《统计学:思想、方法与应用》第7章 方差分析
梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
统计学中的方差分析与卡方检验
方差分析和卡方检验是统计学中两种常用的分析方法,它们在不同的问题领域中有着广泛的应用。
方差分析主要用于比较多个总体均值之间的差异,而卡方检验则用于分析分类数据的关联性和独立性。
方差分析是一种用于比较三个或更多个样本均值的统计方法。
在方差分析中,我们假设总体均值相等,然后通过计算组内变异和组间变异来判断这个假设是否成立。
方差分析的基本思想是将总体方差分解成组内方差和组间方差,进而判断组间方差占总变差的比例是否显著大于组内方差的比例。
通过方差分析,我们可以分析因素对总体均值的影响,并进行多组之间的比较。
方差分析的常见类型有单因素方差分析和多因素方差分析,分别适用于不同的研究设计。
卡方检验是一种常用的非参数检验方法,用于分析分类数据的关联性和独立性。
分类数据是指由频数或频率构成的数据,例如某个班级学生的分数等级、不同城市居民的职业分布等。
卡方检验的基本原理是比较观察频数与期望频数之间的差异,如果差异显著,则我们可以拒绝原假设,认为两个变量之间存在关联性。
卡方检验的应用领域非常广泛,例如医学研究中的药物疗效评价、市场调查中的产品偏好分析等。
尽管方差分析和卡方检验有着不同的应用对象和基本原理,但它们都是统计学中重要的推断方法,具有一定的共性。
首先,方差分析和卡方检验都是基于统计假设检验的思想,通过计算特定统计量来判断样本数据是否支持或反对某个假设。
其次,方差分析和卡方检验都需要明确的研究问题和研究设计,并进行数据收集和处理。
最后,方差分析和卡方检验都可以通过计算显著性水平来进行结果的判断和推断。
在实际应用中,我们需要根据具体问题选择合适的统计方法进行数据分析。
如果我们希望比较多个总体均值的差异,可以选择方差分析方法;如果我们关心分类数据的关联性和独立性,可以选择卡方检验方法。
当然,这只是方差分析和卡方检验的基本应用,实际研究中可能还需要考虑其他因素和方法。
总之,方差分析和卡方检验是统计学中两种常用的分析方法,它们在不同的问题领域中都有着广泛的应用。
统计学之方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
方差分析SPSS
F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
随机区组设计的两因素方差分析
配伍设计有两个研究因素,区组因素和处理因素。 事先将全部受试对象按某种或某些特征分为若干个 区组,使每个区组内研究对象的特征尽可能相近。 每个区组内的观察对象与研究因素的水平数k相等, 分别使每个区组内的观察对象随机地接受研究因素 某一水平的处理。
k ni
SS总=
( Xij X )2 ,总 N 1
i1 j 1
组间变异:各处理组的样本均数也大小不等。大小可用各组
均数 X i 与总均数 X 的离均差平方和表示。
k
SS组间= ni ( X i X )2 , 组间 k 1, MS组间=SS组间 组间 i 1
组内变异:各处理组内部观察值也大小不等,可用各处理组
内部每个观察值 X ij与组均数 X i 的离均差平方和表示。
k ni
SS组内=
( Xij Xi )2,组内 N k,MS组内=SS组内 组内
i1 j1
三种变异的关系
SS总 SS组间 SS组内
并且该等式和上面的等式存在如下的对应关系 总变异=随机变异+处理因素导致的变异
总变异=组内变异 + 组间变异
=0.05
2、选定检验方法,计算检验统计量
F MS处理 MS误差;F MS区组 MS误差 3、确定P值,作出推断结论
F F ,P (处理,误差 ) F F ,P (处理,误差 )
F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
多重比较
LSD-t 检验:适用于检验k组中某一对或某几对在 专业上有特殊意义的均数是否相等。
统计学思考题
精品文档.第一章 导论1、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度的不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
按照统计数据的收集方法,可以将其分为观测数据和实验数据。
按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。
分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据是只能归于某一有序类别的非数字型数据。
顺序数据虽然也是类别,但这些类别是有序的,是用文字来表述的。
数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。
现实中处理的大多数都是数值型数据。
2、解释分类数据、顺序数据和数值数据的意义。
对分类数据,我们通常计算出各组的频数或频率,计算其众数和异众比率,进行列联表分析和x 2检验等;对顺序数据,可以计算其中位数和四分位差,计算等级相关系数等;对数值型数据,可以用更多的统计方法进行分析,如计算各种统计量,进行参数估计和检验等 3、举例说明总体、样本、参数、统计量、变量这几个概念。
总体:是包含所研究的全部个体的集合,它通常由所研究的一些个体组成。
如多个企业构成的集合,多个居民户构成的集合,多个人构成的集合样本:是从总体中抽出的一部分元素的集合。
如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。
在统计中,总体参数通常用希腊字母表示,如,总体平均数用u (miu )表示,总体标准差用(sigma )表示,总体比例用(pai )表示,等。
统计量:是用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数。
样本统计量通常用英文字母来表示。
如,样本平均数用(x-bar )表示,样本标准车用s 表示,样本比例用p 表示,等。
变量:是说明现象某种特征的概念。
方差分析与协方差分析
方差分析与协方差分析方差分析 (Analysis of Variance, ANOVA) 和协方差分析 (Analysis of Covariance, ANCOVA) 是统计学中常用的两种数据分析方法。
它们在比较多个组或处理之间的差异时非常有用,并且可以探究因素对观察结果的影响。
本文将详细介绍方差分析和协方差分析的概念、原理和应用。
一、方差分析的概念和原理方差分析是一种用于比较多个组之间均值差异的统计方法。
它基于对总体方差的分解,将观察结果的变异分解成不同的来源,如组内变异和组间变异。
方差分析的目标是确定组间变异是否显著大于组内变异,进而判断不同组均值之间的差异是否具有统计学意义。
方差分析通常基于以下假设:1. 观察结果服从正态分布;2. 不同组之间的观察结果具有同方差性;3. 观察结果是相互独立的。
方差分析的原理是通过计算不同组之间的均方差(Mean Square, MS)和F统计量来进行推断。
F统计量是组间均方差与组内均方差的比值,如果F值显著大于1,则说明不同组之间存在显著差异。
方差分析可以分为单因素方差分析和多因素方差分析,其中单因素方差分析适用于只有一个自变量的情况,而多因素方差分析则适用于有多个自变量的情况。
二、方差分析的应用方差分析在科学研究和实际应用中广泛应用,以下是一些常见的应用场景:1. 实验比较:方差分析可用于比较不同处理、不同实验条件下的实验结果。
例如,在农业领域,可以利用方差分析比较不同肥料、不同温度等对作物产量的影响。
2. 组间比较:方差分析可用于比较不同组别、不同样本间的差异。
例如,在医学研究中,可以利用方差分析比较不同药物对疾病治疗效果的差异。
3. 教育评估:方差分析可用于教育研究中,比较不同学校或不同教学方法对学生学习成绩的影响。
三、协方差分析的概念和原理协方差分析是一种结合方差分析和线性回归分析的方法。
它用于比较多个组别或处理之间的差异,同时控制一个或多个协变量的影响。
统计学中的方差分析和多元统计方法
统计学中的方差分析和多元统计方法统计学是一门研究数据收集、处理和分析的学科,它在各个领域都有着广泛的应用。
方差分析和多元统计方法是统计学中两个重要的技术工具,它们在数据分析和研究中发挥着重要的作用。
本文将分别介绍方差分析和多元统计方法的基本概念和应用,并对其在实际研究中的意义进行讨论。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或更多个样本平均值差异的统计方法。
它的基本思想是通过比较组间方差和组内方差来判断不同样本之间的平均值是否有显著差异。
方差分析通常用于分析实验数据和观察数据,常见的有单因素方差分析和多因素方差分析。
在单因素方差分析中,我们只考虑一个因素对观测结果的影响,例如研究不同教育水平对学生成绩的影响。
我们将样本按照教育水平分组,并通过计算组间方差和组内方差来判断教育水平对学生成绩的影响是否显著。
而在多因素方差分析中,我们考虑多个因素对观测结果的影响,例如研究不同教育水平和不同性别对学生成绩的综合影响。
我们除了计算组间方差和组内方差外,还需要考虑不同因素之间的交互作用,以综合判断各个因素对学生成绩的影响程度。
方差分析的结果通常通过计算F值和p值进行判断,其中F值表示组间方差与组内方差之比,而p值则表示差异的显著性程度。
通过方差分析,我们可以得出结论,确定不同因素对观测结果的影响是否具有统计学意义。
二、多元统计方法多元统计方法是一种处理多个变量间相互关系的统计方法,它能够同时考虑多个变量对观测结果的综合影响。
多元统计方法包括相关分析、回归分析、主成分分析等多种技术手段,它们在统计学和实际研究中被广泛应用。
相关分析是研究变量间线性相关关系的方法,通过计算相关系数来描述变量之间的相关性强度和方向。
例如,我们可以通过相关分析来探究身高和体重之间的关系,以及年龄和工作经验之间的关系。
回归分析是一种用于建立变量之间数学关系的方法,它能够通过一组自变量预测因变量的数值。
方差分析讲座
F=s2t/s2e
二、方差分析的基本原理
(五)多重比较
统计上把多个平均数两两间的相互比较称为多重比较(multiple comparisons)。 多重比较的方法很多,常用的有最小显著差数法(LSD法) 和最小 显著极差法(LSR法)。
(1)最小显著差数法(LSD法)
最小显著差数法的实质是两个平均数相比较的t检验法。检验的方 法是首先计算出达到差异显著的最小差数,记为LSD,然后用两个处 | LSD,即为在给定的α水平上差 理平均数的差与LSD比较,若 | x1 x2 > 异显著,反之,差异不显著。
方差分析
吕世杰 lshj123@
方差分析知多少
什么是方差分析(基本概念、统计学原理) 方差分析的准备工作有哪些(数据预处理) 方差分析的类别划分:
按试验处理因素分(单因素、双因素、多因素) 按照统计学模型分(固定、随机、混合模型) 按试验设计分(对比、区组、裂区、拉丁方、正交) 按指标数分(一元、多元) 按重复相等与否分(平衡、非平衡) 按初始差异分(方差、协方差)
三、方差分析的准备工作有哪些
异常值的判定与消除——3Q准侧
这里的异常值又称为离群值,原始数据中,数值
在Q1-1.5(Q3-Q1)和Q3+1.5(Q3-Q1)以外的数据 均称为异常值。 Q3和Q1分别指上下四分位数。 原始数据中,数值在Q1-3(Q3-Q1)和Q3+3(Q3Q1)以外的数据均称为极端值。 消除方法:核对数据检查是否有误、有误修正, 否则直接删除。
综上,利用LSD法进行多重比较,可以分三步进行: 1)计算最小显著差数LSD0.05和LSD0.01。 2)列出平均数的多重比较表,表中各处理按其平均数从大到小依 次进行排列。 3)将两两平均数的差数与LSD0.05和LSD0.01进行比较,作出统计推 断。
统计学中的方差分析方法
统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。
它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。
一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。
二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。
下面以一个简单的案例来说明一元方差分析。
假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。
我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。
在执行一元方差分析之前,我们首先需要验证方差齐性的假设。
如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。
常用的方差齐性检验方法有Bartlett检验和Levene检验。
在通过方差齐性检验后,我们可以进行一元方差分析。
分析结果将提供两个重要的统计量:F值和P值。
F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。
如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。
三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。
这种分析方法常用于研究两个或多个因素对实验结果的影响情况。
以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。
我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。
方差分析
第九章方差分析第一节方差分析的一般问题一、方差分析的意义在工农业生产和科学研究中,经常要搞一些试验活动。
比如,为了解某个新品种的种植效果,需要在土壤条件、温度、湿度、施肥、灌溉等因素相同的情况下,将新品种与其他同类品种的种植结果作比较。
商品的包装方式和在商场里的摆放位置,对吸引顾客是有帮助的,那么为确定某商品合适的包装和销售位置,也可以进行观察试验。
在化工生产中,原料的成分、反应温度、压力、时间、催化剂、设备水平、操作规程等,对产品的得率和质量有很大的影响,通过实验研究,可以帮助我们找到一个最优的生产方案。
在试验基础上取得的数据,称为试验数据。
方差分析技术是对试验数据进行分析的一种比较有效的统计方法。
方差分析是费暄在马铃薯种植试验中首先提出来的,当初他采用的处理方法是,把观察数据看作是马铃薯品种与试验误差共同影响的总和,然后把条件(马铃薯品种)变异和随机试验误差进行比较,以此分析马铃薯品种之间是否存在显著的差异。
后来费暄给出的总结性意见是,方差分析是在若干个能够互相比较的资料组中,把产生变异的原因(主要是条件因素和随机因素)加以明确区分的方法和技术。
二十世纪二十年代,费暄又对方差分析作了系统的研究,并把他的研究成果写在《供研究人员用统计方法》等著作中。
关于单个总体均值和两总体均值差的检验内容,我们在前面已作了比较系统的介绍。
从形式上看,方差分析把这一类检验问题向前拓展了一步,它能够同时对若干个总体均值是否相等的假设进行检验,从而大大提高了统计分析的效率。
另外,方差分析对样本的大小没有更多的限制。
无论是大样本还是小样本,均可以使用方差分析方法。
方差分析方法的最大好处在于,在资料分析过程中所带来的种种便利性,其一,它能够使资料的层次结构清晰有序,其二,它能把一切需要进行的假设检验归结成一种共同格式。
有鉴于此,方差分析的思想逐渐渗透到统计学的许多方法之中。
比如,我们在相关与回归分析一章中所述的总离差平方和的分解,实际上就是方差分析思想的应用。
方差分析的概念与应用
方差分析的概念与应用方差分析(Analysis of Variance,简称ANOVA)是一种统计分析方法,用于比较两个或两个以上样本均值是否存在显著差异。
通过对不同组之间的方差进行比较,判断样本均值之间是否存在显著性差异。
方差分析广泛应用于实验设计和数据分析中,是一种重要的统计工具。
一、方差分析的基本概念方差分析是一种用于比较多个总体均值是否相等的统计方法。
在进行方差分析时,我们通常将数据分为不同的组别,然后比较这些组别之间的均值差异是否显著。
方差分析的基本思想是通过比较组间变异与组内变异的大小,来判断总体均值是否存在显著差异。
在方差分析中,有三种不同的方差:1. 总体方差(Total Variance):所有数据点与总体均值之间的离差平方和。
2. 组间方差(Between-group Variance):各组均值与总体均值之间的离差平方和,反映了不同组别之间的差异。
3. 组内方差(Within-group Variance):各组内部数据点与各自组均值之间的离差平方和,反映了组内数据的离散程度。
二、方差分析的应用领域1. 实验设计:方差分析广泛应用于实验设计中,用于比较不同处理组之间的均值差异,判断实验处理是否显著。
2. 医学研究:在医学研究中,方差分析常用于比较不同药物治疗组的疗效差异,评估治疗效果的显著性。
3. 市场调研:在市场调研中,方差分析可用于比较不同产品或广告策略对消费者行为的影响,帮助企业制定营销策略。
4. 教育评估:在教育领域,方差分析可用于比较不同教学方法或教育政策对学生成绩的影响,评估教育改革效果。
三、方差分析的步骤进行方差分析时,通常需要按照以下步骤进行:1. 提出假设:明确研究问题,提出原假设(各组均值相等)和备择假设(至少有一组均值不相等)。
2. 收集数据:根据研究设计,收集各组数据。
3. 方差分析:计算总体方差、组间方差和组内方差,进行方差分析。
4. 判断显著性:通过计算F值,比较P值与显著性水平,判断各组均值是否存在显著差异。
心理统计学基础讲义 第七章 方差分析、统计效力
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。
医学统计学(方差分析)
1、两因素方差分析
教学内容提要
重点讲解:
方差分析的基本思想 完全随机设计的单因素方差分析 多个样本均数间的多重比较
介绍:方差分析的原理与条件
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。
t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
根据资料的性质选择不同的统计方法。注意都是在H0成 立的条件下进行计算。
计算概率值P:P的含义。
做出推论:统计学结论和专业结论。
单因素方差分析
方差分析表 (练习,完成该表。例题,写在黑板上)
变异来源 SS
MS
F
P
总变异 148
19-1
组间变异 57
4-1
组内变异
19-4
F0.05(3,15)=3.29 F与它所对应的P值成反比
常取0.05,区分大小概率事件的标准。 计算统计量F:根据资料的性质选择不同的统计方
法。注意都是在H0成立的条件下进行计算。 计算概率值P:P的含义。 做出推论:统计学结论和专业结论。
四组不同摄入方式人的血浆游离吗啡水平
静脉点滴 肌肉注射 皮下注射 口服
12
12
10
16
7
15
8
9
9
14
均数
10
13
9
12
7
8
6
8
11
10
7
8
9.5
单因素方差分析
完整书写方差分析的过程
建立假设:
H0 :4组病人血浆游离吗啡水平1 = 2 = 3= 4
H1 : 4组病人血浆游离吗啡水平的总体均数全不相等或不全 相等
统计学方差分析ppt课件
水平
水平指因素的具体表现,如销售的 四种方式就是因素的不同取值等级。有 时水平是人为划分的,比如质量被评定 为好、中、差。
单元
单元指因素水平之间的组合。如销 售方式一下有五种不同的销售业绩,就 是五个单元。方差分析要求的方差齐就 是指的各个单元间的方差齐性。
元素
元素指用于测量因变量的最小单 位。一个单元里可以只有一个元素, 也可以有多个元素。
均衡
如果一个试验设计中任一因素各水 平在所有单元格中出现的次数相同,且 每个单元格内的元素数相同,则称该试 验是为均衡,否则,就被称为不均衡。 不均衡试验中获得的数据在分析时较为 复杂。
交互作用
如果一个因素的效应大小在另一 个因素不同水平下明显不同,则称为 两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是 没有意义的,必须分另一个因素的不 同水平研究该因素的作用大小。如果 所有单元格内都至多只有一个元素, 则交互作用无法测出。
地点一 地点二 地点三 地点四 地点五
方式一
77
86
81
88
83
方式二
95
92
78
96
89
方式三
71
76
68
81
74
方式四
80
84
79
70
82
【解】设这四种方式的销售量的均值分别用 1•, 2•, 3•, 4• 表示,四 个销售地点的平均销售量用 •1, •2, •3, •4 表示;则要检验的假设为
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
因素和水平
单元和元素
均衡
交互作用
07t检验--方差分析(医学统计学)
• 例1(P60例7-1) 以往通过大规模调查已知某地新生 儿出生体重为3.30kg.从该地难产儿中随机抽取35 名新生儿作为研究样本,平均出生体重为3.42kg,标 准差为0.40kg,问该地难产儿出生体重是否与一般 新生儿体重不同?
例题里涉及两个总体:
• 一般新生儿出生体重(已知总体,µ0=3.30kg) • 该地难产儿出生体重(未知总体,µ未知) • 3.42 >3.30既可能是抽样误差所致,或本质上不同
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
S2 S2 X1 X2
S12
n1
S
2 2
n2
例3 测得14名慢性支气管炎病人与11名健
康人的尿中17酮类固醇(mol/24h)排出量 如下,试比较两组人的尿中17酮类固醇的 排出量有无不同。
• 原始调查数据如下:
t | 1.33 | 0.58 7.91 12
• (3)确定P值,作出推断结论 自由度=n-1=12-1=11,查附表2,t界值表,得
单侧t0.05,11=1.796,t=0.58<t0.05,11=1.796,故P > 0.05。 按α=0.05水准,不拒绝H0, 差异无统计学意义。
• 结论:故尚不能认为该减肥药有减肥效果。
t ' 10.38 6.62 2.0639 6.322 2.162 14 16
v 15.6447 16,
查 t 界 值 表 , t t0 . 0 5 / 2=(21.61)1 9 。 P > , 不 拒 绝 H0, 尚 不 能 认 为 两 种 药 的 疗 效 不 等 。
三、t检验与Z检验
方差分析-统计学原理
yij ai ij , j 1 ,2,..., m ,2,..., r, i ,i 1 r m ia i 0 i1 2 相 互 独 立 , 且 都 服 从 N (0, ) ij
H0 :a1 =a2 =…=ar =0
第三节 两因素方差分析 随机区组设计资料的方差分析
方差分析的应用条件
(1)各观测值相互独立,并且服从正态分布; (2)各组总体方差相等,即方差齐性。
方差分析的用途
1 2 3 4 用于两个或多个均数间的比较 分析两个或多个因素的交互作用 回归方程的假设检验 方差齐性检验
第二节 单因素方差分析 完全随机设计资料的方差分析
一、完全随机设计 完全随机设计是采用完全随机化的分组方法, 将全部试验对象分配到g个处理组,各处理组分别 接受不同的处理,试验结束后比较各组均数之间差 别有无统计学意义,以推断处理因素的效应。
一、 随机区组设计 随机区组设计( randomized block design ),又称 配伍组设计,是配对设计的扩展。 具体做法是:先按影响试验结果的非处理因素 将受试对象配成区组(block),再将各区组内的受 试对象随机分配到不同的处理组,各处理组分别接 受不同的处理,试验结束后比较各组均数之间差别 有无统计学意义,以推断处理因素的效应。
方差分析的基本概念
将衡量试验结果的标志称为试验指标。 将影响试验结果的条件称为因素。 因素在试验中所处的不同状态称为该因 素的水平。
只考察一个影响条件即因素的试验称为单因素 试验,相应的方差分析称为单因素方差分析。
二、变异分解 完全随机设计资料的方差分析表 变异来源 自由度 SS MS F 总变异
甲组 4.2 3.3 3.7 4.3 4.1 3.3
方差分析课件-PPT
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
第七章SPSS方差分析
方 7.5 混合设计方差分析及简单简单效应分析 差 7.6 协方差分析 分 7.7 拉丁方设计方差分析 析 7.8 方差分析的报告样例参考
7.3 单因素随机区组方组内均匀。
每个区组内的K个对象分别接受一种实验处理。
第6步:在主对话框中点击【确定】按钮,提交执行 。SPSS在输出窗口输出结果。
第7步:结果分析。 第一个表:主体间因子。(略) 第二个表:描述统计。(略) 第三个表:误差方差的莱文等同性检验
在 本 例 中 F 值 是 9.365 , 对 应 的 概 率 值 为 0.004 < 0.05,拒绝原假设。结论:至少有一组平均值与其他 组有显著性差异。
多重比较表
第五个:均值图
使用【分析】【一般线性模型】【单变量…】 菜单命令,分析同一个例子【例7-1】。
点击主对话框右边的【选项】按钮,弹出如 下子对话框:选择 “效应量估算”、“实测 幂”等这两个复选框。
方差分析的基本思想是:通过分析研究不同来 源的变异对总变异的贡献大小,从而确定可控因素 对研究结果影响力的大小。
SPSS中方差分析的菜单命令有两个:
(一)单因素ANOVA过程:【分析】【比较平均值 】【单因素ANOVA检验】中。
(二)一般线性模型过程: 在【分析】【一般线 性模型】项调用。这些过程可以完成多因素方差分 析和协方差分析,不但可以分析各因素的主效应, 还可以分析各因素间的交互效应。在【一般线性模 型】菜单项的下一级菜单中有四项过程:
第七章 方差分析
第 7.1 单因素完全随机设计方差分析 七 7.2 多因素完全随机设计方差分析及简单效应分析 章 7.3 单因素随机区组方差分析
7.4 重复测量方差分析及简单效应分析
统计学中的多样本比较与方差分析
统计学中的多样本比较与方差分析统计学中,多样本比较和方差分析是两个常用的数据分析方法。
它们都涉及对多个样本进行比较和分析,用于研究不同组别或条件下的差异和变异性。
本文将介绍多样本比较和方差分析的基本概念、原理以及应用。
一、多样本比较多样本比较是指对三个及以上的样本进行比较。
它可以用于比较不同组别、不同时间点或不同条件下的数据,以确定它们之间是否存在显著差异。
多样本比较的常见方法包括参数方法和非参数方法。
1. 参数方法参数方法假设数据服从特定的概率分布,通常是正态分布。
常见的参数方法有方差分析(ANOVA)和t检验。
方差分析用于比较多个组别的均值是否有显著差异,而t检验用于比较两个组别的均值。
方差分析根据不同的研究设计和假设条件,分为一元方差分析和二元方差分析。
一元方差分析用于比较一个自变量对一个因变量的影响,而二元方差分析用于比较两个自变量对一个因变量的联合影响。
2. 非参数方法非参数方法不对数据的概率分布做出假设,因此适用于那些不符合正态分布假设的数据。
常见的非参数方法有克鲁斯卡尔-沃利斯检验和曼-惠特尼U检验。
克鲁斯卡尔-沃利斯检验用于比较多个组别的中位数是否有显著差异,而曼-惠特尼U检验用于比较两个组别的中位数。
二、方差分析方差分析是一种用于比较多个样本方差是否存在显著差异的方法。
它通常应用于研究不同组别或条件下的数据变异性。
方差分析的基本思想是将总变异性分解为组内变异性和组间变异性,并通过比较两者的比值来判断差异是否显著。
方差分析的步骤包括计算各组的平均值、整体平均值、组内平方和、组内平均方差、组间平方和以及F统计量。
通过F统计量的显著性检验,可以判断组间是否存在显著差异。
方差分析有多种类型,如单因素方差分析、二因素方差分析和多因素方差分析。
不同类型的方差分析适用于不同的研究设计和假设条件,可以用于比较一个或多个自变量对一个或多个因变量的影响。
三、应用举例多样本比较和方差分析在各个领域都有广泛的应用。
统计学思想方法与应用袁卫等方差分析
当方差分析拒绝了原假设时,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著不同,则需要进行多重比较来检验。多重比较是指在因变量的三个或这三个以上水平下均值之间进行的两两比较检验。多重比较问题:
第20页/共40页
第11页/共40页
7.1.2关系强度有多大?
第12页/共40页
原理为:把因变量的值随着自变量的不同取值而得到的变化进行分解,使得每一个自变量都有一份贡献,最后剩下无法用已知的原因解释的则看成随机误差的量的不同水平是否对因变量的变化有显著贡献。输出就是F-值和检验的一些p-值。
第25页/共40页
7.3 双因素方差分析
例7.2一个地区的交通管理局正准备扩大从郊区到商业中心的公车服务,考虑四条路线:1号线、2号线、3号线、4号线。交管局想进行检验判断四条路线的平均行驶时间是否存在差异。因为可能存在不同司机,检验时让每一名司机都分别行驶四条路线。下面是每个司机在每条路线上所需的行驶时间。在0.05的显著性水平下,四条路线的行驶时间的均值是否有差异?如果不考虑司机的影响,行驶时间的均值是否有差异?
多重比较
因变量:小麦产量
(I) 化肥品牌
(J) 化肥品牌
均值差 (I-J)
标准误
显著性
95% 置信区间
下限
上限
LSD
dimension2
1
dimension3
2
-95.000*
15.961
.000
-128.19
-61.81
3
50.000*
15.961
.005
16.81
83.19
2
dimension3
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来自不同地区的大学生每个月的平均生活 费支出是否不同呢?
家电的品牌对它们的销售量是否有显著影 响呢?
不同的路段和不同的时段对行车时间有影 响吗?
超市的位置和它的销售额有关系吗? 不同的小麦品种产量有差异吗?
6 -1
第7章 方差分析
7.1 单因素方差分析 7.2 方差分析回顾 7.3 双因素方差分析
用平方和除以相应的自由度 均方也称方差(variance)
组 间 均 方 也 称 组 间 方 差 (between-groups variance),反映各因子间误差的大小
MSA=SSA÷自由度(因子个数-1)
组内均方也称组内方差(within-groups variance) , 反映随机误差的大小
• 仅从散点图上观察还不能提供充分的证据证明化肥 品牌与小麦产量之间有显著差异
这种差异也可能是由于抽样的随机性所造成的
• 需要有更准确的方法来检验这种差异是否显著,也 就是进行方差分析
所以叫方差分析,因为虽然我们感兴趣的是均值,但在 判断均值之间是否有差异时则需要借助于方差
这个名字也表示:它是通过对数据误差来源的分析判断 不同总体的均值是否相等。因此,进行方差分析时,需 要考察数据误差的来源
(单因素方差分析)
第 1 步 : 选 择 【Analyze】 【Compare Means】 【One-Way-ANOVA】进入主对话框
第2步:在主对话框中将因变量(产量)选入【Dependent List】,将自变量(品牌)选入【Factor)】
第3步 (需要多重比较时)点击【Post-Hoc】从中选择一 种方法,如LSD; (需要均值图时)在【Options】下选中 【Means plot】 , ( 需 要 相 关 统 计 量 时 ) 选 择 【Descriptive】 , 点 击 【Continue】 回 到 主 对 话 框 。 点 击【OK】
检验。 如果显著性水平设为0.05,那么正确判断的概率
为0.95。因为我们分别进行3次独立的检验,任 何一次检验都不做错误判断的概率为:P(都正 确)=0.953=0.8574 因此,至少一次错误的概率为10.8574=0.1426。总之,如果我们用t分布分别 做3次独立的检验,至少有一样本错误发生的概率 从0.05上升到了0.1426。
来源 化肥 残差
平方和 比例 86800 0.802 21400 0.198
自由度 均方 F-比
p-值
2
43400
42.6
0.00000 004
21
1019
总计 108200 1.000
23
该表说明我们要拒绝零假设,各化肥 品6 -牌20 导致的小麦产量之间有显著不同.
用Excel进行方差分析
(Excel检验步骤)
▪ 第1步:选择“工具 ”下拉菜单
▪ 第2步:选择“数据分析 ”选项
▪ 第3步:在分析工具中选择“单因素方差分析 ” ,
然
▪
后选择“确定 ”
▪ 第4步:当对话框出现时
▪
在“输入区域 ”方框内键入数据单元格区域
▪
在方框内键入0.05(可根据需要确定)
▪
在“输出选项 ”中选择输出区域
6 - 21
用SPSS进行方差分析
作出这种判断最终被归结为检验这三个品牌的产量的均 值是否相等 若它们的均值相等,则意味着“品牌”对产量是没 有影响的;若均值不全相等,则意味
可以用假设检验吗? 两两比较三种品牌的产量均值是否存在差异。 用t分布比较3组总体均值,需要进行3次不同的t
6 - 27
7.3 双因素方差分析
在小麦产量的例子中,我们将总效应分为两类:化肥变量 的效应和残差变量的效应。
换句话说,我们只考虑了效应的两个来源,即来自化肥变 量和随机误差。
但是影响小麦产量的因素除了所用化肥的品牌,可能还有 土壤、天气等等因素的影响。
考虑其他因素的好处是降低残差的效应,即降低F统计量 的分母,F值会变大,使我们拒绝均值相等的零假设,或 者说我们可以解释更多的效应,从而减少误差。
685
540
样本容量
8
8
8
6 - 18总均值
605
单因素方差分析表
(基本结构)
误差来源
平方和 自由度 均方 (SS) (df) (MS)
F值
P值
F 临界值
组间
MSA
(因素影响) SSA
k-1 MSA MSE
组内 (误差)
SSE n-k MSE
总和
6 - 19
SST n-1
单因素方差分析
由SPSS可以得到方差分析表:
1
2
dimension3
3
2
dimension2
1
dimension3
3
3
1
dimension3
2
*. 均值差的显著性水平为 0.05。
多重比较
均值差 (I-J) -95.000* 50.000* 95.000* 145.000* -50.000*
-145.000* -95.000* 50.000* 95.000* 145.000* -50.000*
系统误差
3. 总误差(total)
▪ 全部观测数据的误差大小
6 - 11
方差分析的基本原理
(误差分解)
• 误差平方和的分解及其关系
总误差 = 随机误差 + 处理误差
总平方和
组内平方和
组间平方和
=
+
(SST)
(SSE)
(SSA)
6 - 12
误差度量
(均方—MS)
用均方(mean square)表示误差大小,以消除观测数 据的多少对平方和的影响
方差分析是基于计算因变量在按照自变量的各类的均值之间 的差异程度和每一类中观测值的差异程度。
F检验及其p-值告诉我们因变量在各类中的均值是否有显著差 异。通常当p-值小于0.05时就可以拒绝零假设了
有时我们会看到p值下面的数值显示*和**。在脚注中会解释 一个星号表示它的p值小于0.05,而两个星号则表示p-值小于 0.01
多重比较问题: H0 : i j H1 : i j
选择拒绝域 xi x j LSD,
6 - 24
LSD t 2
MSE
1 ni
1 nj
多重比较方法
SPSS提供了各种不同的多重比较方法,包括最小 显著差异LSD法、Bonferroni法、Tukey法、 Scheff法,如下图所示。
6 - 25
由SPSS可以得到多重比较结果
做了以下三对比较:
因变量:小麦产量
品牌A~品牌B、品牌A~
(I) 化肥品牌 (J) 化肥品牌
品牌C和品牌B~品牌C。 LSD
1
2
dimension3
3
每一对比较都有相应的 p-值。
2
dimension2
3
1
dimension3
3
1
dimension3
2
Tamhane
95% 置信区间
下限
上限
-128.19 -61.81
16.81 83.19
61.81 128.19
111.81 178.19
-83.19 -16.81
-178.19 -111.81
-145.67 -44.33
19.28 80.72
44.33 145.67
94.33 195.67
-80.72 -19.28
-195.67 -94.33
6 - 26
7.2 方差分析回顾
在研究分类型自变量和数量型因变量之间关联。在这里,我 们在此研究的是化肥品牌和小麦产量两个变量。其它还有诸 如职业与收入的关系、不同教育方法与学生的学习水平的关 系等例子。
应用方差分析需要的假设条件有:(1)各总体是正态分布。 (2)各总体的有相同的标准差。(3)样本互相独立。当 满足上述条件时,可以用F分布作为检验统计量的分布。
3. 计算检验统计量
因子均方 F 残差均方 ~ F(k 1, n k)
4. 计算P值,作出决策
6 - 17
品牌
观测值
A
B
C
1
570
660
540
2
560
760
580
3
610
670
530
4
580
710
550
5
590
630
520
6
580
730
560
7
630
640
510
8
600
680
530
样本均值
590
如果品牌与产量之间没有关系,那么它们的产量应该 差不多相同,在散点图上所呈现的模式也就应该很接 近
6 -8
方差分析的基本原理
为了更容易的找出各化肥品牌的小麦平均产量的不同,我 们对每个化肥品牌做一个箱线图。
750
700
650
小麦产量
600
550
500
6 -9
品牌A
品牌B 化肥
品牌C
方差分析的基本思想和原理
因子 A
品牌 B
C
水
1
570
660
540
平
2
560
760
580
3
610
670
530
4
580
710
550
5
590
630
520
6
580
730
560
7
630
6-4 8
600
640