2018年福州初三质检数学试题(含答案)

合集下载

2018-2019学年度福州市九年级质量检测数学试题与答案

2018-2019学年度福州市九年级质量检测数学试题与答案
8.如图,等边三角形ABC边长为5,D,E分别是边AB,AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF 2,则BD的长是
A. B. C.3D.2
9.已知Rt△ABC,∠ACB 90°,AC 3,BC 4,AD平分∠BAC,则点B到射线AD的距离是
A.2B . C. D.3
10.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是
三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分8分)
计算: ( )0.
18.(本小题满分8分)
如图,已知∠1 ∠2,∠B ∠D,求证:CB CD.
19.(本小题满分8分)
先化简,再求值:( ) ,其中 .
20.(本小题满分8分)
如图,在Rt△ABC中,∠ACB 90°,BD平分∠ABC.
22.(本小题满分10分)
为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:
(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗?
2018—2019学年度福州市九年级质量检测
小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是

最新福州质检数学试题及答案

最新福州质检数学试题及答案

2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 C DB A从正面看ADCBO边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分)(11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则ABAD的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF 求证:AB=DE .ABABDFABCOxyABCDEF(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性A BCD图1图2质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号 函数图象特征函数变化规律示例1 在y 轴右侧,函数图象呈上升状态 当0<x ≤4 ,y 随x 的增大而增大 示例2 函数图象经过点(-2,1) 当时x =-2时,y=1 (i) 函数图象的最低点是(0,0.5) (ii)在y 轴左侧,函数图象呈下降状态(3)当a <x≤4时,y 的取值范围为0.5≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题:xy(1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B .(1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点DABCDEF图1ABCDEF图2 ABCDEFG图3与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E , 连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3时, 求CEAB的取值范国.。

2018年福建省福州市初中毕业班质量检测数学试题及答案

2018年福建省福州市初中毕业班质量检测数学试题及答案

(1) 抽样调查的人数共有
人;
(2) 就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能 被采访到,为什么?
22. ( 9 分)某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如 果 35 名学生购票恰好用去 750 元,甲乙两种票各买了多少张? 23. (10 分 ) 如图, AB 为⊙ O的直径,弦 AC=2,∠ B= 30 °,∠ ACB的 平分线交⊙ O于 点 D,求: (1) BC , AD的长。 (2) 图中两阴影部分面积的和.
∴∠ BDE= ∠BAC= ,
∵ BD= 2BC=2sin , ∴ BE=BD· sin =2sin .sin ∴ AE=AB-BE=l-2sin 2 ,
=2sin 2 ,
∴ cos2
AE 1 2sin 2
cos DAE
AD
1
2
1 2sin
阅读以上内容,回答下列问题: (1) 如图 l ,若 BC=1 ,则 cos =

>2 .
3.下列图形中,是轴对称图形的是(

4. 福州近期空气质量指数 (AQI) 分别为: 78,80, 79, 79, 81, 78,
80, 80,这组数
据的中位数是(

A .79
B
.79.5
C
.80
D
.80.5
5.如图, ⊙ O中,半径 OC=4,弦 AB垂直平分 OC,则 AB的长是 ( )
3
(2) 求出 sin 2 的表达式(用含 sin
, cos2 =

或 cos 的式子表示) .
25. ( 13 分)如图,△ AABC 中, AC=8, BC=6, AB =10.点 P 在 AC 边

2018年福建九地市数学质检试卷及答案9份

2018年福建九地市数学质检试卷及答案9份

2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查图1ED C BAC.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学,可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A. 因为a >b +c ,所以a >b ,c <0B. 因为a >b +c ,c <0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):图2ABC(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·l a 2-a 1+l .则上述公式中,d 表示的是A.QA 的长B. AC 的长C.MN 的长D.QC 的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D处,图4B图3泊水平线设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE =AB ,连接AE ,BD ,证明AE =BD .l图6图7EABCD图5FEA BC D21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;图8OAB CDE(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD , 求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。

2018年福州质检数学试题及答案

2018年福州质检数学试题及答案

2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108B .×109C .×108D .×1010(4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形 (7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 边形AA ’B ’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6C DB AADC BOAB(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分) (11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 若F 恰好是CD 的中点,则ABAD 的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB∥DE,AC∥DF,且AC=DF 求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)A BCEABCDEFABCD(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的 点,画出该函数的图象;图1图2Axy(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a <x≤4时,y 的取值范围为≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE⊥x 轴于点E ,连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.ABCDEF图1ABCDEF图2 ABCDEFG图3。

福建省九地市2018年中考数学质检试题分类汇编 数学文化与阅读理解(pdf)

福建省九地市2018年中考数学质检试题分类汇编 数学文化与阅读理解(pdf)

示 z,并求当 z=24 时 m 的值. 【答案】22.(本题满分 10 分)
(1)是······························································································································1 分 理由如下:
2018 莆田质检
(13)如图,四个全等的直角三角形围成一个大正方形 ABCD,中间阴影部分是一个小正方形
EFGH,这样就组成一个“赵爽弦图”,若 AB=5,AE=4,则正方形 EFCH 的面积为________.
A
D
A
G
H
F
E
B
C
【答案】 (13) 1
E
F
B
D C
3
(福州:轻舞飞扬)
(16)2010 年 8 月 19 日第 26 届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身 奖,该奖项是首个以中国人名字命名的国际主要科学奖. 根据蔡勒公式可以得出 2010 年 8 月 19 日是星期________.
H
A
D
A
D
G
E
E
BF 图1
C
BC图2【答】21.(本题满分 8 分)A
H
D
(1)证明:∵四边形 ABCD 是矩形,
∴AD=BC,AB=CD,∠A =∠B =∠C =∠D =90°,
E
G
∵DG=BE,DH=BF,
∴△GDH≌△EBF.
·····················2 分
BF
C
∴GH = EF.
图1
∵AD=BC,AB=CD,DH=BF,DG=BE,

2018年福建福州中考数学试卷及答案(word解析版)

2018年福建福州中考数学试卷及答案(word解析版)

二〇一三年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2018福建福州,1,4分) 2的倒数是( ).A .12B .2C .-12D .-2【答案】A2.(2018福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( ).A .20°B .40°C .50°D .60°【答案】C3.(2018福建福州,3,4分)2018年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空.7 000 000用科学记数法表示为( ).A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2018福建福州,4,4分)下列立体图形中,俯视图是正方形的是( ).ABCD【答案】D .5.(2018福建福州,5,4分)下列一元二次方程有两个相等实数根的是( ).A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2018福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是( ).12 OACA B C D【答案】A.7.(2018福建福州,7,4分)下列运算正确的是( ).A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b b=D .a 3÷a 3=a【答案】A .8.(2018福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为( ).A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm【答案】A.9.(2018福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ).A .3个B .不足3个C .4个D .5个或5个以上【答案】D .10.(2018福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( ).A .a >0B .a <0C .b =0D .ab <0【答案】B.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2018福建福州,11,4分)计算:21a a-=_________. 【答案】1a; 12.(2018福建福州,12,4分)矩形的外角和等于_______度.【答案】360;13.(2018福建福州,13,4分)某校女子排球队队员的年龄分布如下表:AB C【答案】14;14.(2018福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.【答案】1000;15.(2018福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________.【答案】三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1)(2018福建福州,16(1),7分)计算:0(1)4-+-- 【答案】 解:0(1)4-+-- =1+4-=5-(2)(2018福建福州,16(2),7分)化简:2(3)(4)a a a ++-. 【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +9.17.(每小题8分,共16分)(1)(2018福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明一:∵AB 平分∠CAD ,∴∠BAC =∠BAD , 在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ABD . ∴BC =BD . 证明二:连接CD∵AC =AD ,AB 平分∠CAD , ∴AB 垂直平分CD ,∴BC =BD . (2)列方程解应用题(2018福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生? 【答案】解法一:设这个班有x 名学生,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学生.解法二:设这个班有x 名学生,图书一共有y 本. 320425y x y x =+⎧⎨=-⎩ ,解得45,155.x y =⎧⎨=⎩答:这个班共有45名学生.18.(10分)(2018福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm ) 男生身高情况直方图 女生身高情况扇形统计图CDBA(1)样本中,男生身高的众数在_______组,中位数在_______组; (2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?【答案】(1)众数在B 组;中位数在C 组. (2)样本女生人数=样本男生人数=40; E 组女生百分比=5%E 组女生人数=40×5%=2(人) (3)男生:400×1840=180(人). 女生:380×40%=152(人).19.(2018福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD . (1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转角等于120°. (2)∵△ACO 、△BOD 是等边三角形,∴∠CAO =60°,OA =OD , ∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE. (1)求证:BC 是⊙O 的切线; (2)求BN 的长.第20题图C【答案】(1)证明:∵ME =1,AM =2,AE∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°, ∵AB 为⊙O 的直径,∴BC 是⊙O 的切线. (2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°, ∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB∴BM =60180π. ∴BN .21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值; (3)若∠APD =90°,求y 的最小值.备用图第21题图BCB【答案】(1)如图2,过点A 作AH ⊥BC ,垂足为H . 在Rt △ABH 中,∠B =45°,AB =x ,所以AH =2x .由S △APD =12AD AH ⋅,可得11222y x =⋅.整理,得y x =.(2)当y =1时,x =如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2, 当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP ∽△PCD .因此AB PCBP CD=. 所以PC ·PD =AB ·CD =2.图2 图3 图4(3)如图5,当∠APD =90°时,点P 在以AD 为直径的圆上.如图6,当AD 最小时,圆与BC 相切于点P .此时△APD 是等腰直角三角形.所以AD =2AH ,即2y x =.由(1)知,y x=.于是可以解得此时y =.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a = ;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是 ;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n .若这组抛物线中有一条经过点D n ,求所有满足条件的正方形边长.【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=-. (2)设抛物线的顶点的坐标为(m ,km ), 那么222()2y a x m km ax amx am km =-+=-++.对照y =ax 2+bx ,可得20,2.am km b am ⎧+=⎨=-⎩ 由此得到b =2k .(3)正方形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线12y x =上. 由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-. 根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0). 所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=--. 联立12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m . 当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正方形的边长分别为3、6、9(如图1所示).图1。

2018年福州初三质检学试题及答案

2018年福州初三质检学试题及答案

2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=- (6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四C DB A从正面看ADCBO边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分)(11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则ABAD的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=x k 交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DFABABDFABCOxyAC求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.ABCD图1图2(22)( 10分)已知y是x的函数,自变量x的取值范围是-3.5≤x≤4,下表是y与x的几组对应值:x -3.5 -3 -2 -1 0 1 2 3 4y 4 2 1 0.67 0.5 2.03 3.13 3.78 4请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1 在y轴右侧,函数图象呈上升状态当0<x≤4 ,y随x的增大而增大示例2 函数图象经过点(-2,1) 当时x=-2时,y=1(i)函数图象的最低点是(0,0.5)(ii)在y轴左侧,函数图象呈下降状态(3)当a<x≤4时,y的取值范围为0.5≤y≤4,则a的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:次数20路公交车66路公交车请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示);ABCDEF图1ABCDEF图2 ABCDEFG图3(2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.。

2018-2019福州市质检试卷及答案

2018-2019福州市质检试卷及答案

准考证号:姓名:1(在此卷上答题无效)2018—2019学年度福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束后,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是A B C D2.地球绕太阳公转的速度约为110000千米/时,将110000用科学记数法表示,其结果是A .61.110⨯B .51.110⨯C .41110⨯D .61110⨯3.已知△ABC ∽△DEF ,若面积比为4∶9,则它们对应高的比是A .4∶9B .16∶81C .3∶5D .2∶34.若正数x 的平方等于7,则下列对x 的估算正确的是A .1<x <2B .2<x <3C .3<x <4D .4<x <55.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是A .15°B .22.5°C .30°D .45°6.下列各式的运算或变形中,用到分配律的是A.=B .222()ab a b =C .由25x +=得52x =-D .325a a a+=7.不透明的袋子中装有除颜色外完全相同的a 个白球、b 个红球、c 个黄球,则任意摸出一个球,是红球的概率是A .b a c +B .a c a b c +++C .b a b c ++D .a c b+8.如图,等边三角形ABC 边长为5,D ,E 分别是边AB ,AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD的长是A .247B .218C .3D .29.已知Rt △ABC ,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到射线AD 的距离是A .2B.CD .310.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是A .容易题和中档题共60道B .难题比容易题多20道C .难题比中档题多10道D .中档题比容易题多15道AE D B CF A21C B a bA xy B CO 1098760成绩/环次数12345678910乙甲第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.分解因式:34m m -=.12.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.13.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是.14.若分式65m m -+-的值是负整数,则整数m 的值是.15.在平面直角坐标系中,以原点为圆心,5为半径的⊙O 与直线23y kx k =++(0k ≠)交于A ,B 两点,则弦AB 长的最小值是.16.如图,在平面直角坐标系中,O 为原点,点A 在第一象限,点B 是x 轴正半轴上一点,∠OAB =45°,双曲线k y x =过点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:3tan 30-+︒-(3.14π-)0.18.(本小题满分8分)如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .19.(本小题满分8分)先化简,再求值:(11x -)2221x x x -+÷,其中1x +.20.(本小题满分8分)如图,在Rt △ABC 中,∠ACB =90°,BD 平分∠ABC .求作⊙O ,使得点O 在边AB 上,且⊙O 经过B ,D 两点;并证明AC 与⊙O 相切.(要求尺规作图,保留作图痕迹,不写作法)B C AD 21CA BD如图,将△ABC 沿射线BC 平移得到△A ′B ′C ′,使得点A ′落在∠ABC 的平分线BD 上,连接AA ′,AC ′.(1)判断四边形ABB ′A ′的形状,并证明;(2)在△ABC 中,AB =6,BC =4,若AC ′⊥A′B′,求四边形ABB ′A ′的面积.22.(本小题满分10分)为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗?答:.(填“是”或“不是”)(2)下表是用简单随机抽样方法抽取的30名同学的体育测试成绩(单位:分):596977737262797866818584838486878885868990979198909596939299若成绩为x 分,当x ≥90时记为A 等级,80≤x <90时记为B 等级,70≤x <80时记为C 等级,x <70时记为D 等级,根据表格信息,解答下列问题:①本次抽样调查获取的样本数据的中位数是;估计全年级本次体育测试成绩在A ,B 两个等级的人数是;②经过一个多月的强化训练发现D 等级的同学平均成绩提高15分,C 等级的同学平均成绩提高10分,B 等级的同学平均成绩提高5分,A 等级的同学平均成绩没有变化,请估计强化训练后全年级学生的平均成绩提高多少分?23.(本小题满分10分)某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x 辆该款汽车.(总利润=销售利润+返利)(1)设每辆汽车的销售利润为y 万元,求y 与x 之间的函数关系式;(2)当x >10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x 的值.B AC A'B'C'D在正方形ABCD 中,E 是对角线AC 上一点(不与点A ,C 重合),以AD ,AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .(1)如图1,当AE <12AC 时,过点E 作EF ⊥BE 交CD 于点F ,连接GF 并延长交AC 于点H .①求证:EB =EF ;②判断GH 与AC 的位置关系,并证明;(2)过点A 作AP ⊥直线CG 于点P ,连接BP ,若BP =10,当点E 不与AC 中点重合时,求PA 与PC 的数量关系.B C D A E GM FH B CD A 图1备用图25.(本小题满分13分)已知抛物线1(5)()2y x x m =-+-(m >0)与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .(1)直接写出点B ,C 的坐标;(用含m 的式子表示)(2)若抛物线与直线12y x =交于点E ,F ,且点E ,F 关于原点对称,求抛物线的解析式;(3)若点P 是线段AB 上一点,过点P 作x 轴的垂线交抛物线于点M ,交直线AC 于点N ,当线段MN 长的最大值为258时,求m 的取值范围.答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:每小题4分,满分40分.1.A 2.B 3.D 4.B 5.C 6.D 7.C 8.B9.C 10.B 二、填空题:每小题4分,满分24分.11.(2)(2)m m m +-12.正方体13.甲14.415.16注:12题答案不唯一,能够正确给出一种符合题意的几何体即可给分,如:某个面是正方形的长方体,底面直径和高相等的圆柱,等.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程和演算步骤.17.解:原式31=+-·····································································6分311=+-··············································································7分3=.···················································································8分18.证明:∵∠1=∠2,∴∠ACB =∠ACD .·····································3分在△ABC 和△ADC 中,B D ACB ACD AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABC ≌△ADC (AAS ),··························································6分∴CB =CD .·············································································8分注:在全等的获得过程中,∠B =∠D ,AC =AC ,△ABC ≌△ADC ,各有1分.19.解:原式22121x x x x x--+=÷··································································1分21C A BD221(1)x x x x -=⋅-·······································································3分1x x =-,··············································································5分当1x 时,原式=·····················································6分==.······················································8分20.解:BC AD O·············································3分如图,⊙O 就是所求作的圆.·························································4分证明:连接OD .∵BD 平分∠ABC ,∴∠CBD =∠ABD .·····························································5分∵OB =OD ,∴∠OBD =∠ODB ,∴∠CBD =∠ODB ,·····························································6分∴OD ∥BC ,∴∠ODA =∠ACB又∠ACB =90°,∴∠ODA =90°,即OD ⊥A C .······································································7分∵点D 是半径OD 的外端点,∴AC 与⊙O 相切.······························································8分注:垂直平分线画对得1分,标注点O 得1分,画出⊙O 得1分;结论1分.21.(1)四边形ABB ′A ′是菱形.··································································1分证明如下:由平移得AA ′∥BB ′,AA ′=BB ′,∴四边形ABB ′A ′是平行四边形,∠AA ′B =∠A ′B C .··············2分∵BA ′平分∠ABC ,∴∠ABA ′=∠A ′BC ,∴∠AA ′B =∠A ′BA ,······················································3分∴AB =AA ′,∴□ABB ′A ′是菱形.·······················································4分(2)解:过点A 作AF ⊥BC 于点F .由(1)得BB ′=BA =6.D由平移得△A ′B ′C ′≌△ABC ,∴B ′C ′=BC =4,∴BC ′=10.·····························5分∵AC ′⊥A ′B ′,∴∠B ′EC ′=90°,∵AB ∥A ′B ′,∴∠BAC ′=∠B ′EC ′=90°.在Rt △ABC ′中,AC′8==.····································6分∵S △ABC ′1122AB AC BC AF ''=⋅=⋅,∴AF 245AB AC BC '⋅==',····························································7分∴S 菱形ABB ′A ′1445BB AF '=⋅=,∴菱形ABB ′A ′的面积是1445.···················································8分22.(1)是;···························································································2分(2)①85.5;336;··············································································6分②由表中数据可知,30名同学中,A 等级的有10人,B 等级的有11人,C 等级的有5人,D 等级的有4人.依题意得,15410551101030⨯+⨯+⨯+⨯··········································8分5.5=.·······································································9分∴根据算得的样本数据提高的平均成绩,可以估计,强化训练后,全年级学生的平均成绩约提高5.5分.············································10分23.解:(1)27250.1(2)0.1 2.2y x x =---=-+;··········································4分(2)依题意,得(0.1 2.2)0.5101(10)20.6x x x -++⨯+⨯-=,··················7分解得1216x x ==.···································································9分答:x 的值是16.·································································10分注:(1)中的解析式未整理成一般式的扣1分.24.(1)①证明:∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,CA 平分∠BCD .∵EF ⊥EB ,∴∠BEF =90°.证法一:过点E 作EN ⊥BC 于点N ,···········1分∴∠ENB =∠ENC =90°.∵四边形AEGD 是平行四边形,∴AD ∥GE ,∴∠EMF =∠ADC =90°,∴EM ⊥CD ,∠MEN =90°,∴EM =EN ,·······················································2分∵∠BEF =90°,∴∠MEF =∠BEN ,∴△EFM ≌△EBN ,∴EB =EF .························································3分B C D A E GM F N H证明二:过点E 作EK ⊥AC 交CD 延长线于点K ,··················1分∴∠KEC =∠BEF =90°,∴∠BEC =∠KEF ,∵∠BEF +∠BCD =180°,∴∠CBE +∠CFE =180°.∵∠EFK +∠CFE =180°,∴∠CBE =∠KFE .又∠ECK =12∠BCD =45°,∴∠K =45°,∴∠K =∠ECK ,∴EC =EK ,························································2分∴△EBC ≌△EFK ,∴EB =EF .························································3分证明三:连接BF ,取BF 中点O ,连接OE ,OC .·················1分∵∠BEF =∠BCF =90°,∴OE =12BF =OC ,∴点B ,C ,E ,F 都在以O 为圆心,OB 为半径的⊙O 上.∵ BEBE =,∴∠BFE =∠BCA =45°,·········2分∴∠EBF =45°=∠BFE ,∴EB =EF .························································3分②GH ⊥AC .···············································································4分证明如下:∵四边形ABCD 是正方形,四边形AEGD 是平行四边形,∴AE =DG ,EG =AD =AB ,AE ∥DG ,∠DGE =∠DAC =∠DCA =45°,∴∠GDC =∠ACD =45°.············································5分由(1)可知,∠GEF =∠BEN ,EF =EB .∵EN ∥AB ,∴∠ABE =∠BEN =∠GEF ,∴△EFG ≌△BEA ,·····················6分∴GF =AE =DG ,∴∠GFD =∠GDF =45°,∴∠CFH =∠GFD =45°,∴∠FHC =90°,∴GF ⊥AC .······························································7分(2)解:过点B 作BQ ⊥BP ,交直线AP 于点Q ,取AC 中点O ,∴∠PBQ =∠ABC =90°.∵AP ⊥CG ,∴∠APC =90°.C D G M F A E N B H B C D A E GM F O H G B C D A E M F K H①当点E 在线段AO 上时,(或“当102AE AC <<时”)∠PBQ -∠ABP =∠ABC -∠ABP ,即∠QBA =∠PBC .································8分∵∠ABC =90°,∴∠BCP +∠BAP =180°.∵∠BAP +∠BAQ =180°,∴∠BAQ =∠BCP .································9分∵BA =BC ,∴△BAQ ≌△BCP ,······························10分∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA +PC =PA +AQ =PQ=········································11分②当点E 在线段OC 上时,(或“当12AC AE AC <<时”)∠PBQ -∠QBC =∠ABC -∠QBC ,即∠QBA =∠PBC .∵∠ABC =∠APC =90°,∠AKB =∠CKP ,∴∠BAQ =∠BCP .·······························12分∵BA =BC ,∴△BAQ ≌△BCP ,∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA -PC =PA -AQ =PQ=············13分综上所述,当点E 在线段AO 上时,PA +PC=当点E 在线段OC 上时,PA -PC=25.(1)B (m ,0),C (0,52m );·····························································2分解:(2)设点E ,F 的坐标分别为(a ,2a ),(a -,2a -),························3分代入25111(5)()(5)2222y x x m x m x m =-+-=-+-+,得22511(5)2222511(5)2222a a m a m a a m a m ⎧-+-+=⎪⎨⎪---+=-⎩①,②·········································4分由①-②,得(5)m a a -=.∵0a ≠,∴6m =,·············································································5分∴抛物线的解析式为2111522y x x =-++.··································6分(3)依题意得A (5-,0),C (0,52m ),由0m >,设过A ,C 两点的一次函数解析式是y kx b =+,九年级数学—11—(共5页)将A ,C 代入,得5052k b b m -+=⎧⎪⎨=⎪⎩.,解得1252k m b m ⎧=⎪⎨⎪=⎩,,∴过A ,C 两点的一次函数解析式是5122y mx m =+.····················7分设点P (t ,0),则5t m - (0m >),∴M (t ,2511(5)222t m t m -+-+),N (t ,5122mt m +).①当50t - 时,∴MN 255111(5)()22222t m t m mt m =-+-+-+25122t t =--.·····························································8分∵102-<,∴该二次函数图象开口向下,又对称轴是直线52t =-,∴当52t =-时,MN 的长最大,此时MN 2555251()(22228=-⨯--⨯-=.·································9分②当0t m < 时,∴MN 255111[(5)]22222mt m t m t m =+--+-+25122t t =+.············10分∵102>,∴该二次函数图象开口向上,又对称轴是直线52t =-,∴当0t m < 时,MN 的长随t 的增大而增大,∴当t m =时,MN 的长最大,此时MN 25122m m =+.···············11分∵线段MN 长的最大值为258,∴25251228m m + ,·······························································12分整理得2550(24m + ,m ∵0m >,∴m 的取值范围是0m < .········································13分。

【数学答案】2018福州5月初三质检考试

【数学答案】2018福州5月初三质检考试
M C D B D
E A
N
如图,MN 就是所求作的线段 AB 的垂直平分线,点 E 就是所求作的点,线段 BE 就 是所要连接的线段. ·········································································· 4 分 证明:在 Rt△ABC 中,∠C = 90°,∠CBA = 54°, ∴∠CAB = 90° − ∠CBA = 36°. ···················································· 5 分 ∵AD 是△ABC 的角平分线, ∴∠BAD = 1 ∠CAB = 18°. ······················································· 6 分 2 ∵点 E 在 AB 的垂直平分线上, ∴EA = EB, ∴∠EBA = ∠EAB = 18°, ∴∠DEB = ∠EBA + ∠EAB = 36°,∠DBE = ∠CBA − ∠EBA = 36°, ∴∠DEB = ∠DBE, ································································· 7 分 ∴DE = DB. ··········································································· 8 分 注:作图 3 分,垂直平分线画对得 2 分,连接 BE 得 1 分;结论 1 分(结论不全面 不给分) .
注:方程写对一个得 2 分,未知数解对一个得 2 分.
数学试题答案及评分参考 第 2 页(共 7 页)
(21)证法一:连接 AC. ··········································································· 1 分 = CB , ∵ CB ∴∠COB = 2∠CAB. ····························································· 2 分 ∵∠COB = 2∠PCB, ∴∠CAB = ∠PCB. ······························································· 3 分 ∵OA = OC, C ∴∠OAC = ∠OCA, ∴∠OCA = ∠PCB. ································ 4 分 A B P O ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ····································· 5 分 ∴∠OCA + ∠OCB = 90°, ∴∠PCB + ∠OCB = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法二:过点 O 作 OD⊥BC 于 D,则∠ODC = 90°, ································ 1 分 ∴∠OCD + ∠COD = 90°. ······················································ 2 分 ∵OB = OC, C ∴OD 平分∠COB, D ∴∠COB = 2∠COD. ······························ 3 分 A B P O ∵∠COB = 2∠PCB, ∴∠COD = ∠PCB, ································ 4 分 ∴∠PCB + ∠OCD = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法三:设∠PCB = x°, ····································································· 1 分 则∠COB = 2x°. ··································································· 2 分 ∵OB = OC, C ∴∠OCB = 180° − 2 x° = 90° − x°,··············· 4 分 2 A B P O ∴∠OCP = ∠OCB + ∠PCB = 90° − x° + x° = 90°, ··················· 6 分 ∴OC⊥PC. ·········································· 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分

2018年福建省福州市中考数学试卷

2018年福建省福州市中考数学试卷

2018年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。

毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+2n+=0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513.计算:(2+1)(2-1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1912014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2=6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案】证明:∵BE =CF , ∴BE +EF =CF +EF 即BF =CE .又∵AB =DC ,∠B =∠C , ∴△ABF ≌△DCE .∴∠A =∠E .(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上. ①sin B 的值是 ;②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应).连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形 =12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】解:(1)50,24;(2)如图所示;(3)72;(4)该校D级学生有:2000⨯450=160人.19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?【答案】解:(1)设A商品每件x元,B商品每件y元.依题意,得290 32160.x yx y+=⎧⎨+=⎩,解得2050. xy=⎧⎨=⎩,答:A商口每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10-a)件.依题意,得2050(10)300 2050(10)350.a aa a+-≥⎧⎨+-≤⎩,解得5≤a≤62 3 .根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20⨯5+50⨯(10-5)=350元;方案二:当a=6时,购买费用为20⨯6+50⨯(10-6)=320元.∵350>320,∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC中,∠B=45︒,∠ACB=60︒,AB=32,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【答案】解:(1)过点A作AE⊥BC,垂足为E.∴∠AEB=∠AEC=90︒.在Rt△ABE中,∵sin B=AE AB,∴AB=AB·sin B=2sin45︒=222=3.∵∠B=45︒,∴∠BAE=45︒.∴BE =AE =3.在Rt △ACE 中,∵tan ∠ACB =AEEC, ∴EC =333tan tan 603AE ACB ===∠︒.∴BC =BE +EC =3+3.(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC =3, ∴AC =23.解法一:连接AO 并延长交⊙O 于M ,连接CM . ∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM, ∴AM =sin ACM =23=4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F , 则AF =12AC =3. ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60︒,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=12秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.【答案】解:(1)1,334;(2)①∵∠A<∠BOC=60︒,∴∠A不可能是直角.②当∠ABP=90︒时,∵∠BOC=60︒,∴∠OPB=30︒.∴OP=2OB,即2t=2.∴t=1.③当∠APB=90︒时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90︒. ∵OP=2t,∴OD=t,PD=3t,AD=2+t,BD=1-t(△BOP是锐角三角形).解法一:∴BP2=(1-t)2+3t2,AP2=(2+t)2+3t2.∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t 2+t -2=0.解得t 1t 2= . 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD . ∴.AD PD PD BD= ∴PD 2=AD ·BD .于是)2=(2+t )(1-t ),即 4t 2+t -2=0.解得t 1t 2= .综上,当△ABP 为直角三角形时,t =1(3)解法一:∵AP =AB , ∴∠APB =∠B .作OE ∥AP ,交BP 于点E , ∴∠OEB =∠APB =∠B . ∵AQ ∥BP , ∴∠QAB +∠B =180︒. 又∵∠3+∠OEB =180︒, ∴∠3=∠QAB .又∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴△QAO ∽△OEP . ∴AQ AOEO EP=,即AQ ·EP =EO ·AO . ∵OE ∥AP , ∴△OBE ∽△ABP . ∴13OE BE BO AP BP BA ===. ∴OE =13AP =1,BP =32EP .∴AQ·BP=AQ·32EP=32AO·OE=32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ AP BO BP=.∴AQ·BP=AP·BO=3⨯1=3.22.(满分14分)如图,抛物线y=12(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【答案】(1)顶点D的坐标为(3,-1).令y=0,得12(x-3)2-1=0,解得x1=32x2=32.∵点A在点B的左侧,∴A点坐标(320),B点坐标(320). (2)过D作DG⊥y轴,垂足为G.则G(0,-1),GD=3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M. ∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1. 要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2最小值为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴点P坐标为(5,1).此时Q点坐标为(3,1)或(1913 55,).。

福建省九地市2018年中考数学质检试题分类汇编 数与式

福建省九地市2018年中考数学质检试题分类汇编 数与式

数与式模块一、选择题:1.(2018 厦门质检第 1 题)计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 答案:A2.(2018 龙岩质检第 1 题)计算-1-1的结果等于A.-2 B.0 C.1 D.2答案:A3.(2018 南平质检第1 题)下列各数中,比-2 小3 的数是( ).(A)1 (B) -1 (C)- 5 (D)- 6答案:C4.(2018 福州质检第 1 题)- 3 的绝对值是A.13答案:D B.-13C. - 3D.35.(2018 泉州质检第1 题)化简|-3|的结果是().(A)3 (B)-3 (C)±3(D)13答案:A6.(2018 宁德质检第 1 题)-2018 的值是A.12018 B.2018 C.-12018D.-2018答案:B7.(2018 莆田质检第 1 题) 2018 的相反数为(A) 2018 (B) 答案:C1(C)2018- 2018(D) -120188.(2018 三明质检第 1 题)-1的值为(▲)9A.1B.-1C.9 D.-9 9 9答案: A9.(2018 福州质检第 4 题)如图,数轴上 M,N,P,Q 四点中,能表示A.M B.N C.P D.Q答案:C的点是().110.(2018 漳州质检第 1 题)如图,数轴上点 M 所表示的数的绝对值是().A .3B . - 3C .±3D . -1 3答案:A11.(2018 漳州质检第 1 题)“中国天眼”FAST 射电望远镜的反射面总面积约 250 000m 2,数据 250 000 用科学记数法表示为().A .25×104B .2.5×105C .2.5×106D .0.25×106答案: B12.(2018 三明质检第 2 题)港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道, 全长约 55000 米,把 55000 用科学记数法表示为(▲)A .55×103B .5.5×104C .5.5×105D .0.55×105答案:B13.(2018 泉州质检第 3 题)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到 2018 年 3 月,我市电商从业人员已达 873 000 人,数字 873 000 可用科学记数法表示 为 ( ).(A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106答案:C14.(2018 南平质检第 2 题)我国南海总面积有 3 500 000 平方千米,数据 3 500 000 用科学记数法表示为(). (A)3.5×106 (B)3.5×107(C)35×105(D)0.35×108答案:A15.(2018 福州质检第 3 题)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 人,将 4 400 000 000 科学记数法表示,其结果是( ).A .44×108B .4.4×109C .4.4×108D .4.4×1010答案:B16.(2018 漳州质检第 4 题)下列计算,结果等于 x 5的是A .x 2+x 3B .x 2•x3 C .x 10 ÷x2 D .(x 2)3答案:B17.(2018 泉州质检第 4 题)下列各式的计算结果为 a 5 的是( ) (A)a 7-a 2(B)a 10÷a2(C)(a 2)3 (D)( -a )2·a 3答案:D18.(2018 三明质检第 4 题)下列运算中, 正确的是(▲)A .(ab 2)2=a 2b 4B .a 2+a 2=2a4C . a 2 ⋅ a 4= a 8 答案: A19.(2018 莆田质检第 2 题)下列式子运算结果为 2a 的是D .a 6÷a 3=a 2(A) 答案: Ca ⋅ a (B) 2 +a(C) a + a(D)a 3 ÷ a20.(2018 福州质检第 5 题)下列计算正确的是(). A . 8a - a =8 B . (-a )4 =a 4C . a 3 ⋅ a 2=a 6D . (a - b )2 = a2 - b 2答案: B21.(2018 龙岩质检第 2 题)下列计算正确的是A . 4= ± 2B . 2x (3x -1) = 6x2-1C. a 2 +a 3=a 5答案: DD. a 2 ⋅ a 3 =a 522.(2018 厦门质检第 5)若 967×85=p ,则 967×84 的值可表示为A. p -1B. p -85C. p -967D.8584 p答案: C23.(2018 龙岩质检第 9 题)已知k =4x + 3,则满足k 为整数的所有整数 x 的和是 2x -1 A .-1 B .0C .1D .2答案: D 二、填空题:1.(2018 福州质检第 11 题) 2-1=.1答案: 22.(2018 莆田质检第 11 题) 计算:答案: 2= .3. (2018 泉州质检第 11 题)已知 a 1-1ab (填“>”,“<”或“=”) .答案:>=( )°,b=2 2,则4.(2018 厦门质检第 11 题)分解因式: m 2-2m =.答案:m(m-2)5.(2018 三明质检第11 题)分解因式:a3 -a =▲.答案:a(a +1)(a -1)46.(2018 宁德质检第11 题)因式分解:2a2 - 2 = .答案:2(a +1)(a -1)7.(2018 漳州质检第11 题)因式分解:ax2 -a = .答案:a(x+1)(x-1);8.(2018 宁德质检第 11 题)2017 年10 月18 日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近 89 400 000 党员中产生的 2 300 名代表参加了此次盛会.将数据 89 400000 用科学记数法表示为.答案:8.94 ⨯1079.(2018 莆田质检第 12 题)我国五年来(2013 年—2018 年)经济实力跃上新台阶,国内生产总值增加到827000 亿元.数据827000 亿元用科学记数法表示为亿元. 答案: 8.27 ⨯10510.(2018 龙岩质检第12 题)2018 年春节假期,某市接待游客超3360000 人次,用科学记数法表示3360000,其结果是.答案:3.36⨯10611.(2018 龙岩质检第 11 题)使代数式答案:x ≥ 2有意义的x 的取值范围是.12.(2018 漳州质检第 15)“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组数a,b,c 的值依次为.答案:14.答案不唯一.13.(2018 厦门质检第15)已知a+1=20002+20012,计算:2a+答案:4001.14.(2018 莆田质检第 16 题)2010 年8 月19 日第26 届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖.根据蔡勒公式可以得出2010 年8 月19 日是星期.(注:蔡勒(德国数学家)公式:W =⎡c ⎤- 2c +y +⎡y ⎤+⎡26(m +1) ⎤+d -1 ⎢⎣4⎥⎦⎢⎣4 ⎥⎦⎢⎣10 ⎥⎦其中:W——所求的日期的星期数(如大于 7,就需减去 7 的整数倍),c——所求年份的前两位,y——所求年份的后两位,m——月份数(若是 1 月或2 月,应视为上一年的 13 月或14 月,即3 ≤m ≤14 ),d——日期数,[a]——表示取数a 的整数部分.) 答案:四三、解答题:1.(2018 宁德质检第 17 题)(本题满分 8 分)计算: 4cos30︒ + 2-1 -12 . 解:原式= 4 ⨯ 3 + 1 -2 2 2················· 6 分 = 1 ··························· 8 分 2 2.(2018 漳州质检第 17 题)(本小题满分 8 分)计算:3-1 + π 0-.解:原式= 1 +1- 1 3 3 ……………………………………………………………………6 分=1. ........................................................................ 8 分 3.(2018 南平质检第 17 题)(8 分)先化简,再求值:(a + 2b )2- 4a (b - a ),其中 a =2,b=,解:原式= a 2 + 4ab + 4b 2 - 4ab + 4a 2 ...................... 2 分= 5a 2 + 4b 2 , ................................... 4 分当a = 2,b =时,原式= 5⨯ 22 + 4⨯( 3)2 .............................. 6 分= 20 +12 = 32 . ................................. 8 分4.(2018 三明质检第 17 题) (本题满分 8 分)先化简,再求值: x (x + 2y ) -(x +1)2 + 2x ,其中 x = +1, y = ...................................................... -1 . 解: 原式=x 2+2xy - (x 2+2x +1)+2x ................................. 2 分= x 2+2xy -x 2-2x -1+2x ...................... 4 分 =2xy -1..................................... 5 分当 x = 3+1,y =-1时,原式=2( 3+1)(-1)-1 ................... 6 分=2(3-1)-1 .......................... 7 分 =3. .................................... 8 分5.(2018 福州质检第 17 题)( 8 分)先化简,再求值:(1 -2) ÷x 2 - 2x + 1,其中 x =+1x +1 2(xx +171 x + 1 解:原式= ( x +1 - x +) ÷ x +1·················· 2 分a ⎪ ⎝ ⎭= x +1 - 2 ⋅ x +1 x + 1 (x -1)2= x -1 ⋅ x + 1x + 1 (x -1)2··················· 4 分= 1 , ······················· 6 分 x - 1 当 x = +1时,原式= 1 2 + 1 -1············· 7 分= 12= 2 . ················· 8 分 26.(2018 龙岩质检第 17 题)(本小题满分 8 分)先化简,后求值:x -3 x2-1x 2 + 2x+1⋅-1,其中 x =x - 32 +1.x - 3(x +1)2解:原式= ⋅ -1………………2 分(x +1)(x -1) x - 3= x +1 -x -1………………4 分x -1 =2 x -1 x -1………………6 分 当 x = 2 +1时,原式= 2 = 2 =………………8 分⎛ 2 7.(2018 泉州质检第 18 题)(8 分)先化简,再求值: -9 ⎫ a 2 + 3a ÷,其中 a = .a - 3 a - 3 ⎪ a 3 28.(2018 莆田质检第 17 题)(本小题满分 8 分)先化简,再求值: a ÷ (1-1) ,其中 a = -1.解:原式= = a (a +1)2 a(a +1)2a 2 + 2a +1 ÷a +1-1a +1 ⨯ a +1 a a +1┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 分┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 分=∵a = 1 a +1-1.┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 分∴原式=1= 1 =3 . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 分39.(2018 宁德质检第 22 题)(本题满分 10 分)若正整数 a ,b ,c 满足 1 + 1 = 1,则称正整数a b ca ,b ,c 为一组和谐整数.(1) 判断 2,3,6 是否是一组和谐整数,并说明理由;(2) 已知 x ,y ,z (其中 x <y ≤z )是一组和谐整数,且 x = m +1 , y = m + 3 ,用含 m 的代数式表示 z ,并求当 z = 24 时 m 的值.解:(1)是 1 分理由如下:∵ 1 + 1 = 1 ,满足和谐整数的定义, 3 6 2∴2,3,6 是和谐整数. ···················· 4 分 (2) 解:∵ x <y ≤z ,依题意,得 1 + 1 = 1 .y z x∵ x = m +1 , y = m + 3 ,∴ 1 = 1 - 1 = 1 - 1 = 2 . z x y m +1 m + 3 (m +1)(m + 3)∴ z = (m +1)(m + 3) . ··················· 7 分2 ∵ z = 24 ,∴ (m +1)(m + 3) = 24 .2解得 m = 5,m = -9 . ··················· 9 分 ∵x 是正整数,∴ m = 5 . ·························· 10 分。

〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析

〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析

2018年福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±22.下列计算错误..的是( ) A .6a + 2a =8a B .a – (a – 3) =3 C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 则该班学生捐款金额的中位数是( )A .13B .12C .10D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136E B D O CA (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是 度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22= . 11.分解因式:xy 2 – 9x = .12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = . 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+-(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式y x yyx xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标; (2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2= ;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C 二、填空题(每小题4分,共40分)8. 20; 9. 46.810⨯; 10. 1; 11. (3)(y 3)x y +-; 12. 54°; 13. 1:3;14. 2; 15. 3π; 16. 12; 17.(1)(3,0); (2)303k -≤<. 三、解答题(共89分) 18.(本小题9分)解:原式23431=--+- ……………………(8分) 3=- ……………………(9分)19.(本小题9分)解:原式=2x 2+2x +x 2﹣2x +1,……………………(6分)=3x 2+1……………………(7分)当x =2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD 是菱形, ∴AD =CD ;∠A =∠C ,……………………(6分) 又∵DE ⊥AB 于E ,DF ⊥BC 于F,∴∠AED =∠CFD =90°; ……………………(8分) 在△ADE 和△CDF 中,∠A =∠C ,∠AED =∠CFD , AD =CD ; ∴△ADE ≌△CDF .……………………(9分) 21.(本小题9分) 解:(1)200,36.……………………(4分) 画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元)答:开展本次活动共需9608元经费. ……………………(9分)22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分) ∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵ -2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分)(2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分) 连结AB ,则∠ABC =∠BCD =135 º,且AB =2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BCAB CD =∙;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1), 在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD =2HD =21(m )-∴22=2×21(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)(解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,(图2)可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BFAC AG = ∴2213BD +=21 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4, 解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) =-11120x 2+75x +240……………………8分 (图3)∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分) 25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==- 在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分)∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠ ∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得: AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD += ; 在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分)整理得:32216320,a a a ---= ∴ (2)(4)(4)0a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.……………………(1分)∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.……………………(2分)∴四边形EFCG是矩形.……………………(3分)(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,……………………(4分)在Rt△ABD中,AB=3,AD=4,∴tan34ABBDAAD∠==,……………………(5分)∴tan∠CEG= 34;……………………(6分)(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∴tan∠FCE=tan∠CEG=3 4∵∠CFE=90°,∴EF=34CF, ……………………(7分)∴S矩形EFCG=234CF;……………………(8分)连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°……………………(9分)(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.……………(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.……………(11分)(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=12BC×CD=12BD×CF,∴4×3=5×CF∴CF=125.……………(12分)∴125≤CF≤4.……………(13分)∵S矩形EFCG=234CF,∴34×(125)2≤S矩形EFCG≤34×42.∴10825≤S矩形EFCG≤12.……………(14分)。

2018年福州市初中毕业班质量检测卷

2018年福州市初中毕业班质量检测卷

上,连接 AC,BC.若∠ACB=90°,△ABC 的面积为 10,则 k 的值是
________.
第 16 题图
三、解答题:本题共 9 小题,共 86 分.解答应写出文字说明、证明过
程或演算步骤.
2 x2-2x+1
17. (本小题满分 8 分)先化简,再求值:(1- )÷
,其
x+1 x+1
中 x= 2+1.
第 23 题图 请根据以上信息,解答下列问题.
(Ⅰ)完成表中(ⅰ),(ⅱ)的数据:
公交线路
20 路
66 路
乘车时间统计量
平均数
34
(ⅰ)
中位数
(ⅱ)
第 19 题图
20. (本小题满分 8 分)我国古代数学著作《九章算术》的“方程”一 章里,一次方程组是由算筹布置而成的.如图 1,图中各行从左到右 列出的算筹数分别表示未知数 x,y 的系数与相应的常数项,把图 1 所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是 x+4y=10
.请你根据图 2 所示的算筹图,列出方程组,并求解. 6x+11y=34
2018 年福州市初中毕150 分)
第Ⅰ卷
一、选择题:本题共 10 小题,每小题 4 分,共 40 分.在每小题给出
的四个选项中,只有一项是符合题目要求的.
1. -3 的绝对值是( )
1 A.
3
1 B. -
3
C. -3
D. 3
2. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图
18. (本小题满分 8 分)如图,点 B,F,C,E 在一条直线上,AB∥DE, AC∥DF 且 AC=DF,求证:AB=DE.
第 18 题图
19. (本小题满分 8 分)如图,在 Rt△ABC 中,∠C=90°,∠B=54°, AD 是△ABC 的角平分线.求作 AB 的垂直平分线 MN 交 AD 于点 E,连接 BE;并证明 DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)

最新-福建省福州文博中学2018届九年级数学质量检测试题 精品

最新-福建省福州文博中学2018届九年级数学质量检测试题 精品

福建省福州文博中学2018届九年级数学质量检测试题(完卷时间:100分钟,总分:150分)一. 选择题(共10小题,每题4分,满分40分,请将答案填入答题卡的相应位置) 1.16的值等于【 】A .4±B .4C .2±D .2 2.下列计算正确的是【 】A .422a a a =+ B .a a 4)2(2= C .333=⨯ D .2312=÷3.下列四个几何体中,主视图.左视图.俯视图完全相同的是【 】A .圆锥B .圆柱C .球D .三棱柱4.二次函数2)1(2--=x y 的图象上最低点的坐标是【 】 A .(1-,2-) B .(1,2-) C .(1-,2)D .(1,2)5.如图已知一商场自动扶梯的长L 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tan θ的值等于【 】A .43B .34C .53D .546.下列函数中,y 随x 增大而增大的是【 】A .x y 3-=)0(<x B .5+-=x y C .x y 21-= D .)0(212<=x x y 7.已知两圆的半径R ,r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是【 】 A .外离B .内切C .相交D .外切8.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 与P 所走过的路程x 之间的函数关系用图象表示大致是【 】9.将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系是【 】A .底侧S S =B .底侧S S 2=C .底侧S S 3=D .底侧S S 4= 10.如图,已知A .B 两点的坐标分别为(2-,0).(0,1),⊙C 的 圆心坐标为(0,1-),半径为1,若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是【 】A .3B .310C .311D .4二. 填空题(共5小题,每题4分,满分20分,请将答案填入答题卡的相应位置) 11..函数x y -=2的自变量的取值范围是_________;θhL2yx y-+12.因式分解:=++x xy xy 22 ;13.张聪与李明为得到一张去上海看世博会的门票,李明设计了一种方案如下:将三个完全相同的小球分别标上数字1,2,3后,放入一个不透明袋子中,从中随机取出一个小球,然后放回袋子混合均匀后,再机取出一个小球,若两次取出的小球上数字之和为偶数, 则李明得到门票,李明得到门票的概率为 . 14.如图,把一张长方形纸条ABCD 沿EF 折叠,若158∠=, 则AEG ∠= .15.如图,直线221+-=x y 与x 轴交于C ,与y 轴交于D , 以CD 为 边作矩形CDAB ,点A 在x 轴上,双曲线xky =)0(<k 经过点B 与直线CD 交于E ,EM ⊥x 轴于M ,则=BEMC S 四边形三. 解答题(满分90分,请将答案填入答题卡的相应位置) 16.(每小题7分,共14分)(1)计算 ()1211214.33-⎪⎭⎫ ⎝⎛+----π(2)化简 221()a ba b a b b a-÷-+-17.(每小题8分,共16分)(1)解不等式组⎪⎩⎪⎨⎧+≥+231325x x x ,并写出不等式组的整数解.(2)已知:如图,点E ,C 在线段BF 上,AB =DE ,AB ∥DE ,BE =CF .求证:AC =DF.18.(本题10分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.C E B F DA⑴求训练后第一组平均成绩比训练前增长的百分数;⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.19.(本题12分)小李师傅驾车到某地办事,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)请问汽车行驶多少小时后加油?中途加油多少升?(2)求加油前油箱剩余油量y与行驶时间t之间的函数关系式;(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.20.(本题12分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.21. (本题12分)如图,在直角坐标系中,点A、B的坐标分别为(3,4)、(m,0),且AO=AB.(1)求m的值;(2)设P是边OB上的一个动点,过点P的直线l平分△AOB的周长,交△AOB的另一边于点Q,试判断由l及△AOB的两边围成的三角形的面积s是否存在最大(或最小)值,若存在,求出其值,说明此时所围成的三角形的形状,并求直线l的解析式;若不存在,说明理由.P22.(本题14分)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A、B两点,开口向下的抛物线经过点A、B,且其顶点P在⊙C上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C F
E
(19)(8分)如图,在 Rt△ABC中,∠C=900,∠B=540,AD是△ABC的角
D
平分线.求作 AB的垂直平分线 MN交 AD于点 E,连接 BE;并证明
DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
C
D
A
B
(20)(8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图 1, 图中各行从左到右列出的算筹数分别表示未知数 x、y的系数与应的常数项,把图 1所示的算筹
图用我们现在所熟悉的方程组的形式表述出来,就是
,请你根据图 2所示的算
筹图,21)(8分)如图,AB是⊙O的直径,点 C在⊙O上,过点 C的直线与 AB延长线相交于点 P.若 ∠COB=2∠PCB,求证:PC是⊙O的切线.
C
A
O
BP
福州质检数学试题 2页共 4页(泉州彭雪林制作)
(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天
最迟几点出发合适?并说明理由.(每月的上班天数按 22天计)
(24)(12分)已知菱形 ABCD,E是 BC边上一点,连接 AE交 BD于点 F.
(1)如图 1,当 E是 BC中点时,求证:AF=2EF;
福州质检数学试题 3页共 4页(泉州彭雪林制作)
A、B在格点上,现将线段 AB向下平移 m 个单位长度,再向 左平移 n个单位长度,得到线段 A’B’,连接 AA’,BB’,若四
A
O
边形 AA’B’B是正方形,则 m+n的值是( ).
A.3 B.4
C.5 D.6
A
(9)若数据 x1:x2,…,xn的众数为 a,方差为 b,则数据
x1+2,x2+2,…,xn+2的众数,方差分别是( ).
A.a、b B.a、b+2
C.a+2、b D.a+2、b+2
(10)在平面直角坐标系 xOy中,A(0,2),B(m,m-2),则 AB+OB的最小值是( ).
C D
B
A.2
B.4
C.2
二、填空题:(每小题 4分,共 24分)
D.2
A
D
(11) =________.
(12)若∠a=40°,则∠a的补角是________.
(6)下列几何图形不是中心对称图形的是( ).
A.平行四边
B.正方形
C.正五边形
D.正六边形
(7)如图,AD是半圆 O的直径,AD=12,B、C是半圆 O上两点,若,AB=BC=CD
则图中阴影部分的面积是( ).
A.6
B.12
C.18
D.24
B
(8)如图,正方形网格中,每个小正方形的边长均为 1个单位长度,
(2)如图 2,连接 CF,若 AB=5,BD=8,当△CEF为直角三角形时,求 BE的长; (3)如图 3,当∠ABC=90°时,过点 C作 CG⊥AE交 AE的延长线于点 G,连接 DG,若 BE=BF,
求 tan∠BDG的值.
A
D
A
D
A
D
F
B
E
C
图1
F
B
E
C
图2
F
BE
2018年福州市初中毕业班质量检测数学试题
一、选择题:(每小题 4分,共 40分) (1) 的绝对值是( ).
A.
B.
C.
D.3
(2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).
从正面看
A
B
C
D
(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖
示例 2 函数图象经过点(-2,1)
当时 x=-2时,y=1
(i)
函数图象的最低点是(0,0.5)
(ii)
在 y轴左侧,函数图象呈下降状态
(3)当 a<x≤4时,y的取值范围为 0.5≤y≤4,则 a的取值范围为__________.
(23)(10分)李先生从家到公司上班,可以乘坐 20路或 66路公交车.他在乘坐这两路车时,对所 需时间分别做了 20次统计,并绘制如下统计图:
(13)不等式 2x+1≥3的解集是________.
B
(14)一个不透明的袋子中有 3个白球和 2个黑球,这些球除颜色外完全相同
从袋子中随机摸出 1个球,这个球是白球的概率是________.
F EC
福州质检数学试题 1页共 4页(泉州彭雪林制作)
(15)如图,矩形 ABCD中,E是 BC上一点,将△ABE沿 AE折叠,得到△AFE若 F恰好是 CD的中
点,则 的值是________.
y
(16)如图,直线 y1= 与双曲线 y2= 交于 A、B两点,点 C在 x轴上,连
接 AC、BC.若∠ACB=90°,△ABC的面积为 10,则 k的值是________. 三、解答题:(共 86分)
A
O
C
x
B
(17)(8分)先化简,再求值:
,其中 x= +1
(18)(8分)C,E在一条直线上,AB∥DE,AC∥DF,且 AC=DF 求证:AB=DE.
(22)(10分)已知 y是 x的函数,自变量 x的取值范围是-3.5≤x≤4,下表是 y与 x的几组对应值:
x -3.5 -3 -2 -1 0
12
3
4
y4
2 1 0.67 0.5 2.03 3.13 3.78 4
请你根据学习函数的经验,利用上述表格所反映出的 y与 x之间的变化规律,对该函数的图象与性
总人口约为 4400000000人,将 4400000000科学记数法表示,其结果是( ).
A.44×108 B.4.4×109
C.4.4×108
D.4.4×1010
(4)如图,数轴上 M,N,P,Q四点中,能表示 的点是( ).
A.M B.N
C.P
(5)下列计算正确的是( ).
D.Q
A.
B.
C.
D.
请根据以上信息,解答下列问题:
(1)完成右表中(i)、(ⅱ)的数据:
公交线路线
20路 66路
(2)李先生从家到公司,除乘车时间外
乘车时间统计量 平均数 34 (i)
另需 10分钟(含等车、步行等).该
中位数 (ii) 30
公司规定每天 8点上班,16点下班.
(i)某日李先生 7点 20分从家里出发,乘坐哪路车合适?并说明理由.
质进行探究.
(1)如图,在平面直角坐标系 xOy中,描出了上表中各对对应值为坐标的点,根据描出的
点,画出该函数的图象;
y
x
(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号
函数图象特征
函数变化规律
示例 1 在 y轴右侧,函数图象呈上升状态 当 0<x≤4,y随 x的增大而增大
相关文档
最新文档