立方米液氨储罐设计说明书

合集下载

液氨储罐

液氨储罐

[σ ]t ——钢板在设计温度下的许用应力,MPa;
—焊接接头系数,其值为1;
: 将数值代入公式计算出筒体的计算厚度为
δ

pcDi
2σt
p

2
1.6 3200 170 1 1.6

15.13 mm
由于液氨对金属有一定的腐蚀,取腐蚀裕量C2=2mm,故筒体的设 计厚度为:
由钢板厚度负偏差表查得C1=0.8mm,故名义壁厚为: 圆整后取δn=18mm。
• 有效宽度B
B 2d
B d 2δn 2δnt
二者得出数值,较大的则为有效宽度
有效高度h
外侧高度h1
h1 dδnt
h1 接管实管实际外伸
二者得出数值,较小的则为外侧2 接管实管实际外内伸
二者得出数值,较小的则为内侧高度
• 补强面积 Ae
开孔补强的计算
• 在开孔或安装接管处一般采取相应的补强措施。容器开孔后,在 空附近的局部地区,应力会达到很大的数值。这种局部的应力增 长现象叫做“应力集中”。在应力集中区域的最大应力值,称为 “应力峰值”,通常用σmax表示。
• 引起开孔附近应力集中现象的基本原因是结构的连续性被破坏。 在开孔处,壳体和接管的变形不一致。为了使二者在连接之后的 变形协调一致,连接处便产生了附加内力,主要是附加弯矩。由 此产生的附加弯曲应力,便形成了连接处局部地区的应力集中。
名义厚度为:
δn δd C1 17.09 0.8 17.89 mm
圆整后取δ n=18mm。 查得标准椭圆形封头的直边高度(JB/T4737-95)为 h0=40mm
水压试验
容器制成以后,必须做压力试验或增加气密性试验,其目的是在于检 验容器的宏观强度和有无渗漏现象,即考察容器的密封性,以确保 设备的安全运行。对需要进行焊后热处理的容器,应在全部焊接工 作完成并经热处理之后,才能进行压力试验和气密性试验;对于分 段交货的压力容器,可以分段热处理,在安装工地组装焊接,并对 焊接的环焊缝进行局部热处理之后,再进行压力试验。

20立方米液氨储罐设计说明书

20立方米液氨储罐设计说明书

目录课程设计任务书 2 20m³液氨储罐设计 2 课程设计内容 3 液氨物化性质及介绍 31. 设备的工艺计算 31.1 设计储存量 31.2 设备的选型的轮廓尺寸的确定 31.3 设计压力的确定 41.4 设计温度的确定 41.5 压力容器类别的确定 42. 设备的机械设计 52.1 设计条件 52.2 结构设计 62.2.1 材料选择 62.2.2 筒体和封头结构设计 62.2.3 法兰的结构设计 6(1)公称压力确定7(2)法兰类型、密封面形式及垫片材料选择7(3)法兰尺寸72.2.4 人孔、液位计结构设计8(1)人孔设计8(2)液位计的选择92.2.5 支座结构设计10(1)筒体和封头壁厚计算10(2)支座结构尺寸确定122.2.6 焊接接头设计及焊接材料的选取14(1)焊接接头的设计14(2)焊接材料的选取162.3 强度校核162.3.1 计算条件162.3.2 内压圆筒校核172.3.3 封头计算182.3.4 鞍座计算202.3.5 开孔补强计算213. 心得体会224. 参考文献22课程设计任务书20m³液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。

3.工程图纸要求计算机绘图。

4.独立完成。

二、原始数据设计条件表三、课程设计主要内容1.设备工艺设计2.设备结构设计3.设备强度计算4.技术条件编制5.绘制设备总装配图6.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份;2.总装配图一张(A1图纸一张)课程设计内容液氨物化性质及介绍液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。

液氨卧式储罐设计

液氨卧式储罐设计

前言本说明书为《31m3液氨储罐设计说明书》。

本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录附:设计任务书 (2)第一章绪论 (3)(一)设计任务 (3)(二)设计思想 (3)(三)设计特点 (3)第二章材料及结构的选择与论证 (3)(一)材料选择 (3)(二)结构选择与论证 (3)第三章设计计算 (5)(一)计算筒体的壁厚 (5)(二)计算封头的壁厚 (6)(三)水压试验及强度校核 (6)(四)选择人孔并核算开孔补强 (7)(五)核算承载能力并选择鞍座 (9)(六)选择液面计 (9)(七)选择压力计 (10)(八)选配工艺接管 (10)第四章设计汇总 (11)第五章结束语 (12)第六章参考文献 (13)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。

(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。

在设计过程中综合考虑了经济性,实用性,安全可靠性。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。

常、低压化工设备通用零部件大都有标准,设计时可直接选用。

本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。

(40m3)液氨储罐的设计压力容器课程设计说明书大学论文

(40m3)液氨储罐的设计压力容器课程设计说明书大学论文

化学化工学院课程设计说明书设计题目:压力容器课程设计(40m3)液氨储罐的设计学院、系:化学工程与工艺系专业班级:化工1203班学号: 2012002386 学生姓名:王美鑫指导教师:张铱鈖成绩:2015年1月21日目录第一章工艺设计1.1存储量1.2设备的选型及轮廓尺寸第二章机械设计2.1结构设计2.1.1筒体及封头设计材料的选择筒体壁厚的设计计算封头壁厚的设计计算2.1.2接管及接管法兰设计接管尺寸选择管口表及连接标准接管法兰的选择垫片的选择紧固件的选择2.1.3人孔的结构设计密封面的选择人孔的设计2.1.4 核算开孔补强2.1.5支座的设计支座的选择支座的位置2.1.6液面计及安全阀选择2.1.7总体布局2.1.8焊接接头设计2.2强度校核参考文献第一章工艺设计最高工作压力工作温度公称容积1.1 存储量盛装液化气体的压力容器设计存储量t fV W ρ=式中:W ——储存量,t ; f----装量系数 V ——压力容器容积;t ρ——设计温度下的饱和溶液的密度,3m t;根据设计条件t fV W ρ==t 142.19563.04085.0=⨯⨯t1.2 设备的选型及轮廓尺寸查表《容器参数》得:筒体计算体积:V 计=40.3m3公称直径D=2400mm 长度L=8000mm第二章 机械设计2.1 结构设计2.1.1筒体及封头设计.材料的选择常见的压力容器用碳素钢和低合金钢钢板有Q245,Q345R ,Q370R 等;无缝钢管材料有10,20, 16Mn 等。

考虑到该容器的内径为2400mm ,所以选用筒体由钢板卷制而成,由于低合金钢有较高的强度,良好的塑性,价格相对较低,所以选用Q345R 。

.筒体壁厚设计计算I .设计压力液氨储罐的工作温度-20℃——50℃,故选取设计温度t=50℃,由本次的《化工设备机械基础》课程设计指导书查得,该温度下液氨的绝对饱和蒸汽压为2.030MPa 。

由于通常的设计压力在没有说明的情况下,均指表压在本次设计中的液氨储罐上装有安全阀,通常认为设计压力为工作压力的1.05-1.10倍,所以安全阀的开启压力为p b =1.1×(2.03-0.10)=2.123MPa ,因为p>p b ,所以p=2.2MPa ,公称压力选2.2MPa 。

立方米卧式液氨储罐的设计

立方米卧式液氨储罐的设计

2.8m3卧式液氨储罐的设计一、题目来源题目来源:实际生产二、研究的目的和意义储罐是一种用于储存液体或气体的密封容器,主要用于存储或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、冶金、消防、轻工、环保、制药、食品、城市燃气等行业得到了广泛的应用,储存介质涵盖了(丙烷、丁烷、丙烯、乙烯、液化石油气、液氨等)液化气体、氧气、氮气、天然气和城市煤气等气体,在国民经济发展中起着不可替代的作用。

其种类很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。

就储罐的性价比来讲,现在以滚塑储罐最为优越,滚塑储罐又可以分钢衬塑储罐,全塑储罐两大系,分别包括立式,卧式,运输,搅拌等多个品种。

而卧式液化气储罐是目前中、小型液化气站储存和运输液化气的主要容器之一,在石油化工行业中应用广泛并占有相当大的比例。

卧式储罐的容积一般都小于100m3,通常用于生产环节或加油站。

年来随着制造工艺的提高其容积有逐渐增大的趋势。

随着容积的增大,储罐在设计和使用中的安全可靠性就变得极为重要。

然而我国卧式储罐设计制造技术的还远落后于世界先进水平,制造较困难,加工费用高,且焊接、检验技术要求高。

所以研究卧式储罐设计及其焊接工艺对我国石油化工等行业有着极其重要的意义。

三、阅读的主要参考文献及资料名称[1]吕宜涛,压力容器制造质量控制的研究,天津大学学位论文,1997年9月.[2]马自勤,孙丽,王秀伦等:产品结构树在CAPP信息管理中的应用,大连铁道学院学报,2001年9月,第22卷,第3期.[3]王锦,张振明,黄乃康:集成环境下面向产品的 CAPP系统,计算机工程与应用,2000年4月.[4]肖凌,姚建初:集成环境下的计算机辅助工艺设计系统,机械设计与制造工程,2000年7月,第29卷,第4期.[5]赵丽萍,陈鸿:面向CAPP的工作流程管理研究与应用,计算机工程与应用,2001年第17期.[6]高清,马云辉,马玉林:先进制造系统中的质量保证,高技术通讯,1995年5月.[7]张曙,张为民:新一代CAPP系统,组合机床与自动化加工技术,1996年第10期.[8]汤善甫,朱思明主编:化工设备机械基础,第2版,华东理工出版社,2004年12月[9] 陈祝年,焊接工程师手册。

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书50立方米液氨储罐是一种用于储存液氨的设备,具有广泛的应用领域,包括化工、农业、制冷等行业。

本设计说明书将详细介绍50立方米液氨储罐的结构、性能、操作要点以及安全措施,以供相关人员参考和指导。

首先,介绍储罐的结构。

50立方米液氨储罐由罐体、密封装置、进出料口、排气装置、压力表等组成。

罐体采用钢材制成,经过特殊防腐处理,确保其在长期存储液氨的环境下不受腐蚀。

密封装置采用可靠的螺栓紧固和软管连接,以保证液氨不泄漏。

进出料口和排气装置在设计上考虑了便捷性和安全性,使得装卸操作更加方便,并能有效消除气体积压。

其次,介绍储罐的性能特点。

50立方米液氨储罐具有良好的密封性能、耐腐蚀性和抗震性。

密封装置的选材和结构设计保证了液氨的密封性,有效防止液氨的挥发和泄漏。

同时,储罐的钢材材质和结构设计考虑了液氨的腐蚀性,能够在长期使用中保持稳定性。

此外,储罐经过专业设计,在地震等外力作用下能够保持稳定,保护液氨的安全。

然后,介绍储罐的操作要点。

在使用50立方米液氨储罐时,需要按照相关操作规程进行操作。

首先,操作人员需要了解储罐的结构和性能特点,熟悉液氨的特性和储罐的操作要点。

其次,操作人员需要正确连接进出料口和排气装置,确保液氨的输送畅通。

操作过程中,需要注意操作规程,确保操作的安全性和可靠性。

最后,介绍储罐的安全措施。

50立方米液氨储罐在储存液氨的同时,也需要考虑安全问题。

操作人员需严格遵守有关安全操作规程,穿戴相应的个人防护装备。

储罐周围应设有安全警示标志,以引起人们的注意和警惕。

定期对储罐进行检查和维护,确保其安全使用。

综上所述,本设计说明书详细介绍了50立方米液氨储罐的结构、性能、操作要点和安全措施。

鉴于液氨储存的重要性和风险性,操作人员在使用储罐时应该严格按照说明书操作,并加强安全意识和防护措施,确保液氨的安全储存和使用。

液氨贮罐机械设计说明书

液氨贮罐机械设计说明书

化学工程与工艺设计课程液氨贮罐机械设计说明书设计者:曹德亮学号:0708010113指导教师:崔岳峰完成时间:2010.12.26设计任务书课题:液氨贮罐的机械设计设计内容:已知工艺参数:最高使用温度T=50℃公称直径DN=3000mm筒体长度(不含封头)L0=4400mm 具体设计内容:1、筒体材料2、罐的结构、尺寸3、零部件型号、位置及接口4、相关校核计算设计人:曹德亮学号:0708010113下达时间:2010年11月19日完成时间:2010年12月29日目录1.前言 (1)2.液氨的物理化学性质 (2)3.具体设计内容 (3)3.1.筒体封头材料 (3)3.2.罐的结构、尺寸 (3)3.2.1.封头的选择 (3)3.2.2.人孔的选择 (3)3.2.3.支座的选择 (3)3.2.4.法兰形式 (3)3.3.零部件型号及位置、接口 (4)3.3.1.液面计的选择 (4)3.3.2.压力计的选择 (4)3.3.3.接口的选择 (4)4.设计计算 (6)4.1.筒体厚度计算 (6)4.2.封头尺寸计算 (6)4.3.水压试验及强度校核 (6)4.4.人孔尺寸计算 (7)4.5.鞍座尺寸计算 (8)5.筒体强度校核 (9)6.结束语 (11)7.参考文献 (12)8.附图 (13)1.前言综合运用所学的课程知识设计一个液氨的储罐,本着认真负责的态度,对储罐进行设计,在设计过程中综合考虑了经济性,实用性,安全可靠性。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。

本设计书主要介绍了液氨罐的筒体、封头的设计计算。

并考虑到结构、施工、环境温度等方面的要求,合理地进行设计。

对各处接口管均查表查手册找到相应的标准合适的规格并进行校核验算验证能否承受压力等条件,进行有依据有条理的设计。

2.液氨的物理化学性质液氨,又称为无水氨,是一种无色液体。

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书前言本说明书为《30m3液氨储罐设计说明书》。

本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录第一章绪论 (4)(一)设计任务 (4)(二)设计思想 (4)(三)设计特点 (4)第二章材料及结构的选择与论证 (4)(一)材料选择 (4)(二)结构选择与论证 (4)第三章设计计算 (6)(一)计算筒体的壁厚 (6)(二)计算封头的壁厚 (7)(三)水压试验及强度校核 (7)(四)选择人孔并开孔确定补强 (8)(五)核算承载能力并选择鞍座 (8)(六)选择液面计 (9)(七)选配工艺接管 (9)第四章设计汇总 (10)第五章结束语 (11)第六章参考文献 (11)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。

(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。

在设计过程中综合考虑了经济性,实用性,安全可靠性。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。

常、低压化工设备通用零部件大都有标准,设计时可直接选用。

本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。

如果纯粹从技术角度看,建议选用20R 类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。

液氨储罐

液氨储罐

• 公称直径Di和筒体长度L的计算:
L V 2 Vn π Di2 4
取Di = 2600 Di= 2800 Di = 3000 Di = 3200 经计算 当Di = 3200mm时,L = 4656mm,此时,Di/L = 0.687 最接近0.618 所以取 Di = 3200mm
筒体壁厚的计算
封头厚度的计算
采用的是长短轴之比为2的标准椭圆形封头,各参数与筒体相同,
其厚度计算式为:
δ

Kp cDi
2σt 0.5p

1.6 3200 21701 0.51.6

15.09
mm
K

1 6
2


Di 2 hi
2



1
设计厚度为:
δd δ C2 15.09 2 17.09 mm
设备总质量W W=W1+W2+W3
• 鞍座的选择
每个鞍座承受的负荷为
F Wg 38035.89.81 186.57 kN
2
2
根据鞍座承受的负荷,查表(《化工设备机械基础》,大连理 工大学出版社,附录16)可知,选择轻型(A)带垫板,包角为 120°的鞍座。即JB/T4712-92 鞍座A3000-F, JB/T4712-92 鞍座A3000-S。
由于接管材料与壳体材料都为16mnr故fr1故根据公式课求得面积二者得出数值较大的则为有效宽度有效高度h外侧高度h1nt接管实管实际外伸二者得出数值较小的则为外侧高度内侧高度h2nt接管实管实际外内伸壳体有效厚度减去计算厚度之外的多余面积按式43mm接管有效厚度减去计算厚度之外的多余面积按式44mm根据公式

3立方液氨储罐设计

3立方液氨储罐设计

3立方液氨储罐设计D②工艺条件的要求化工设备是为工艺过程服务的,应保证在指定的生产工艺条件下完成指定的生产任务,即满足相应的工艺条件要求③经济合理性要求在满足设备的安全运行和工艺条件的前提下,结构要合理,制造要简单,尽量减少加工量,降低制造成本。

④便于操作和维护例如所设置的阀门、平台、人孔形位置要合适,易损件便于更换等。

⑤环境保护要求所谓化工设备失效的一个新概念是“环境失败”即有害物质泄露到环境中,生产过程残留无法消除的有害物质及噪音等,化工容器在设计时包括化工工厂的选址均应考虑这些因素的影响。

(2)主要设计参数的确定及说明本储罐设计公称容积为3m3,公称直径Dg为1220mm,材料为16MnR在温度t ≤42℃时工作,液氨的饱和蒸汽压为1.8MP,取P=1.8MP,取t][σ=170MP,则双面对接焊的全焊透对接焊缝为100%无损,根据书本表5-4可得焊接接头系数全部无损检测φ=1.00。

二材料及结构的选择与论证(1)材料选择与论证本贮罐选用16MnR制作罐体和封头。

材料:本贮罐选用16MnR制作罐体和封头。

16MnR表示平均含碳量为0.16%的容器钢,属于低碳钢,它的塑性好,焊接性和锻造性良好,适宜制造化工容器等焊接件和设备封头等冲压件,也可用来制造受载不大的螺栓,或经渗碳后制作齿轮和轴等零件。

所以,本液氨储罐选用16MnR制作罐体和封头。

(2)结构选择与论证:封头型式的确定、人孔选择、法兰型式选择确定。

①封头形式的确定本液氨储罐的封头选用椭圆形封头,椭圆封头是由曲率半径连续变化而成的,所以,封头上的应力分布也是均匀变化的,他的受力状态比蝶形封头要好,虽不如半球封头,但对各种封头的强度和经济合理性进行比较。

从钢材耗用量考虑:球形封头用量最少,比椭圆形封头节约25.8%,平板封头的用量最多,是椭圆形封头的4倍多。

从制造考虑:椭圆形封头制造方便,平板封头则因直径和厚度较大,坯材的获得、车削加工、焊接等方面都遇到不少困难,且封头与筒体厚度相差悬殊,结构也不合理。

25立方米液氨储罐设计说明书1

25立方米液氨储罐设计说明书1

目录一、工艺设计 (1)1.1存储量设计 (1)1.2 设计压力的确定 (1)1.3设计温度 (2)二、结构设计 (2)2.1设计条件 (2)2.2结构设计 (3)2.2.1材料选择 (3)2.2.2筒体和封头结构设计 (4)2.2.3法兰设计 (5)2.2.4人孔、手孔、液面计结构设计 (7)2.2.5支座结构设计 (9)2.2.6焊接接头设计 (12)三、强度计算 (15)3.1容器的筒体和封头壁厚设计 (15)3.1.1容器的筒体和封头壁厚计算 (15)3.1.2压力容器水压试验 (16)3.2开孔补强计算 (16)一、工艺设计工艺设计的内容是根据设计任务提供的原始数据和生产工艺要求,通过计算和选型确定设备的轮廓尺寸。

1.1存储量设计设计存储量由式1-1进行计算:1-1 式中, -- 存储量,;-- 装量系数;-- 压力容器容积,-- 设计温度下饱和液体密度,。

1.2 设计压力的确定设计压力应根据最高工作压力来确定。

对于承装液化气体的压力容器,可根据《固定式压力容器安全技术监察规程》 TSG R0004-2009 中条例3.9.3来确定,常温储存液化气体压力容器温度下的工作压力按表1-1确定:表1-1 常温储存液化气体压力容器规定温度下的工作压力设计条件要求储罐无保冷设施,且临界温度为50,因此规定温度下的工作压力为50的饱和蒸汽压,液氨50时的饱和蒸汽压为1.968 。

1.3设计温度设计温度指容器在正常工作情况下,设定的元件金属温度(沿元件金属截面的平均温度值)。

设计温度与设计压力一起作为设计载荷条件。

设计温度不得低于元件金属在工作状态可能达到的最高温度。

对于0以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。

由表1-2给出了液氨的饱和蒸汽压及密度:表1-2 液氨饱和蒸汽压及饱和液密度设计条件要求工作温度为-20—50,因此,设计温度为50。

二、结构设计2.1设计条件以结构设计条件表和管口表的形式列出,见表2-1和表2-2:表2-1 结构设计条件表表 2-2 管口表2.2结构设计化工设备的结构设计包括设备承压壳体(一般为筒体和封头)及其零部件的设计。

课程设计液氨储罐设计

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书课程设计题目:液氨储罐设计一、设计任务书 (1)二、液氨储罐设计参数的确定 (2)1、根据要求选择罐体和封头的材料 (2)2、确定设计温度与设计压力 (2)3、其他设计参数 (2)三、筒体和封头壁厚的计算 (2)1、筒体壁厚的计算 (2)1.1设计参数的确定 (3)四、罐体的开孔与补强 (4)1、开孔补强的设计准则 (4)2、开孔补强的计算..................................42.1、开孔补强的有关计算参数.......................52.2、补强圈的设计. (5)五、选择鞍座并核算承载能力 (5)一、设计任务书试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。

使用地点:家乡--湖北省十堰市竹溪县。

技术特性表16MnR钢板为比较经济。

所以在此选择16MnR钢板作为制造筒体和封头材料。

2、确定设计温度与设计压力液氨储罐通常置于室外,虽然设计有保温措施,但罐内液氨的温度和压力还是可能直接受到大气温度的影响,在夏季液氨储罐经太阳暴晒,液氨温度可达40℃,随着气温的变化,储罐的操作压力也在不断变化.根据《化学化工物性数据手册》查得40℃饱和蒸汽压为1.55MPa,可以判定设计的容器为储存内压压力容器,按《压力容器安全技术监察规程》规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气40℃时的饱和蒸汽压力,可取液氨的设计压力为1.70MPa,当液化气体储罐安装有安全阀时,设计压力可取最大操作压力的1.05-1.10倍,所以1.7MPa合适。

0.6MPa≤p≤10MPa 属于中压容器。

3、其他设计参数容器公称直径见技术特性表即公称直径DN=2.0m;罐体和封头的材料为钢板厚度负偏差C1=0.8mm,查材料腐蚀手册得40℃下液氨对钢板的腐蚀速率小于0.05mm/年,所以双面腐蚀取腐蚀裕量C2=2mm所以设计厚度为:δd=δ+C2+C1=10.05+0.8+2=12.85mm圆整后取名义厚度14mm.1.3刚度条件设计筒体的最小壁厚因为Di=2000mm<3800mm,所以δmin=2Di/1000=4.0mm,另加C2=2mm,所以δd=6.0mm。

液氨储罐说明书(太原理工大学)

液氨储罐说明书(太原理工大学)

课程设计(论文)题目:32M3液氨储罐的设计课程设计要求及原始数据(资料)一、课程设计要求1、按照国家压力容器设计标准、规范进行设计,掌握典型过程设备设计的过程。

2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。

3、工程图纸要求计算机绘图。

4、独立完成。

二、原始数据本次课程设计的主要内容是设计液氨储罐,包括储罐的各种数据的确定,有储罐筒体的长度,公称直径的确定,罐体材料的选取,还有封头的确定,封头厚度筒体厚度的计算,附件的选取,包括各种法兰的选取,以及密封面的材料如何选,以及人孔的设计,人孔法兰和补强的计算。

最后还有焊接如何选取,焊料的选取,支座的材料类型还有位置的确定都是本次设计的主要内容。

本次设计在过程装备课程的基础上加强对知识的学习和应用,更好的学习和体会了在实际化工生产中知识的重要性,为我们打下牢固的实践基础。

1:材料选择与设备要求·············· - 1 -1.1:设计压力的确定·············· - 1 -1.2:关于筒体和封头的选材············ - 1 -1.3:计算压力:·················· - 2 -1.4封头的选择:················ - 2 - 2设计计算····················· - 3 -2.1:筒体长度的确定:·············· - 3 -2.2:筒体厚度的确定:·············· - 3 -2.3封头的厚度计算:··············· - 4 -2.3.压力试验:················· - 5 - 3法兰的选取···················· - 6 -3.1人孔的选取:················· - 6 -3.2:管法兰的设计················ - 7 - 4液位计的选取··················· - 9 - 5开孔补强的计算·················- 11 - 6 支座结构的设计·················- 12 -材料的确定:··················- 13 - 7焊接接头及焊条的设计··············- 15 - 焊条的选取:··················- 16 - 8参考文献····················- 17 - 9 总结······················- 18 -1:材料选择与设备要求1.1:设计压力的确定查得设计指导书表2-3 液化气体饱和蒸汽压及饱和液密度,得液化氨气在50℃蒸汽压为1.968MPa ,表压为1.868Mpa ,装有安全阀的压力容器,设计压力不低于安全阀的开启压力,安全阀的开启压力是根据工作压力确定的,一般可取p=(1.05—1.10)pw 。

液氨储罐机械设计说明书

液氨储罐机械设计说明书

液氨储罐机械设计说明书第一章、绪论(一)、液氨贮罐的设计背景化学工业和其它流程工业的生产都离不开容器。

所有的化工设备的壳体都是一种容器,容器的应用遍及各行各业,诸如航空、航海、机械制造、轻工、动力等行业。

然而化工容器又有其本身特点,不仅要适应化学工艺过程所要求的压力和温度条件,还要承受化学介质的作用,要能长期的安全工作且保证良好的密封。

因此在容器的设计中应综合考虑个方面的因素,使之达到最优。

液氨主要用于生产硝酸、尿素和其它化学肥料,还可用作医药和农药的原料。

在国防工业中用于制造火箭、导弹的推进剂,可用作有机化工产品的氨化原料,还可用作冷冻剂,将氨进行分解,分解成氢氮混合气体这种混合气体是一种良好的保护气体,可以广泛地应用于半导体工业、冶金工业以及需要保护气氛的其它工业和科学研究中。

为能够进行连续的生产,需要有储存液氨的容器,因此设计液氨贮罐是制造贮罐的必备步骤,是化工生产能够顺利进行的前提。

(二)、液氨贮罐的分类及选型储罐的形状有圆形或球形。

圆筒形储罐两端的封头有椭圆形、球形、锥形和平盖等形状。

在本设计中由于设计体积较小且工作压力较小,可采用卧式圆筒形容器,方形和矩形容器大多在很小设计体积时采用,因其承压能力较小且使用材料较多;而球形容器虽承压能力强且节省材料,但制造较难且安装件不方便;立式圆筒形容器承受自然原因引起的应力破坏的能力较弱,故选用卧式圆筒形容器。

卧式圆筒形液氨储罐通常由卧式圆筒形筒体和两端的椭圆形封头组成,按照化学生产工艺的要求设置进料口、出料口、放空口、排污口、压力表、安全阀和液面计等。

为了检修方便,还要开设人孔,用鞍式支座支承于混凝土基座上。

选择化工容器的材料也是设计中的重要问题,应该综合考虑容器的操作条件和钢材的性能、价格等。

氨对钢材的腐蚀作用很小,但是,置于室外的液氨储罐,它的操作温度就是大气温度,它的操作压力就是操作温度对应的饱和蒸汽压。

随着气温的变化,液氨储罐的操作温度和压力也随之变化,制造储罐的钢材应能承受这种变化。

10立方米液氨压力容器储罐设计说明书

10立方米液氨压力容器储罐设计说明书

目录第一章工艺设计1.1任务书*************************************** 1.2储量***************************************** 1.3备的选型及轮廓尺寸*************************** 第二章机械设计2.1结构设计2.1.1筒体及封头设计材料的选择**********************************筒体壁厚的设计计算**************************封头壁厚的设计计算*************************** 2.1.2接管及接管法兰设计接管尺寸选择*********************************管口表及连接标准*****************************接管法兰的选择 *****************************紧固件的选择 ******************************* 2.1.3人孔的结构设计密封面的选择 ******************************人孔的设计********************************2.1.4 核算开孔补强**************************** 2.1.5支座的设计支座的选择**********************************支座的位置********************************** 2.1.6液面计及安全阀选择2.1.7总体布局2.1.8焊接接头设计2.2强度校核小结课程设计任务书一、绪论1、任务说明设计一个容积为103m的液液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用SW6-1998对其进行强度校核,最后形成合理的设计方案。

300立方米液氨储罐设计

300立方米液氨储罐设计

·《化工容器设计》课程设计说明书300m3液氨储罐设计专业:过程装备与控制工程班级:13级过控1班学号:姓名:I目录目录1 设计参数的选择 (4)1.1 设计的题目 (4)1.2 原始数据 (4)1.3 储存量 (4)1.4 设计压力 (5)1.5 设计温度 (5)2 容器的结构设计 (6)2.1 筒体的内径和长度的确定 (6)2.2 筒体和封头的厚度设计计算 (6)2.3 人孔设计 (7)2.4 其他零部件的设计 (7)2.4.1 液位计的设计 (7)2.4.2 管口设计 (8)2.5 鞍座选型和结构设计 (11)2.5.1 质量确定 (11)2.5.2 鞍座的安装位置 (12)3 开孔补强设计 (13)3.1 补强设计方法判别 (13)3.2 补强圈计算 (13)3.2.1 圆筒开孔所需补强面积 (13)3.2.2 壳体有效厚度减去计算厚度之外的多余面积 (14)3.2.3 接管有效厚度减去计算厚度之外的多余面积 (14)3.2.4 焊缝金属面积 (14)3.2.5 另加补强面积 (14)4 强度计算 (15)4.1 液压试验 (15)4.2 圆筒轴向弯矩 (15)4.2.1 载荷分布 (15)4.2.2 筒体弯矩 (16)4.3 圆筒轴向应力计算并校核 (16)5.3.1 筒体应力 (16)4.3.2 筒体轴向应力校核 (17)4.4 切向剪应力的计算并校核 (18)4.4.1 圆筒切向剪应力的计算 (18)4.4.2 圆筒被封头加强时,最大剪应力 (18)4.4.3 切向剪应力的校核 (18)4.5 圆筒周向应力的计算并校核 (19)II4.5.1 在横截面的最低点处 (19)4.5.2 周向应力校核 (19)5 防护及使用管理 (20)5.1 防腐 (20)5.2 防静电 (20)5.3 热处理要求 (20)5.4 焊接 (20)5.5 使用及管理 (20)III1 设计参数的选择1.1 设计的题目300m3液氨储罐设计1.2 原始数据表1.1 设计条件序号项目数值单位备注1 名称液氨储罐2 用途液氨储存3 最高工作压力 1.36 MPa 液氨在50℃下的压力4 工作温度-45~48 ℃5 公称容积300 m36 工作压力波情况可不考虑7 装量系数0.98 工作介质液化石油气9 材料16MnDR10 焊接要求单面焊,100%无损探伤11 设计寿命20年12 腐蚀速率0.1mm/a13 其他要求1.3 储存量盛装液化气体的压力容器设计存储量:W=ΦVρt式中,装载系数Φ=0.9压力容器设计V=300m³设计温度下的饱和液体密度ρt=562.87㎏/m³4则:存储量W=15.20t1.4 设计压力设计压力取饱和蒸气压,p=1.5MPa1.5 设计温度工作温度为-45℃~48℃,则取设计温度取50℃562 容器的结构设计2.1 筒体的内径和长度的确定由设计任务书可知:V=300m 3 L/D=8 取 L=8D 则有: 30048484322==⨯==D DD LD V πππm D 63.3843003=⨯=π取内径为3700mm ,由于筒体的内径较大,所以采用钢板卷制,公称直内径DN3700mm.选用标准椭圆形封头表2.1 EHA 椭圆形封头内表面积及容积公称直径(mm ) 总深度H/mm 内表面积A/m 2 容积V/m 3 370096515.30477.0605则筒体长度:mm D V L 266024370014.3100605.721030042V 2992封头总=⨯⨯⨯-⨯=-=π 圆整:L =26610mm 则实际体积:3392封头2实际089.300100605.72426610370014.324m mm V LD V =⨯⨯+⨯⨯=+=π则体积相对误差为:%5%03.0%100300300089.300%100实际<=⨯-=⨯-V V V 符合设计要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录课程设计任务书220m3液氨储罐设计2课程设计内容3液氨物化性质及介绍31.设备的工艺计算31.1设计储存量31.2设备的选型的轮廓尺寸的确定31.3设计压力的确定41.4设计温度的确定41.5压力容器类别的确定42.设备的机械设计52.1设计条件52.2结构设计62.2.1材料选择62.2.2筒体和封头结构设计62.2.3法兰的结构设计6(1)公称压力确定7(2)法兰类型、密封面形式及垫片材料选择7(3)法兰尺寸72.2.4人孔、液位计结构设计8(1)人孔设计8(2)液位计的选择92.2.5支座结构设计10(1)筒体和封头壁厚计算10(2)支座结构尺寸确定122.2.6焊接接头设计及焊接材料的选取14(1)焊接接头的设计14(2)焊接材料的选取162.3强度校核162.3.1计算条件162.3.2内压圆筒校核172.3.3封头计算182.3.4鞍座计算202.3.5开孔补强计算213.心得体会224.参考文献22课程设计任务书20m3液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。

3.工程图纸要求计算机绘图。

4.独立完成。

二、原始数据1.设备工艺设计2.设备结构设计3.设备强度计算4.技术条件编制5.绘制设备总装配图6.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份;2.总装配图一张(A1图纸一张)课程设计内容液氨物化性质及介绍液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。

液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。

蒸汽与空气混合物爆炸极限为16—25%(最易引燃浓度为17%)氨在20℃水中溶解度34%;25℃时,在无水乙醇中溶解度10%;在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。

水溶液呈碱性。

液态氨将侵蚀某些塑料制品,橡胶和涂层。

遇热、明火,难以点燃而危险性极低,但氨和空气混合物达到上述浓度范围遇火和燃烧或爆炸,如有油类或其它可燃物存在则危险性极高。

1.设备的工艺计算工艺设计的内容是根据设计任务提供的原始数据和生产工艺要求,通过计算和选型确定设备的轮廓尺寸。

1.1设计储存量式中:W——储存量,t;——装量系数;V ——压力容器容积;m 3t ——设计温度下的饱和溶液的密度,3m tW=0.85×20×0.563=9.57t 1.2设备的选型的轮廓尺寸的确定根据设计要求,本设计为卧式容器,筒体采用圆筒形,封头采用标准椭圆形封头 查阅文献,筒体的基本参数如下:设备计算容积V 计=π/4×DN 2×L+V 封×2=π/4×2.02×5.8+0.1257×2=20.46m3 实际工作容积V 工=V 计×f=20.46×0.85=17.39m3 1.3设计压力的确定 查阅文献故其设计压力为P d =1.1×1.93=2.12MPa0.6MPa ≤P d ≤10MPa 属于中压容器 1.4设计温度的确定设备工作温度为-20℃~50℃,故其设计温度为50℃,在-20~200℃条件下工作属于常温容器。

1.5压力容器类别的确定液氨属于液化气体,查阅文献[4],可知属于第一组介质查第一组介质—压力容器类别划分图,可知20m3液氨储罐属于第Ⅲ类压力容器2.设备的机械设计2.1设计条件(见表2-1和表2-2)2.2结构设计2.2.1材料选择一般而言,以强度为主的中压设备采用低合金钢为宜,而且低合金钢对液氨也具有良好的耐腐蚀率,可选用低合金钢,Q245R和Q345R这两种钢材可以满足要求。

由于Q345R 许用应力高于Q245R,相同条件下,采用Q345R制造设备,可减小壁厚,减小设备重量,降低成本,同时壁厚减小,也可以为材料和设备的运输以及制造加工带来很大的方便,所以选择Q345R制造设备筒体和封头。

2.2.2筒体和封头结构设计由表1-1可知筒体公称直径DN=2000mm,长度L=5800mm由表1-2可知EHA标准椭圆形封头公称直径DN=2000mm总深度H=525mm则其直边长h=25mm2.2.3法兰的结构设计法兰有设备法兰和管法兰,设备筒体和封头焊接在一起,所以不需要设备法兰,只有管法兰。

(1)公称压力确定设备设计压力为2.12MPa,操作温度为-20~50℃,可选用锻件,材料选16MnⅡ查文献可知,在操作温度范围内,PN25材料为16MnⅡ的钢制管法兰最大允许工作压力为2.5MPa,满足设计要求,故管法兰公称压力为PN25(2)法兰类型、密封面形式选择液氨易挥发,为强渗透性的中度危害介质,查文献可知须采用带颈对焊型管法兰,面封面采用凹凸面密封。

(3)法兰尺寸查阅文献可知各法兰详细尺寸及法兰质量,详细见下图2-2和表2-3图2-2(1)人孔设计人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷以及装拆设备的内部零件。

人孔的结构:人孔为组合件,包括承压零件筒节、端盖、法兰、密封垫片、紧固件等受压元件,以及人孔启闭所需要的轴、销、耳、把手等非受压件。

圆形人孔的公称直径规定为400~600mm容器公称直径大于或等于1000mm且筒体与封头为焊接连接时,至少设一个人孔。

卧式容器的筒体长度大于等于6000mm,应考虑设置2个以上人孔。

综合考虑,选择回转该带颈对焊法兰人孔,公称压力PN2.5,公称直径DN450,MFM型密封面,材料选用16MnR标记为:人孔MFMⅢs-35CM(NM-XB350)A450-2.5HG/T21518-2005查阅文献,得本次选用回转盖带颈对焊法兰人孔结构尺寸,见下图2-3和表2-4(2)液位计的选择液位计是用以指示容器内物料液面的装置,液位计的种类很多,常见的有许多包括玻璃管液面计、玻璃板液面计、浮标液面计、防霜液面计、磁性液位计等其中:玻璃管液面计和玻璃板液面计适用于工作温度在0℃以上;浮标液面计适用于常压设备;防霜液面计适用于液体温度在0℃一下的液体测量;液氨储罐工作温度在-20~50℃,设计压力为1.23MPa,以上三种都不适合。

磁性液位计适用于PN=1.6~16MPa,-40~300℃,液体密度≥0.45g/cm3,适合于液氨储罐根据设计要求选择磁性液位计,标记如下:HG/T21584-95UZ2.5M-1400-0.6BF321C2.2.5支座结构设计容器支座有鞍式支座、腿式支座、支承式支座、耳式支座和裙式支座。

腿式支座和支承式支座用于低矮立式设备的支承,耳式支座用于中小型立式圆筒形容器的悬挂式支承,裙式支座用于高大型高塔的支承,鞍式支座是卧式容器经常采用的支座形式,本设计也采用鞍式支座。

置于支座上的卧式容器,其情况和梁相似,有材料力学分析可知,梁弯曲产生的应力与支点的数目和位置有关。

当尺寸和载荷一定时多支点在梁内产生的应力较小,因此支座数目似乎应该多些好。

对于大型卧式容器而言,一般情况采用双支座。

此外,卧式容器由于温度或载荷变化时都会产生轴向的伸缩,因此容器两端的支座不能都固定在基础上,必须有一端能在基础上滑动,以避免产生过大的附加应力。

通常的做法是将一个支座上的地脚螺栓孔做成长圆形,并且螺母不上紧,使其成为活动支座,而另一支座仍为固定支座。

所以本设计就采用这种双支座结构。

查阅文献,可知一边为F型,一边为S型。

鞍座的材料除垫板外都为Q235-B,加强垫板的材料与设备壳体材料相同为Q345R。

(1)筒体和封头壁厚计算筒体壁厚计算圆筒的设计压力为2.12Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。

在板厚3~16mm 时取许用应力为189Mpa 。

液柱静压力ρgh=1×9.8×2000=0.02Mpa而ρgh ∕2.123=0.9%<5%所以可以忽略。

故筒体壁厚[1]c t2[]-icP D P δσφ==(2.12×2000)/(2×189-2.12)=11.28mm 查得钢板厚度负偏差C 1=0.3mm, 双面腐蚀取腐蚀裕量2C 2=㎜。

[1] 筒体的设计厚度为:δd =δ+C 2=11.28+2=13.28mm δn =δd +C 1=13.28+0.3=13.58mm对厚度进行圆整可得名义厚度为:n δ=14mm 确定用mm n 41=δ厚的Q345R 钢板制作筒体。

有效厚度2111.7e n C C mm δδ=--=mm封头壁厚计算本容器用标准椭圆封头,厚度根据公式:[1]其中各数据跟筒体相同,[]20.5c itcP D P δσϕ⋅=-=(2.12×2000)/(2×189-0.5×2.12)=11.25mm封头的设计厚度为:[2]δd =δ+C 2=11.25+2=13.25mm δn =δd +C 1=13.25+0.3=13.55mm对厚度进行圆整可得名义厚度为:n δ=14mm 确定用mm n 41=δ厚的Q345R 钢板制作封头。

有效厚度2111.7e n C C mm δδ=--=可见封头厚度近似等于筒体厚度,所以圆整后取δ=14mm ,有效厚度11.7e mm δ= 水压试验试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥。

试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min 。

然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查。

如有渗漏,修补后重新试验。

水压试验,液体的温度不得低于5℃; 试验校核:材料Q345R 的[σ]=189Mpa,[σ]t =189Mpa ,P=2.12Mpa,σs =345Mpa 。

水压试验时的压力P T =1.25×2.12=2.65Mpa 水压试验的应力校核: 水压试验时的应力[1]()2T i e T ep D δσδ+==2.65×(2000+11.7)/(2×11.7)=227.82Mpa水压试验时的许用应力为S T 0.9φσσ<故筒体满足水压试验时的强度要求。

(2)支座结构尺寸确定 鞍座载荷计算:储罐总质量筒体的质量1m :查得圆筒体材料Q345R 密度ρ=7800㎏/m3,筒体长度5.8m, 则质量:m 1=πDL δn ρ=3.14×2.0×5.8×0.014×7800=3977.50kg封头的质量2m :根据封头的名义厚度查阅文献可知封头质量为395.8kg 水压试验时水的质量3m :m 3=20×1000=20000㎏。

相关文档
最新文档