值域.5.函数的定义域是()A.B.C.D.【答案】D【解析】函数的定义域即,即,解出即可.【考点】函数的定义域及其求法.6.某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。

己知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.【答案】(1)(2)x=4时,利润最大值为42.【解析】(1)把(5,11)代入即可.(2)先求出函数f(x)的导函数,然后判断单调性,求出极大值也就是最大值.(1)由x=5,y=11得(2)由(1)知设所获利润为,则当3<x<4时,当4<x<6时,是的极大值点,也是最大值点。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】C【解析】由题意得:解得或,所以选C.【考点】函数定义域2.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【答案】C【解析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选C.点评:本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.3.定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.(1)分别判断函数与是否存在长距与短距,若存在,请求出;(2)求证:指数函数的短距小于1;(3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?【答案】(1)短距为,长距不存在,短距为,长距为5;(2)证明见解析;(3).【解析】本题属于新定义概念,问题的实质是求函数图象上的点到原点的距离的最大值和最小值(如有的话),正面讨论时我们把距离表示为的函数.(1)对,(当且仅当时等号成立),因此存在短距为,不存在长距,对,,,即有最大值也有最小值,因此短距和长距都有;(2)对函数,,由于,因此短距不大于1,令,则有,故当时,存在使得,当时,存在使得,即证;(3)记,按题意条件,则有不等式对恒成立,这类不等式恒成立求参数取值范围问题,我们可采取分离参数法,转化为求函数的最值,按分别讨论,由此可求得的范围.(1)设(当且仅当取得等号)+2分短距为,长距不存在。

+4分(2)设 +6分+8分短距为,长距为5。

+9分(3)设函数的短距不小于2即对于始终成立:+10分当时:对于始终成立 +12分当时:取即可知显然不成立 +13分当时:对于始终成立 +15分综上 +16分【考点】新定义概念,函数的最大值与最小值,不等式恒成立问题.4.下列函数中,与函数的值域相同的函数为()A..B..C..D..【答案】B【解析】函数的值域为R,而,只有,所以选B.【考点】函数值域5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.7.已知函数是奇函数,则函数的定义域为【答案】【解析】本题定义域不确定,不要用奇函数的必要条件来求参数,而就根据奇函数的定义有,即,化简得恒成立,所以,则.由,解得.【考点】奇函数的定义与函数的定义域.8.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>19.若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.【答案】[0,1)【解析】由得0≤x<1,即定义域是[0,1).10.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是________.【答案】∪(2,+∞)【解析】由题意f(x)==下面分段求值域,再取并集.11.设函数的定义域为,值域为,则=()A.B.C.D.【答案】D【解析】的定义域是,值域是,所以.【考点】函数的定义域与值域.12.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.13.函数f(x)=e x sin x在区间上的值域为 ().【答案】A=【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)minf(0)=0,f(x)=f=.max14.函数y=的定义域是 ( ).A.[-,-1)∪(1,]B.(-,-1)∪(1,)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)【答案】A【解析】∵⇔⇔⇔⇔-≤x<-1或1<x≤.∴y=的定义域为[-,-1)∪(1,].15.下列函数在定义域内为奇函数,且有最小值的是A.B.C.D.【答案】D【解析】,且【考点】函数的奇偶性和值域.16.函数的定义域为.【答案】【解析】由对数的真数为正知,两边取自然对数得,因为,所以,或由指数函数的图象可知,所以函数的定义域为.【考点】指数函数和对数函数的性质.17.函数()A.B.C.D.【答案】C【解析】由题意得,即,所以函数的定义域为,所以正确答案为C.【考点】对数函数的定义域18.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.19.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.20.函数的定义域是()A.B.C.D.【答案】D.【解析】由,得原函数的定义域为.【考点】函数的定义域.21.已知函数,定义域为,则函数的定义域为_______.【答案】【解析】由题意,解得,故的定义域为.【考点】1.抽象函数的定义域.22.函数的定义域为 .【答案】(0,]【解析】由且得:.【考点】函数定义域的求法23.某同学为研究函数(0≤x≤1)的性质,构造了两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是 __ __.【答案】;【解析】由图易知当点P从C点移动到B点的过程中时,AP+PF=f(x)先减小后增大,根据两点间直线最短的原理,当AP与PF在一条直线上时,即点P位于BC中点时,f(x)最小.所以易知时,;时,.所以是函数f(x)的极值点.且为极小值点.易知;又,所以.所以函数f(x)的值域是.【考点】函数的极值、函数的值域24.下列函数中,既是奇函数又在定义域上单调递增的是()A.B.C.D.【答案】C【解析】函数在定义域上是增函数,不是奇函数;函数在定义域上是减函数;函数,在定义域上既是奇函数又是增函数;函数在定义域上不具有单调性. 故选C.【考点】函数的定义域,函数,,,的奇偶性、单调性.25.函数y=的定义域是( )A.B.C.D.【答案】D.【解析】由得,故选D.【考点】函数的定义域.26.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.27.已知函数,则________.【答案】【解析】,.【考点】分段函数求值,考查学生的基本运算能力.28.已知函数,且.(1)求实数的值;(2)解不等式.【答案】(1) ;(2)【解析】(1)首先判断出的范围,带入相应的函数解析式即可求出值;(2)根据(1)问中的值先分段求出的范围后再求并集即可.试题解析:(1)∵,∴,由得,解得 .(2) 由得:当时解得;当时解得,故的解集为 .【考点】1.分段函数;2.解不等式组.29.已知函数的值域为,则的取值范围是.【答案】【解析】函数,令,解得显然当时;当时,所以.【考点】二次函数的值域.30.符号表示不超过的最大整数,例如,,定义函数,给出下列四个命题:(1)函数的定义域为,值域为;(2)方程有无数个解;(3)函数是周期函数;(4)函数是增函数.其中正确命题的个数有()A.1B.2C.3D.4【答案】B【解析】函数的定义域是,值域是,所以①错;②,③正确;当时,;当时,,所以不是增函数,所以④错.【考点】1.考查信息题的分析问题解决问题的能力;2.函数的定义域、值域、单调性、周期性.31.对于任意实数,表示不超过的最大整数,如.定义在上的函数,若,则中所有元素的和为()A.65B.63C.58D.55【答案】C【解析】当时:,当时:,同理可得:时:;时:;时:;时:;时:;时:;时:,所以中所有元素的和为.【考点】1.取整函数;2.函数的值域.32.设函数的图像在处取得极值4.(1)求函数的单调区间;(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.【答案】(1)递增区间是和,递减区间是;(2)不存在.【解析】(1)求导,利用极值点的坐标列出方程组,解出,确定函数解析式,再求导,求单调区间;(2)先假设存在“正保值区间”,通过已知条件验证是否符合题意,排除不符合题意得情况.试题解析:(1), 1分依题意则有:,即解得 v 3分∴.令,由解得或,v 5分所以函数的递增区间是和,递减区间是 6分(2)设函数的“正保值区间”是,因为,故极值点不在区间上;①若极值点在区间,此时,在此区间上的最大值是4,不可能等于;故在区间上没有极值点; 8分②若在上单调递增,即或,则,即,解得或不符合要求; 10分③若在上单调减,即1<s<t<3,则,两式相减并除得:,①两式相除可得,即,整理并除以得:,②由①、②可得,即是方程的两根,即存在,不合要求. 12分综上可得不存在满足条件的s、t,即函数不存在“正保值区间”。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域值域习题及
答案
Last revision on 21 December 2020
复合函数定义域和值域练习题
一、 求函数的定义域
1、求下列函数的定义域:
⑴33
y x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数
1(2)f x
+的定义域为 。

4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,
求实数m 的取值范围。

二、求函数的值域
5、求下列函数的值域:
⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311
x y x -=+ (5)x ≥

y = 三、求函数的解析式
1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且
1()()1
f x
g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 223y x x =++ ⑵y ⑶ 261y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是
8、函数236
x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( )
⑴3
)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶
x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、⑸ 10、若函数()f x =
3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4
3)
11、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤
13、函数()f x = )
A 、[2,2]-
B 、(2,2)-
C 、(,2)(2,)-∞-+∞
D 、{2,2}-
14、函数1()(0)f x x x x
=+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
17、已知函数21
mx n y x +=
+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数11y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。

复合函数定义域和值域练习题 答 案
一、 函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)
1{|220,,1}2
x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤ 二、 函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3
y ∈ (5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±=
三、 函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2()21f x x x =--
3、4()33
f x x =+ 4、()(1
f x x =
- ;(10)()(10)
x x f x x x ⎧+≥⎪=⎨-<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、 单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3]
(3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1] 8、(,2),(2,)-∞--+∞ (2,2]-
五、 综合题:C D B B D B
14
、(,1]a a -+ 16、4m =± 3n = 17、12
y x =- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2min ()()1f x f a a ==-- ,
max ()(2)34f x f a ==-
(3)12a <≤时,2min ()()1f x f a a ==-- ,max ()(0)1f x f ==-
(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==- 19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2()1g t t =+为减函数
∴ 在[3,2]--上,2()1g t t =+也为减函数 ∴ min ()(2)5g t g =-=, max ()(3)10g t g =-=。

相关文档
最新文档