人教版必修1 求函数解析式方法 分段函数 例题 练习试题 及其答案

合集下载

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高中数学分段函数解析式及其图像作法练习题含答案

高中数学分段函数解析式及其图像作法练习题含答案

高中数学分段函数解析式及其图像作法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 若函数f (x )={x +1, x ≥0,f (x +2), x <0则f (−3)的值为 ( ) A.5B.−1C.−7D.22. 已知函数f(x)的图象是两条线段(如图所示,不含端点),则f[f(13)]=( )A.−13B.13C.−23D.233. 已知f(x)={x +2(x ≤−1)x 2(−1<x <2)2x(x ≥2),若f(x)=3,则x 的值是( )A.1B.1或32C.1,32或±√3D.√34. 已知函数{x 2+1,x ≤0−2x,x >0,f(x)=5,则x 的值为( ) A.−2B.2或−2C.2或−52D.2或−2或−525. 已知函数f(x)={x 2+4x +3,x ≤03−x,x >0则f (f(5))=( ) A.0B.−2C.−1D.16. 函数f(x)={|3x −4|(x ≤2)2x−1(x >2),则当f(x)≥1时,自变量x 的取值范围为( ) A.[1,53]B.[53,3] C.(−∞,1)∪[53,+∞)D.(−∞,1]∪[53,3]7. 函数f(x)=ln1的大致图象是( )(2−x)2A.B.C.D.的部分图象大致为() 8. 函数y=1+x+sin xx2A. B.C.D.9. 若函数f(x)={e x e ,x ≥0,x 2+5x +4,x <0,(其中e 为自然对数的底数),则函数ℎ(x)=f(f(x))−f(x) 的零点个数为( )A.2B.3C.4D.510. 已知f(x)={1,x ≥0,−1,x <0,则不等式x +(x +2)⋅f(x +2)≤5的解集是( ) A.[−2, 1]B.(−∞, −2]C.[−2,32]D.(−∞,32]11. 设函数f(x)={x 2+2x ,x <0,−x 2,x ≥0,f(f(a))≤3,则实数a 的取值范围是________.12. f(x)={(12)x −2,x ≤0,2x −2,x >0,则f(x)−x 的零点个数是________.13. 若函数f(x)={2x(x ≥10)f(x +1)(0<x <10),则f(5)=________. 14. 已知函数满足,则函数的解析式为________.15. 定义a ⊗b ={a 2+b ,a >b a +b 2,a ≤b ,若a ⊗(−2)=4,则a =________.16. 已知函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点,则实数a 的取值范围是________.17. 若函数f(x)=,则f(2020)=________.18. 已知函数f(x)={(12)x ,x ≥4f(x +1),x <4,则f(log 23)=________.19. 函数f(x)={e x −a ,x ≤1x 2−3ax +2a 2+1,x >1,若函数y =f(x)图象与直线y =1有两个不同的交点,求a 的取值范围________.20. 已知f (x )是定义在R 上的偶函数,且当x ≥0时, f (x )=x 2+2x −3 .(1)求f (x )的解析式;(2)若f (m +1)<f (2m −1),求实数m 的取值范围.21. 已知函数f(x)的解析式为f(x)={3x +5,(x ≤0),x +5,(0<x ≤1),−2x +8,(x >1).(1)画出这个函数的图象;(2)求函数f(x)的最大值;22. 已知函数f (x )=|2x −1|+|x +2|.(1)在给定的坐标系中画出函数f(x)的图象;(2)设函数g(x)=ax+a,若对任意x∈R,不等式g(x)≤f(x)恒成立,求实数a的取值范围.23. (1)用定义法证明函数f(x)=x2−1x在(0,+∞)上单调递增;(2)已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=x3+3x2+1,求g(x)的解析式.24. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=13x3+12x2.(1)求f(x)的解析式,并补全f(x)的图象;(2)求使不等式f(m)−f(1−2m)>0成立的实数m的取值范围.参考答案与试题解析高中数学分段函数解析式及其图像作法练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:因为−3<0,所以f(−3)=f(−3+2)=f(−1).因为−1<0,所以f(−1)=f(−1+2)=f(1).因为1>0,所以f(1)=1+1=2.故选D .2.【答案】B【考点】函数的图象与图象的变换分段函数的解析式求法及其图象的作法函数单调性的性质与判断【解析】先根据函数的图象利用分段函数写出函数的解析式,再根据所求由内向外逐一去掉括号,从而求出函数值.【解答】由图象知f(x)={x +1(−1<x <0)x −1(0<x <1)∴ f(13)=13−1=−23,∴ f(f(13))=f(−23)=−23+1=13.3.【答案】D【考点】分段函数的解析式求法及其图象的作法函数的零点与方程根的关系【解析】利用分段函数的解析式,根据自变量所在的区间进行讨论表示出含字母x 的方程,通过求解相应的方程得出所求的字母x 的值.或者求出该分段函数在每一段的值域,根据所给的函数值可能属于哪一段确定出字母x 的值.【解答】该分段函数的三段各自的值域为(−∞, 1],[O, 4).[4, +∞),而3∈[0, 4),故所求的字母x 只能位于第二段.∴ f(x)=x 2=3,x =±√3,而−1<x <2,∴ x =√3.4.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】求函数的值函数的求值分段函数的解析式求法及其图象的作法【解析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x|x >0},而f(5)=−2∈{x|x ≤0},分别代入不同的对应法则求值即可得结果【解答】因为5>0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(5)=3−5=−2, 所以f (f(5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(−2)=(−2)2+4×(−2)+3=−16.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】根据题意分两种情况x >2和x ≤2,代入对应的解析式列出不等式求解,最后必须解集和x 的范围求交集.【解答】解:∵ f(x)={|3x −4|(x ≤2)2x−1(x >2),∴ 分两种情况: ①当x >2时,由f(x)≥1得,{x >22x−1≥1,解得2<x ≤3,②当x≤2时,由f(x)≥1得,|3x−4|≥1,即3x−4≥1或3x−4≤−1,解得,x≤1或x≥53,则x≤1或53≤x≤2.综上,所求的范围是(−∞,1]∪[53,3].故选D.7.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:函数f(x)=ln1(2−x)2的定义域为:x≠2,函数图像关于x=2对称,当x=0时,f(0)=ln1(2−0)2=−ln4<0,因为ln4∈(1,2).故选D.8.【答案】B【考点】奇函数分段函数的解析式求法及其图象的作法函数的图象【解析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可.【解答】解:函数y=1+x+sin xx2,可知:f(x)=x+sin xx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sin xx2的图象关于(0, 1)对称,当x>0时,f(x)>0,当x=π时,y=1+π.故选B.9.【答案】D【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:根据分段函数解析式作出函数的图像,如图所示:, 0)和(0, +∞)上为增函数,由图可知,函数f(x)在(−52且f(f(x))=f(x)解的个数等价于f(x)=x解的个数.作出图像可知,函数y=f(x)与y=x有(−2, −2)和(e, e)两个公共点,作出f(x)=e的图像,由图可知,f(x)=e有三个解;作出f(x)=−2的图像,由图可知,f(x)=−2有两个解.综上可知,函数ℎ(x)=f(f(x))−f(x)的零点的个数为5. 故选D.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】由题意可得,①当x+2≥0时,f(x+2)=1,代入所求不等式可求x,②当x+2< 0即x<−2时,f(x+2)=−1,代入所求不等式可求x,从而可得原不等式的解集【解答】解:①当x+2≥0,即x≥−2时,f(x+2)=1,由x+(x+2)⋅f(x+2)≤5可得x+x+2≤5,∴x≤32,即−2≤x≤32;②当x+2<0即x<−2时,f(x+2)=−1,由x+(x+2)⋅f(x+2)≤5可得x−(x+2)≤5,即−2≤5,∴x<−2.综上,不等式的解集为{x|x≤32}.故选D.二、填空题(本题共计 9 小题,每题 3 分,共计27分)11.【答案】(−∞, √3]【考点】分段函数的应用分段函数的解析式求法及其图象的作法函数的求值【解析】先讨论f(a)的正负,代入求出f(a)≥−3,再讨论a的正负,求实数a的取值范围.【解答】解:①若f(a)<0,则f2(a)+2f(a)≤3,解得,−3≤f(a)≤1,即−3≤f(a)<0;②若f(a)≥0,则−f2(a)≤3,显然成立;则f(a)≥0;③若a<0,则a2+2a≥−3,解得,a∈R,即a<0;④若a≥0,则−a2≥−3,解得,0≤a≤√3;综上所述,实数a的取值范围是:(−∞, √3].故答案为:(−∞, √3].12.【答案】【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】本题考查分段函数图象的作图及函数零点区间的判断问题.【解答】解:函数f(x)={(12)x−2,x ≤0,2x −2,x >0的图象如图所示, 由图示可得直线y =x 与该函数的图象有两个交点,由此可得f(x)−x 有2个零点.故答案为:2.13.【答案】20【考点】分段函数的解析式求法及其图象的作法【解析】根据自变量的值代入分段函数求值.【解答】解:由f(x)={2x(x ≥10)f(x +1)(0<x <10)得, f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=2×10=20.故答案为:20.14.【答案】千(x )=三.________3′3x【考点】函数解析式的求解及常用方法函数的图象分段函数的解析式求法及其图象的作法【解析】令f (1x )+2f (x )=1x .联立f (x )+2f (1x )=x 消去f (1x )即可I 加加加因为f (x )+2f (1x )=x ,所以f (1x )+2f (x )=1x由{f (x )+2f (1x )=x f (1x )+2f (x )=1x,消去f (1x ),得f (x )=−x 3+23x 故答案为:f (x )=−x 3+23【解答】此题暂无解答15.【答案】 √6【考点】函数新定义问题分段函数的解析式求法及其图象的作法函数的求值【解析】分类讨论,利用新定义即可得出.【解答】解:①当a >−2时,由已知可得4=a ⊗(−2)=a 2−2,解得a =√6.②当a ≤−2时,由已知可得4=a ⊗(−2)=a +(−2)2,解得a =0,应舍去. 综上可知:a =√6.故答案为:√6.16.【答案】(34, 1) 【考点】分段函数的解析式求法及其图象的作法函数零点的判定定理【解析】由题意可得,a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,再利用二次函数的性质求得a 的范围.【解答】∵ 函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点, ∴ a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,∴ { a >0a(−2)2+2(−2)+1>0−2<−1a <0△=4−4a >0, 解得 34<a <1,17.【答案】1【考点】分段函数的解析式求法及其图象的作法【解析】先判断当x>0时,f(x+6)=f(x),可得x>0时,f(x)是周期为6的周期函数,再由周期性及分段函数解析式求解.【解答】当x>0时,由f(x)=f(x−1)−f(x−2),可得f(x+1)=f(x)−f(x−1),两式相加得f(x+1)=−f(x−2),则f(x+3)=−f(x),∴当x>0时,f(x+6)=−f(x+3)=−[−f(x)]=f(x),即x>0时,f(x)是周期为6的周期函数,又f(x)=,∴f(2020)=f(4)=−f(1)=f(−1)−f(0)=2−1=1,故答案为:1.18.【答案】124【考点】函数的求值求函数的值分段函数的解析式求法及其图象的作法【解析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用a log a N=N进行求解.【解答】由已知得,f(x)={(12)x,x≥4f(x+1),x<4,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)=(12)log224=2log2(24)−1=124.19.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 5 小题,每题 10 分,共计50分)20.【答案】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.【考点】分段函数的解析式求法及其图象的作法奇偶性与单调性的综合函数单调性的性质【解析】此题暂无解析【解答】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.21.【答案】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x =1时,函数f(x)取得最大值6,∴ 函数f(x)的最大值为6;【考点】函数的最值及其几何意义分段函数的解析式求法及其图象的作法【解析】(1)分段函数的图象要分段画,本题中分三段,每段都为一次函数图象的一部分,利用一次函数图象的画法即可画出f(x)的图象;(2)由图象,数形结合即可求得函数f(x)的最大值【解答】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x=1时,函数f(x)取得最大值6,∴函数f(x)的最大值为6;22.【答案】【考点】分段函数的解析式求法及其图象的作法绝对值不等式的解法与证明不等式恒成立问题【解析】此题暂无解析【解答】此题暂无解答23.【答案】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.【考点】函数单调性的判断与证明分段函数的解析式求法及其图象的作法函数解析式的求解及常用方法【解析】此题暂无解析【解答】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.24.【答案】解:(1)设x<0,则−x>0,于是f(−x)=−13x3+12x2,又因为f(x)是偶函数,所以f(x)=f(−x)=−13x3+12x2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f (x )是偶函数,所以原不等式等价于f (|m|)>f (|1−2m|). 又由(1)的图象知,f (x )在[0,+∞)上单调递增, 所以|m|>|1−2m|,两边平方得m 2>1−4m +4m 2,即3m 2−4m +1<0, 解得13<m <1, 所以实数m 的取值范围是{m|13<m <1}.【考点】分段函数的解析式求法及其图象的作法 函数奇偶性的性质奇偶性与单调性的综合【解析】【解答】解:(1)设x <0,则−x >0,于是f (−x )=−13x 3+12x 2, 又因为f (x )是偶函数,所以f (x )=f (−x )=−13x 3+12x 2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f(x)是偶函数,所以原不等式等价于f(|m|)>f(|1−2m|).又由(1)的图象知,f(x)在[0,+∞)上单调递增,所以|m|>|1−2m|,两边平方得m2>1−4m+4m2,即3m2−4m+1<0,解得13<m<1,所以实数m的取值范围是{m|13<m<1}.。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

分段函数知识点及例题解析

分段函数知识点及例题解析

分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥, 求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。

分段函数、解析式与图像含详解答案

分段函数、解析式与图像含详解答案

解析式、分段函数、函数图像作业题型一分段函数1.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为2.设函数23,0()(2),0x x x f x f x x ⎧+≥=⎨+<⎩,则(3)f -=_____3.设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a =4.分段函数已知函数3,0,()4,0.x x f x x x -+≤⎧=⎨>⎩(1)画函数图像(2)求((1))f f -;(3)若0()2f x >,求0x 的取值范围.题型二解析式1.求下列函数的解析式(1)已知2()f x x x =+,求(1)f x -的解析式(2)若1)f x +=+()f x 的解析式(3)如果1f x ⎛⎫ ⎪⎝⎭=1x x-,则当x ≠0,1时,求()f x 的解析式(4)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式2.求下列函数的解析式(1)已知函数()f x 是一次函数,若()48f f x x =+⎡⎤⎣⎦,求()f x 的解析式;(2)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +-=,求()f x 的解析式(3)已知函数f (x )+2f (-x )=x 2+2x,求()f x 的解析式.(4)已知函数()f x 的定义域是一切非零实数,且满足13()24f x f x x ⎛⎫+=⎪⎝⎭.求()f x 的解析式.3.已知函数()21f x x =-,2,0,(){1,0,x x g x x ≥=-<求()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦的解析式.题型三函数图像1.画出函数2)(x x f =的图像,并用变换的方法画出以下函数的图像。

(1)2)(2+=x x f (2)2)1()(-=x x f (3)2)2()(2+-=x x f (4)32)(2+-=x x x f (5)542)(2-+=x x x f 2.画出下列函数函数的图像。

人教版必修1-求函数解析式方法-分段函数-----例题---练习试题---及其答案

人教版必修1-求函数解析式方法-分段函数-----例题---练习试题---及其答案

函数概念及其表示练习(4)一、求函数解析式(1)代入法求函数解析式例1.已知f (x )=2x x +2,则f (x -1)=例2.已知f (x )=2x x +2,g (x )=12+x ,则()[]x g f =练习.已知f (x ),g (x )对应值如表.则f (g (1))的值为( ) A .-1B .0C .1D .不存在(2)换元法求函数解析式例1.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4 例2.设函数,则的表达式为( )A. B. C. D.例3.已知()x x x f21+=+,求f (x )解析式.例4.已知g (x )=1-2x,f [g (x )]=)0(122≠-x xx ,则f (21)等于例5.若函数[]12)(36)(+=+=x x g x x g f 且,则)(x f 等于( ) A .3 B .3x C .6x+3 D .6x+1练习1.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21x x+- 练习2.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x + 练习3.已知x x x f 2)12(2-=+,则)3(f =x 0 1 -1 g (x )-11x 0 1 -1 f (x )1-1练习4. 已知函数=-=)3(,1)(2f x x f 则( )A. 8B. 6560C. 80D. 2 (3)待定系数法求函数解析式例1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.例2. 为了提倡节约用水,自来水公司决定采取分段计费,月用水量x (立方米)与相应水费y (元)之间函数关系式如图所示.(1)月用水量为6方,应交水费 元; (2)写出y 与x 之间的函数关系式;(3)若某月水费是78元,用水量是多少?例3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是练习1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t D .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 练习2.若是一次函数,,则=练习3.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( )(4)方程组法求函数解析式例1.已知f(x )满足()xx f x f 212=⎪⎭⎫⎝⎛+①,求f (x )解析式.例 2.已知f (x )满足()()x x f x f 22=-+,求f (x )解析式.二、分段函数练习例1.函数 ⎩⎨⎧->-≤+=1,1,2)(2x x x x x f ,则((2))f f -= ;()3,f x =则x=例2.已知函数y =f (n )满足f (n )=⎩⎨⎧2 (n =1)3f (n -1) (n ≥2),则f (3)=________例3.已知函数f (x )=⎩⎨⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 的解集为( )A .[-1,1]B .[-2,2]C .(]1,∞-D .[-1,2]例4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A .1+πB .0C .πD .1-例5.已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.练习1.已知f (x )=⎩⎨⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( ) A .-7B .3C .-8D .4练习2.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f =练习3.已知函数⎩⎨⎧<≥=0,0,2)(2x x x x x f ,则=-)]2([f f ( )A. 8B.—8 C .8或—8 D.16练习4.f (x )=⎩⎨⎧x 2+1, (x ≤0),-2x , (x >0),)若f (x )=10,则x =练习5.设f (x )=⎩⎨⎧x +3, (x >10),f (x +5), (x ≤10),则f (5)的值为( )A .16B .18C .21D .24函数概念及其表示练习(4)一、求函数解析式(1)代入法求函数解析式例1.已知f (x )=2x x +2,则f (x -1)=2231x x -+例2.已知f (x )=2x x +2,g (x )=12+x ,则()[]x g f =42253x x ++练习.已知f (x ),g (x )对应值如表.则f (g (1))的值为( C ) A .-1B .0C .1D .不存在(2)换元法求函数解析式例1.已知函数f (x +1)=3x +2,则f (x )的解析式是( C ) A .3x +2 B .3x +1 C .3x -1 D .3x +4 例2.设函数,则的表达式为( C )A. B. C. D.例3.已知()x x x f21+=+,求f (x )解析式.解析1:()()()()22211,1121 1.1, 1.x t x t f t t t t f x x x +=≥=-∴=-+-=-∴=-≥令则解析2:))()()222121111,1.1, 1.fx x x x x t f t t f x x x +=+=+-+=≥∴==-∴=-≥则例4.已知g (x )=1-2x,f [g (x )]=)0(122≠-x xx ,则f (21)等于15x 0 1 -1 g (x )-11x 0 1 -1 f (x )1-1例5.若函数[]12)(36)(+=+=x x g x x g f 且,则)(x f 等于( B ) A .3 B .3x C .6x+3 D .6x+1练习1.已知2211()11x x f x x --=++,则()f x 的解析式为( C ) A .21x x + B .212x x +- C .212x x + D .21x x+- 练习2.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( B ) A .21x + B .21x - C .23x - D .27x + 练习3.已知x x x f 2)12(2-=+,则)3(f = -1 练习4. 已知函数=-=)3(,1)(2f x x f 则( C )A. 8B. 6560C. 80D. 2 (3)待定系数法求函数解析式例1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析:设一次函数y =ax +b ,(a ≠0) 求得⎩⎨⎧a =-10,b =9000.∴y =-10x +9000,于是当y =400时,y =860.例2. 为了提倡节约用水,自来水公司决定采取分段计费,月用水量x (立方米)与相应水费y (元)之间函数关系式如图所示.(1)月用水量为6方,应交水费 元; (2)写出y 与x 之间的函数关系式;(3)若某月水费是78元,用水量是多少? 解析:(1)18(2)⎩⎨⎧>-≤≤=)10(,306)100(,3x x x x y(3)18方例3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 ()822++=-x x f x练习1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( D ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t D .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 练习2.若是一次函数,,则=或()12+-=x x f练习3.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( B )(4)方程组法求函数解析式例1.已知f (x )满足()x x f x f 212=⎪⎭⎫⎝⎛+①,求f (x )解析式.例 2.已知f (x )满足()()x x f x f 22=-+,求f (x )解析式. 解析: (1)()122f x f x x ⎛⎫+= ⎪⎝⎭ ①()1122f f x x x ⎛⎫∴+= ⎪⎝⎭②∴由①×2-②得()234f x x x=-, ()4233x f x x =-.(2)()()22f x f x x +-= ①xyAxyBxyCxyD()()()22f x f x x ∴-+=- ② ∴由①×2-②得()()342f x x x =--,()2f x x =.二、分段函数练习例1.函数 ⎩⎨⎧->-≤+=1,1,2)(2x x x x x f ,则((2))f f -= 0 ;()3,f x =则例2.已知函数y =f (n )满足f (n )=⎩⎨⎧2 (n =1)3f (n -1) (n ≥2),则f (3)=___18_____例3.已知函数f (x )=⎩⎨⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 的解集为( C )A .[-1,1]B .[-2,2]C .(]1,∞-D .[-1,2]例4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( A )A .1+πB .0C .πD .1-例5.已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.25练习1.已知f (x )=⎩⎨⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( B )A .-7B .3C .-8D .4练习2.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = 432-π .练习3.已知函数⎩⎨⎧<≥=0,0,2)(2x x x x x f ,则=-)]2([f f ( A )A. 8B.—8 C .8或—8 D.16练习4.f (x )=⎩⎨⎧x 2+1, (x ≤0),-2x , (x >0),)若f (x )=10,则x = -3练习5.设f (x )=⎩⎨⎧x +3, (x >10),f (x +5), (x ≤10),则f (5)的值为( B )A .16B .18C .21D .24。

微专题18分段函数10种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题18分段函数10种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题18 分段函数10种常考题型总结题型1 分段函数求函数值题型2 已知函数值求参数题型3 解分段函数不等式题型4 分段函数的图象题型5 分段函数的单调性题型6 分段函数的奇偶性题型7 分段函数的值域或最值题型8 分段函数与零点问题题型9 max/min 型分段函数题型10 新定义题一、分段函数1、分段函数的定义函数y x =与函数,0,0x x y x x ³ì=í-<î是同一函数,但在表达方式上有所区别,前者在定义域内有一个表达式,而后者的定义域被分成两部分,而在不同的部分有不同的解析式.在函数的定义域内,对于自变量x 在不同取值范围内,函数有着不同的对应关系,这样的函数通常叫作分段函数.2、对分段函数的理解(1)分段函数是一个函数而不是几个函数。

处理分段函数问题时,首先要确定自变量的取值属于哪一个范围,从而选择相应的对应关系;(2)分段函数的定义域是各段自变量取值范围的并集,各段定义域的交集是空集;(3)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.3、分段函数常见的几种类型(1)取整函数:()[]f x x =([]x 表示不大于x 的最大整数).(2)1,()(1)1,x x f x x -ì=-=íî为正奇数为非负偶数.(3)含绝对值符号的函数.如2,2()|2|(2),2x x f x x x x +³-ì=+=í-+<-î.(4)自定义函数.如21,1(),122,2x x f x x x x x x--£-ìï=--<£íï->î二、有关分段函数的求解问题1、分段函数的表达式因其特点可以分解成两个或两个以上的不同表达式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或线段,而分段函数的值域,也就是各部分的函数值集合的并集,最好的求解方法是“图象法”。

新高中数学必修1求函数解析式基础题(含详解)

新高中数学必修1求函数解析式基础题(含详解)
【详解】
解析:法一:(换元法)
令 ,则x=(t-1)2,
∴f(t)=(t-1)2+2 =t2-1.
∴f(x)=x2-1(x≥1).
法二:(配凑法)
∵x+2 =( +1)2-1,∴f( +1)=( +1)2-1.
又∵ +1≥1,∴f(x)=x2-1(x≥1).
【点睛】
吧求函数的解析式,涉及换元方法和配方法,属基础题,难度较易.
A. B.
C. D.
5.设 , ,则 等于( )
A. B. C. D.
6.已知 ,则 的解析式为( )
A. B.
C. D.
7.定义 ,例如 ,则 的范围是()
A. B. C. D.
二、解答题
8.(1)已知 是一次函数,满足 ,求 的解析式.
(2)已知 ,求 的解析式.
9.已知f( +1)=x+2 ,求f(x).
新高中数学必修1求函数解析式基础题训练(含详解)
一、单选题
1.已知 ,则 ( )
A.36B.16C.100D.8
2.已知函数 满足 且 ,则实数 的值为()
A. B. C.7D.6
3.如果 = ,则当x≠0,1时,f(x)等于()
A. B. C. D.
4.已知 是二次函数,且 , ,则 的解析式为()
11. 或
【解析】
【分析】
由题意知, 为一次函数,故可设一次函数 ,利用函数解析式求得 ,结合待定系数法列出关于 , 的方程,求得 , .最后写出所求函数的解析式即可.
【详解】
解:设一次函数 ,
则 ,
又 ,
则有 ,得 解得 或 ,
故所求函数的解析式为: 或
【点睛】
本小题主要考查函数解析式的求解及常用方法等基础知识,考查运算求解能力,考查待定系数法.属于基础题.

函数解析式的几种基本方法及例题

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

此法较适合简单题目。

例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x xx x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

分段函数例题及解析

分段函数例题及解析

分段函数例题及解析1. 分段函数的定义分段函数是指在定义域上根据不同的条件对应不同的函数表达式的函数。

通常用于描述现实中具有不同规律的情况。

2. 分段函数的表示方式分段函数可以用函数图像、函数表达式和条件表示等方式来表示。

2.1 函数图像表示我们可以通过绘制函数图像来直观地表示分段函数的值随自变量的变化情况。

2.2 函数表达式表示在分段函数的定义域上,我们可以使用不同的函数表达式来表示不同条件下的函数值。

2.3 条件表示我们也可以使用条件表示法来表示分段函数。

例如:当自变量小于等于某个数时,函数的值为一个表达式;当自变量大于某个数时,函数的值为另一个表达式。

3. 分段函数的例题及解析3.1 例题1考虑以下分段函数:$$ f(x)=\\begin{cases} x+1, & \\text{if } x < 0 \\\\ 2x, & \\text{if } x \\geq 0\\end{cases} $$我们来分析该分段函数的性质。

首先,我们可以通过函数表达式表示这个分段函数。

当x<0时,函数的表达式为x+1;当$x \\geq 0$时,函数的表达式为2x。

其次,我们可以绘制该分段函数的函数图像。

对于x<0的情况,函数的图像是一个斜率为1的直线,与x轴交于点(−1,0);对于$x \\geq 0$的情况,函数的图像是一个斜率为2的直线,通过原点。

通过图像可以看出,在x=0处,由两条直线组成的函数图像连接起来,形成一个光滑的图像。

3.2 例题2考虑以下分段函数:$$ g(x)=\\begin{cases} x^2, & \\text{if } x \\leq 2 \\\\ 2x+1, & \\text{if } x > 2\\end{cases} $$我们来分析该分段函数的性质。

首先,我们可以使用条件表示法来表示这个分段函数。

当$x \\leq 2$时,函数的值为x2;当x>2时,函数的值为2x+1。

分段函数求值和解析式专项练习——高一上学期数学人教A版必修第一册期中复习

分段函数求值和解析式专项练习——高一上学期数学人教A版必修第一册期中复习

分段函数求值和解析式专题练习题型一.分段函数
1.已知函数f(x)=,则f(f(5))=()
A.0B.﹣2C.﹣1D.1
2.已知函数y=,若f(a)=10,则a的值是()
A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5 3.已知f(x)=使f(x)≥﹣1成立的x的取值范围是()A.[﹣4,2)B.[﹣4,2]C.(0,2]D.(﹣4,2] 4.函数则不等式f(x)≥1的解集是()A.B.
C.D.5.已知函数f(x)=2x﹣1,g(x)=求f[g(x)]和g[f(x)]的解析式.
题型二.求解析式
6.已知一次函数f(x)在R上单调递增,且满足f(f(x))=9x﹣2,则f(x)=.7.已知f(x)+2f()=2x,求f(x )的解析式为.
8.已知f()=+,则f(x)的解析式为.
9.(1)若一次函数f(x)满足f(x)+2f(1﹣x)=x,则f(x)的解析式
(2)已知,求f(x)的解析式.
(3)已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2﹣2x,求出函数f(x)在R 上的解析式.
10.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f (t).
(1)求函数f(t)解析式;
(2)画出函数y=f(t)的图象;
11.函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2.(1)当x∈[﹣1,2)时,写出该函数的解析式;(2)求函数的值域.。

分段函数常见题型解法-含答案

分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。

高中数学函数的解析式与分段函数知识点题目答案

高中数学函数的解析式与分段函数知识点题目答案

专题二 函数的解析式与分段函数1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示. 2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.5.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. (3)各段函数的定义域不可以相交. 考点一 求函数的解析式 【方法总结】函数解析式的常见求法(1)配凑法:已知f (h (x ))=g (x ),求f (x )的问题,往往把右边的g (x )整理或配凑成只含h (x )的式子,然后用x 将h (x )代换.(2)换元法:已知f (h (x ))=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.(3)待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数f (x )可设为f (x )=ax 2+bx +c (a ≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(4)解方程组法:已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝⎛⎭⎫1x (或f (-x ))等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).【例题选讲】[例1] (1) 已知1()xf x +=x 2+1x 2+1x ,则f (x )=__________;答案x 2-x +1解析 (配凑法)1()x f x+=x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1.令x +1x =t (t ≠1),得f (t )=t 2-t +1,即f (x )=x 2-x +1.(2) 已知2(1)f x +=lg x ,则f (x )=__________;答案 lg 2x -1(x >1) 解析 (换元法)令2x +1=t ,得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x ∈(1,+∞).(3) 已知f (x )是二次函数,且f (0)=2,f (x +1)=f (x )+x +3,则f (x )=__________;答案 12x 2+52x +2 解析 (待定系数法)设f (x )=ax 2+bx +c (a ≠0),由f (0)=c =2,得f (x )=ax 2+bx +2,则f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x +3,所以2a =1,且a +b =3,解得a =12,b =52,故f (x )=12x 2+52x +2. (4) 已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )=__________;答案 2x +1-2-x 3 解析 (解方程组法)由f (-x )+2f (x )=2x ,①.得f (x )+2f (-x )=2-x ,②.①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x 3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R ).(5) 若函数f (x )满足方程af (x )+f ⎝⎛⎭⎫1x =ax ,x ∈R ,且x ≠0,a 为常数,a ≠±1,且a ≠0,则f (x )=________. 答案 a (ax 2-1)(a 2-1)x 解析 (解方程组法)因为af (x )+f ⎝⎛⎭⎫1x =ax ,所以af ⎝⎛⎭⎫1x +f (x )=a x ,两方程联立解得f (x )=a (ax 2-1)(a 2-1)x. 【对点训练】1.已知f (x +1)=x +2x ,则f (x )=________________.1.答案 x 2-1(x ≥1) 解析 设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.2.已知函数f (x -1)=xx +1,则函数f (x )的解析式为( )A .f (x )=x +1x +2B .f (x )=x x +1C .f (x )=x -1xD .f (x )=1x +22.答案 A 解析 令x -1=t ,则x =t +1,∴f (t )=t +1t +2,即f (x )=x +1x +2.故选A .3.已知1()f x x+=x 2+1x 2,则f (x )=________________.3.答案 x 2-2(x ≥2或x ≤-2) 解析 由于1()f x x +=x 2+1x 2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤- 2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.4.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x4.答案 B 解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,可设二次函数g (x )的解析式 为g (x )=ax 2+bx (a ≠0),可得⎩⎪⎨⎪⎧a +b =1,a -b =5,解得a =3,b =-2,所以二次函数g (x )的解析式为g (x )=3x 2-2x .故选B .5.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=________________.5.答案 23lg(x +1)+13lg(1-x )(-1<x <1) 解析 当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①,将x 换成-x ,则-x 换成x ,得2f (-x )-f (x )=lg(-x +1).②,由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).6.已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________.6.答案 2x -1x (x ≠0) 解析 ∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①.把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.②.联立①② 可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).7.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=_____. 7.答案 -12x (x +1) 解析 ∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).考点二 分段函数求值 【方法总结】求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值,直到求出具体值为止;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点; (4)求值时注意函数奇偶性、周期性的应用. 【例题选讲】[例2] (1) 已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A .-12 B .2 C .4 D .11答案 C 解析∵函数f (x )=⎩⎨⎧x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f [f (1)]=f (3)=3+13-2=4.故选C .(2) (2015·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12答案 C 解析 ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.(3) 已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3答案 B 解析 由题意得,f (-2)=a -2+b =5,①.f (-1)=a -1+b =3,②.联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2.(4) 已知f (x )=⎩⎪⎨⎪⎧x -3,x ≥9,f (f (x +4)),x <9,则f (7)=_______.答案 6 解析 ∵7<9,∴f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8).又∵8<9,∴f (8)=f (f (12))=f (9)=9-3=6.即f (7)=6.(5) (2017·山东)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6 D .8答案 C 解析 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,因为f (a )=f (a +1),所以a =2a ,解得a =14或a =0(舍去),所以f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6;当a ≥1时,a +1≥2,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,所以2(a -1)=2a ,无解;综上,f ⎝⎛⎭⎫1a =6.故选C .【对点训练】8.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1B .14C .12D .328.答案 C 解析 因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1-14=12,故选C . 9.已知函数f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A .12 B .-12 C .1 D .-19.答案 B 解析 f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 10.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( )A .14B .⎝⎛⎭⎫12 21log 5+C .12D .12010.答案 D 解析 因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D . 11.已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,则f (-2 019)=( )A .e 2B .eC .1D .1e11.答案 D 解析 当x <-2时,f (-2 019)=f (2 019),当x >2时,函数周期为4,f (2 019)=f (-1)=1e.考点三 求参数或自变量的值或范围 【方法总结】已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解. 【例题选讲】[例3] (1) 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A .⎩⎨⎧⎭⎬⎫14,4 B .{1,4} C .⎩⎨⎧⎭⎬⎫1,14 D .⎩⎨⎧⎭⎬⎫1,14,4答案 A 解析 由题意可知f (x )=2,即⎩⎨⎧2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4.故选A .(2) 函数f (x )=⎩⎪⎨⎪⎧sin πx2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-2 2 B .- 2 2 C .1 D .1或22答案 A 解析 因为f (1)=e 1-1=1且f (1)+f (a )=2,所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1,因为0<a 2<1,所以0<πa 2<π,所以πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.故a =-22或1.(3) (2017·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 答案 ⎝⎛⎭⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. (4) (2018·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D 解析 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎨⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示.结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D .(5) 设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .⎣⎡⎦⎤23,1B .[0,1]C .⎣⎡⎭⎫23,+∞ D .[1,+∞) 答案 C 解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C .【对点训练】12.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.12.答案 -1或1 解析 由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.13.已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或313.答案 A 解析 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516. 14.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0.若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞) 14.答案 D 解析 根据题意,当a >0时,f (a )-f (-a )>0,即a 2+a -[-3(-a )]>0,∴a 2-2a >0,解得a >2;当a <0时,f (a )-f (-a )<0,即-3a -[(-a )2+(-a )]<0,∴a 2+2a >0,解得a <-2.综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).故选D .15.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1,则满足f (2x +1)<f (3x -2)的实数x 的取值范围是( )A .(-∞,0]B .(3,+∞)C .[1,3)D .(0,1)15.答案 B 解析 法一:由f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1可得当x <1时,f (x )=1,当x ≥1时,函数f (x )在[1,+∞)上单调递增,且f (1)=log 22=1,要使得f (2x +1)<f (3x -2),则⎩⎪⎨⎪⎧2x +1<3x -2,3x -2>1,解得x >3,即不等式f (2x +1)<f (3x -2)的解集为(3,+∞),故选B .法二:当x ≥1时,函数f (x )在[1,+∞)上单调递增,且f (x )≥f (1)=1,要使f (2x +1)<f (3x -2)成立,需⎩⎪⎨⎪⎧2x +1≥1,2x +1<3x -2或⎩⎪⎨⎪⎧2x +1<1,3x -2>1,解得x >3.故选B . 16.(2013·全国Ⅱ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln(x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]16.答案 D 解析 当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a+2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D .。

必修1-分段函数--专题与解析

必修1-分段函数--专题与解析

必修1 分段函数-----专题与解析一.选择题(共16小题)1.(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2 B.﹣4或2 C.﹣2或4 D.﹣2或2考点:分段函数的解析式求法及其图象的作法。

专题:计算题。

分析:分段函数分段处理,我们利用分类讨论的方法,分a≤0与a>0两种情况,根据各段上函数的解析式,分别构造关于a的方程,解方程即可求出满足条件的a值.解答:解:当a≤0时若f(a)=4,则﹣a=4,解得a=﹣4当a>0时若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)故实数a=﹣4或a=2故选B点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.2.(2010•宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)考点:分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质。

专题:作图题;数形结合。

分析:画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.解答:解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.点评:本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.3.若,则f(log23)=()A.﹣23 B.11 C.19 D.24考点:分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质。

分析: f(x)为分段函数,要求f(log23)的值,先判断log23的范围,代入x<4时的解析式,得到f (log23+1),继续进行直到自变量大于4,代入x≥4时的解析式求解.解答:解:∵1<log23<2,4<log23+3<5∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=故选D点评:本题考查分段函数求值、指数的运算法则、对数恒等式等难度一般.4.已知函数若,则实数a=()A.B.C.D.考点:分段函数的解析式求法及其图象的作法。

新人教版高中数学必修第一册分段函数ppt课件及课时作业

新人教版高中数学必修第一册分段函数ppt课件及课时作业

f(1)=3×1+5=8,f
f
-52=f
-52+1
=f -32=3×-32+5=12.
(2)若f(a2+2)≥a+4,求实数a的取值范围.
因为a2+2≥2, 所以f(a2+2)=2(a2+2)-1=2a2+3, 所以不等式f(a2+2)≥a+4化为2a2-a-1≥0, 解得 a≥1 或 a≤-12, 即实数 a 的取值范围是-∞,-12∪[1,+∞).
则23cc+ +dd= =46, , 解得cd==20,, 所以f(x)=2x,
x+2,x<-1,
所以 f(x)=x2,-1≤x≤2, 2x,x>2.

分段函数在实际问题中的应用
例3 第24届冬季奥林匹克运动会,即2022年北京冬奥会于2022年2月4日 开幕.冬奥会吉祥物“冰墩墩”早在2019年9月就正式亮相,到如今已是 “一墩难求”,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰 墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每 生产x万盒,需投入成本h(x)万元,当产量小于或等于50万盒时,h(x)= 180x+100;当产量大于50万盒时,h(x)=x2+60x+3 500,若每盒玩具手 办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完. 求 “ 冰 墩 墩 ” 玩 具 手 办 销 售 利 润 y( 万 元 ) 关 于 产 量 x( 万 盒 ) 的 函 数 关 系 式.(利润=销售总价-成本总价,销售总价=销售单价×销售量,成本总 价=固定成本+生产中投入成本)
延伸探究 1.本例条件不变,若f(a)=3,求实数a的值.
当a≤-2时,f(a)=a+1=3, 即a=2>-2,不符合题意,舍去; 当-2<a<2时,f(a)=3a+5=3, 即a=-23∈(-2,2),符合题意; 当a≥2时,f(a)=2a-1=3, 即a=2∈[2,+∞),符合题意. 综上可得,当f(a)=3时,a的值为-23 或2.

高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数

高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数
所以x>25,
所以25<x≤30.
当x>30时,由L(x)<F(x),得0.6x-1<0.58x,
所以x<50,所以30<x<50.
综上,25<x<50.
故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.
因为0<1<4,
所以f(f(f(5)))=f(1)=12-2×1=-1,
即f(f(f(5)))=-1.
(2)图象如图所示.
8.某村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.
方案二:不收管理费,每度0.58元.
答案:(-∞,1]
6.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P与店面经营天数x的关系是P(x)= 则总利润最大时店面经营天数是.
解析:设总利润为L(x),
则L(x)=
则L(x)=
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?
(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?
解:(1)当0≤x≤30时,L(x)=2+0.5x,
当x>30时,
L(x)=2+30×0.5+(x-30)×0.6=0.6x-1,
当0≤x<300时,L(x)max=10 000,
当x≥300时,L(x)max=5 000,

【精品】高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数

【精品】高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数

第二课时分段函数【选题明细表】1.下列给出的函数是分段函数的是( B )①f(x)=②f(x)=③f(x)=④f(x)=(A)①②(B)①④(C)②④(D)③④解析:对于②取x=2,f(2)=3或4,对于③取x=1,f(1)=5或1,所以②③都不合题意.故选B.2.函数y=x|x|的图象是( D )解析:因为y=x|x|=根据二次函数图象可知D正确,故选D.3.已知f(x)=则f()+f(-)等于( B )(A)-2 (B)4 (C)2 (D)-4解析:f()=2×=,f(-)=f(-+1)=f(-)=f(-+1)=f()=2×=,所以f()+f(-)=+==4.故选B.4.设函数f(x)=若f(x0)>1,则x0的取值范围是.解析:当x0≤0时,由-x0-1>1,得x0<-2,当x0>0时,由>1,得x0>1.所以x0的取值范围为(-∞,-2)∪(1,+∞).答案:(-∞,-2)∪(1,+∞)5.若定义运算a☉b=则函数f(x)=x☉(2-x)的值域是.解析:由题意得f(x)=结合函数f(x)的图象得值域是(-∞, 1].答案:(-∞,1]6.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P与店面经营天数x的关系是P(x)=则总利润最大时店面经营天数是.解析:设总利润为L(x),则L(x)=则L(x)=当0≤x<300时,L(x)max=10 000,当x≥300时,L(x)max=5 000,所以总利润最大时店面经营天数是200. 答案:2007.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数的图象.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.8.某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好? 解:(1)当0≤x≤30时,L(x)=2+0.5x,当x>30时,L(x)=2+30×0.5+(x-30)×0.6=0.6x-1,所以L(x)=(注:x也可不取0)(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去.当x>30时,由L(x)=0.6x-1=35得x=60.所以老王家该月用电60度.(3)设按方案二收费为F(x)元,则F(x)=0.58x.当0≤x≤30时,由L(x)<F(x),得2+0.5x<0.58x,所以x>25,所以25<x≤30.当x>30时,由L(x)<F(x),得0.6x-1<0.58x,所以x<50,所以30<x<50.综上,25<x<50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.。

2019年高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数

2019年高中数学人教A版必修一练习:1.2.2 函数的表示法 第二课时 分段函数

第二课时分段函数【选题明细表】1.下列给出的函数是分段函数的是( B )①f(x)=②f(x)=③f(x)=④f(x)=(A)①②(B)①④(C)②④(D)③④解析:对于②取x=2,f(2)=3或4,对于③取x=1,f(1)=5或1,所以②③都不合题意.故选B.2.函数y=x|x|的图象是( D )解析:因为y=x|x|=根据二次函数图象可知D正确,故选D.3.已知f(x)=则f()+f(-)等于( B )(A)-2 (B)4 (C)2 (D)-4解析:f()=2×=,f(-)=f(-+1)=f(-)=f(-+1)=f()=2×=,所以f()+f(-)=+==4.故选B.4.设函数f(x)=若f(x0)>1,则x0的取值范围是.解析:当x0≤0时,由-x0-1>1,得x0<-2,当x0>0时,由>1,得x0>1.所以x0的取值范围为(-∞,-2)∪(1,+∞).答案:(-∞,-2)∪(1,+∞)5.若定义运算a☉b=则函数f(x)=x☉(2-x)的值域是.解析:由题意得f(x)=结合函数f(x)的图象得值域是(-∞, 1].答案:(-∞,1]6.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P与店面经营天数x的关系是P(x)=则总利润最大时店面经营天数是.解析:设总利润为L(x),则L(x)=则L(x)=当0≤x<300时,L(x)max=10 000,当x≥300时,L(x)max=5 000,所以总利润最大时店面经营天数是200. 答案:2007.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数的图象.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.8.某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好? 解:(1)当0≤x≤30时,L(x)=2+0.5x,当x>30时,L(x)=2+30×0.5+(x-30)×0.6=0.6x-1,所以L(x)=(注:x也可不取0)(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去.当x>30时,由L(x)=0.6x-1=35得x=60.所以老王家该月用电60度.(3)设按方案二收费为F(x)元,则F(x)=0.58x.当0≤x≤30时,由L(x)<F(x),得2+0.5x<0.58x,所以x>25,所以25<x≤30.当x>30时,由L(x)<F(x),得0.6x-1<0.58x,所以x<50,所以30<x<50.综上,25<x<50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.。

新高中数学必修1分段函数基础题训练题(含详解)

新高中数学必修1分段函数基础题训练题(含详解)
6.已知函数 ,若 ,则实数 ()
A. B. C.2D.9
二、填空题
7.设函数 ,则 _____
三、解答题
8.某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数关系式,并画出函数的图像.
新高中数学必修1分段函数基础题训练题(含详解)
一、单选题
1.已知 ,则 的值为()
A.7B.12C.6D.18
2.设函数 ,则 的值为( )
A. B. C. D.
3.设 ,若 ,则 ( )
A. B.
C. 或 D.
4.已知函数 ,则 ( )
A. B. C. D.
5.已知函数 则 =()
A.4B.5C.6D.7
【详解】
∵ ,∴ ,
∵ ,
∴ ;
∵- ,
∴ =- +1=- ,
= 2+2× =- .
【点睛】
本题主要考查分段函数的函数值的计算,属于基础题.
11.(1)f(f(-3))>f(f(3))(2)见解析(3)x的值为0或1+
【解析】
【分析】
【详解】
试题分析:(1)根据分段函数的性质,分别代入值求出即可;(2)利用函数图象的画法画图即可;(3)对 分类讨论,解方程即可.
当x∈[1,+∞)时,得f(x)=x2-2x=1,解得x=1+ 或x=1- (舍去).
综上可知x的值为0或1+ .
12.答案见解析.
【解析】
【分析】
将方程 实数根的个数问题转化为函数 与直线 的交点个数问题.根据两个函数的图象可得结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数概念及其表示练习(4)一、求函数解析式(1)代入法求函数解析式例1.已知f (x )=2x x +2,则f (x -1)=例2.已知f (x )=2x x +2,g (x )=12+x ,则()[]x g f =练习.已知f (x ),g (x )对应值如表.则f (g (1))的值为( ) A .-1B .0C .1D .不存在(2)换元法求函数解析式例1.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4 例2.设函数,则的表达式为( )A. B. C. D.例3.已知()x x x f21+=+,求f (x )解析式.例4.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于例5.若函数[]12)(36)(+=+=x x g x x g f 且,则)(x f 等于( ) A .3 B .3x C .6x+3 D .6x+1练习1.已知2211()11x x f x x--=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21xx+- 练习2.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x + 练习3.已知x x x f 2)12(2-=+,则)3(f =练习4. 已知函数=-=)3(,1)(2f x x f 则( )A. 8B. 6560C. 80D. 2 (3)待定系数法求函数解析式例1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.例2. 为了提倡节约用水,自来水公司决定采取分段计费,月用水量x (立方米)与相应水费y (元)之间函数关系式如图所示.(1)月用水量为6方,应交水费 元; (2)写出y 与x 之间的函数关系式;(3)若某月水费是78元,用水量是多少?例3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是练习1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t D .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t练习2.若是一次函数,,则=练习3.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( )(4)方程组法求函数解析式例1.已知f (x )满足()x xf x f 212=⎪⎭⎫⎝⎛+①,求f (x )解析式.例 2.已知f (x )满足()()x x f x f 22=-+,求f (x )解析式.二、分段函数练习例1.函数 ⎩⎨⎧->-≤+=1,1,2)(2x x x x x f ,则((2))f f -= ;()3,f x =则x=例2.已知函数y =f (n )满足f (n )=⎩⎨⎧2 (n =1)3f (n -1) (n ≥2),则f (3)=________例3.已知函数f (x )=⎩⎨⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 的解集为( )A .[-1,1]B .[-2,2]C .(]1,∞-D .[-1,2]例4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A .1+πB .0C .πD .1-例5.已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.练习1.已知f (x )=⎩⎨⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( ) A .-7B .3C .-8D .4练习2.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f =练习3.已知函数⎩⎨⎧<≥=0,0,2)(2x x x x x f ,则=-)]2([f f ( )A. 8B.—8 C .8或—8 D.16练习4.f (x )=⎩⎨⎧x 2+1, (x ≤0),-2x , (x >0),)若f (x )=10,则x =练习5.设f (x )=⎩⎨⎧x +3, (x >10),f (x +5), (x ≤10),则f (5)的值为( )A .16B .18C .21D .24函数概念及其表示练习(4)一、求函数解析式(1)代入法求函数解析式例1.已知f (x )=2x x +2,则f (x -1)=2231x x -+例2.已知f (x )=2x x +2,g (x )=12+x ,则()[]x g f =42253x x ++练习.已知f (x ),g (x )对应值如表.则f (g (1))的值为( C ) A .-1B .0C .1D .不存在(2)换元法求函数解析式例1.已知函数f (x +1)=3x +2,则f (x )的解析式是( C ) A .3x +2 B .3x +1 C .3x -1 D .3x +4 例2.设函数,则的表达式为( C )A. B. C. D.例3.已知()x x x f21+=+,求f (x )解析式.解析1:()()()()22211,1121 1.1, 1.t t f t t t t f x x x +=≥=-∴=-+-=-∴=-≥解析2:))()()22211111,1.1, 1.fx t f t t f x x x +=+=+-+=≥∴==-∴=-≥则例4.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于15例5.若函数[]12)(36)(+=+=x x g x x g f 且,则)(x f 等于( B ) A .3 B .3x C .6x+3 D .6x+1练习1.已知2211()11x x f x x--=++,则()f x 的解析式为( C ) A .21x x + B .212x x +- C .212x x + D .21xx+- 练习2.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( B ) A .21x + B .21x - C .23x - D .27x + 练习3.已知x x x f 2)12(2-=+,则)3(f = -1 练习4. 已知函数=-=)3(,1)(2f x x f 则( C )A. 8B. 6560C. 80D. 2 (3)待定系数法求函数解析式例1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析:设一次函数y =ax +b ,(a ≠0) 求得⎩⎨⎧a =-10,b =9000.∴y =-10x +9000,于是当y =400时,y =860.例2. 为了提倡节约用水,自来水公司决定采取分段计费,月用水量x (立方米)与相应水费y (元)之间函数关系式如图所示.(1)月用水量为6方,应交水费 元; (2)写出y 与x 之间的函数关系式;(3)若某月水费是78元,用水量是多少? 解析:(1)18(2)⎩⎨⎧>-≤≤=)10(,306)100(,3x x x x y(3)18方例3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 ()822++=-x x f x练习1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( D ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t D .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t练习2.若是一次函数,,则=或()12+-=x x f练习3.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( B )(4)方程组法求函数解析式例1.已知f(x )满足()x xf x f 212=⎪⎭⎫⎝⎛+①,求f (x )解析式.例 2.已知f (x )满足()()x x f x f 22=-+,求f (x )解析式. 解析: (1)()122f x f x x ⎛⎫+= ⎪⎝⎭ ①()1122f f x x x ⎛⎫∴+= ⎪⎝⎭②∴由①×2-②得()234f x x x =-, ()4233x f x x =-.(2)()()22f x f x x +-= ①()()()22f x f x x ∴-+=- ②∴由①×2-②得()()342f x x x =--,()2f x x =.二、分段函数练习例1.函数 ⎩⎨⎧->-≤+=1,1,2)(2x x x x x f ,则((2))f f -= 0 ;()3,f x =则例2.已知函数y =f (n )满足f (n )=⎩⎨⎧2 (n =1)3f (n -1) (n ≥2),则f (3)=___18_____例3.已知函数f (x )=⎩⎨⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 的解集为( C )A .[-1,1]B .[-2,2]C .(]1,∞-D .[-1,2]例4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( A )A .1+πB .0C .πD .1-例5.已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.25练习1.已知f (x )=⎩⎨⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( B ) A .-7B .3C .-8D .4练习2.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = 432-π.练习3.已知函数⎩⎨⎧<≥=0,0,2)(2x x x x x f ,则=-)]2([f f ( A )A. 8B.—8 C .8或—8 D.16练习4.f (x )=⎩⎨⎧x 2+1, (x ≤0),-2x , (x >0),)若f (x )=10,则x = -3练习5.设f (x )=⎩⎨⎧x +3, (x >10),f (x +5), (x ≤10),则f (5)的值为( B )A .16B .18C .21D .24。

相关文档
最新文档