第四章因式分解的复习与巩固
《因式分解》复习课件
目 录
• 因式分解的定义与性质 • 因式分解的方法与技巧 • 因式分解的应用 • 因式分解的注意事项与易错点 • 因式分解的练习题与解析
01
CATALOGUE
因式分解的定义与性质
因式分解的定义
总结词
因式分解是将一个多项式表示为 几个整式的积的形式。
详细描述
因式分解是将一个多项式通过数 学运算,将其表示为几个整式的 积的形式。例如,将多项式 $ax^2 + bx + c$ 分解为 $(x+1)(x+2)$。
注意事项
理解因式分解的定义
掌握基本方法
因式分解是将一个多项式表示为几个整式 的积的形式。必须明确理解这一基本概念 ,才能正确进行因式分解。
如提公因式法、公式法等,是进行因式分 解的基本手段,需要熟练掌握。
注意符号问题
考虑所有可能情况
在进行因式分解时,要注意各项的符号, 尤其是负号,以免出现错误。
因式分解可能存在多种形式,要全面考虑 所有可能性,选择最合适的形式。
或错误。
05
CATALOGUE
因式分解的练习题与解析
基础练习题
总结词
掌握基础概念
ห้องสมุดไป่ตู้分解因式
$x^2 - 4$
答案
$(x + 2)(x - 2)$
基础练习题
01
解析
这是一个基本的平方差公式应 用,$x^2 - 4$可以看作是 $(x + 2)(x - 2)$的展开。
02
分解因式
$4x^2 - y^2$
易错点分析
忽略公因式
在进行提公因式时,容 易忽略某些项的公因式 ,导致分解不彻底或错
专题4-11 《因式分解》全章复习与巩固(知识讲解)-七年级数学下册(浙教版)
专题4.11 《因式分解》全章复习与巩固(知识讲解)【学习目标】1. 理解因式分解概念,并感受分解因式与整式乘法是相反方向的运算;2. 掌握提取公因式法、公式法、十字相乘法、分组分解法等四种基本方法,并能进行因式分解;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【要点梳理】把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.特别说明:落实好方法的综合运用: 首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,直到每一项不能再分解为止。
【典型例题】 类型一、提取公因式1.(2020·上海市梅陇中学七年级期中)28()2()()m n m n m n +-+- 【答案】2()(35)m n m n ++ 【分析】先提公因式2(m+n ),再化简计算即可解答. 解:原式=2(m+n )[4(m+n)﹣(m ﹣n )]=2(m+n)(4m+4n ﹣m+n) =2(m+n)(3m+5n).【点拨】本题考查因式分解、合并同类项,熟练掌握用提公因式法分解因式的方法,找到公因式是解答的关键. 举一反三:【变式】(2020·耒阳市冠湘中学八年级月考)分解因式:2318()12()a b b a ---【答案】26()(322)a b a b -+-【分析】原式先变形为()()231812a b a b +--,再利用提公因式法分解. 解:原式=()()231812a b a b +--=()26()32b a b a +--⎡⎤⎣⎦=()()23622a b b a +--.【点拨】本题考查了多项式的因式分解,属于基础题目,熟练掌握分解因式的方法是解题的关键.类型二、公式法2.(2019·山西九年级专题练习)分解因式:()()229x y x y -+-. 【答案】()()422x y x y ++ 【分析】直接利用平方差公式分解因式得出答案.解:()()()()()()2222229333x y x y x y x y x y x y -=-=⎡⎤⎣⎦+-+-+--∵()()()()()()22=3333334224x y x y x y x y y y x x x x y y ++-+-+=+++-- ∵()()()()()()224224=2942x y x y y x x y x y x y +++-=++-.【点拨】本题考查了平方差公式、整式运算的知识;求解的关键是熟练掌握平方差公式进行分解因式,即可得到答案. 举一反三:【变式】(2020·北京西城区·北师大实验中学八年级期中)因式分解;22(2)(2)a b a b +-+.【答案】3()(-)+a b a b【分析】利用平方差公式进行因式分解后,再进行化简即可. 解:原式=[][](2)+(2)(2)(2)+++-+a b a b a b a b=(33)(-)+a b a b =3()(-)+a b a b【点拨】本题考查了利用平方差公式进行因式分解,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.3(2020·上海市静安区实验中学七年级课时练习)()()243624x y x y ++-+ 【答案】()243x y +- 【分析】先提公因式4,将(x+y )看成一个整体,利用完全平方公式2222()a ab b a b ++=+分解因式即可.解:原式()()2496x y x y ⎡⎤=++-+⎣⎦()243x y =+-.【点拨】本题考查了提公因式法和完全平方公式法分解因式,解答的关键是掌握完全平方公式的结构特征,公式中的a 、b 可以表示数、字母,也可以是整式. 举一反三:【变式】(2020·辽宁沈阳市·八年级期末)分解因式:(1)3x -12x 3; (2)4m 2+2mn +14n 2. 【答案】(1)3(12)(12)x x x +-;(2)21(4)4m n +. 【分析】(1)先提取公因式3x ,再利用平方差公式进行因式分解即可; (2)先提取公因式14,再利用完全平方公式进行因式分解即可. 解:(1)原式23(1)4x x =-231(2)x x ⎡⎤=-⎣⎦3(12)(12)x x x =+-;(2)原式221(1684)m mn n +=+ 2281(4)4m mn n =++⎡⎤⎣⎦ 21(4)4m n =+. 【点拨】本题考查了利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握因式分解的方法是解题关键.类型三、十字相乘法4.(2020·上海市静安区实验中学七年级课时练习)因式分解:()()2550x y x y -+-- 【答案】()()105x y x y -+--【分析】将(x -y )当做一个整体,发现-50=-5×10,-5+10=5,因此利用十字相乘法进行分解即可.解:()()2550x y x y -+--=()()105x y x y -+--.【点拨】本题考查了利用十字相乘法进行因式分解,对二次三项式进行因式分解时,若无法使用公式法和提取公因式法因式分解,则考虑使用十字相乘法分解.本题中注意整体思想的运用. 举一反三:【变式】 (2020·上海市静安区实验中学七年级课时练习)32233672m n m n mn -- 【答案】()()364mn m n m n -+【分析】先提公因式3mn ,再利用十字相乘法分解因式即可. 解:原式()223224mn m mn n=--()()364mn m n m n =-+.【点拨】本题考查因式分解,熟练掌握提公因式法和十字相乘法分解因式是解答的关键. 类型四、分组分解法5.(2020·上海松江区·七年级期末)因式分解:323412x x y x y +--. 【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y -+-=22(4)3(4)x x y x -+- =2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解. 举一反三:【变式】(2019·上海奉贤区·七年级期末)分解因式:256152x y x xy +--.【答案】(3)(52)x x y --【分析】先分组,再利用提公因式法分解因式.解:256152x y x xy +-- =2(515)(62)x x y xy -+- =5(3)2(3)x x y x -+- =(3)(52)x x y --.【点拨】此题考查分解因式:分组分解法、提公因式法、公式法(平方差公式、完全平方公式)、因式分解法,根据每个多项式的特点选用适合的分解方法是解题的关键.6.(2020·信阳市商城思源实验学校八年级月考)分解因式 x 2-y 2-z 2-2yz 【答案】 ()()x y z x y z ++-- 【分析】 (3)原式后三项运用完全平方公式分解,最后运用平方差公式进行因式分解即可; 解: x 2-y 2-z 2-2yz ;=222(2)x y z yz -++ =22()x y z -+; =()()x y z x y z ++--【点拨】此题主要考查了因式分解,熟练掌握因式分解的方法是解答此题的关键.【变式】(2020·上海市澧溪中学七年级月考)因式分解:2221--+x y x【答案】(1)(1)x y x y -+--【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有x 的二次项,x 的一次项,有常数项.所以要考虑后三项x 2-2x+1为一组.解:x 2-y 2-2x+1,=-y 2+(x 2-2x+1), =-y 2+(x -1)2, =(x+y -1)(x -y -1).【点拨】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有x 的二次项,x 的一次项,有常数项,所以首要考虑的就是三一分组.类型五、综合练习7.(2020·山东东营市·丁庄镇中心初级中学八年级月考) (一)因式分解(1)()()323a m n m n +++ (2)()222224a b a b +-(二)用简便方法计算 (1)2222211111111...1123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)29991002998-⨯ .【答案】(一)(1)(2)(3)a m n ++;(2)22()()a b a b -+;(二)(1)10102019;(2)1995- 【分析】(一)(1)根据提取公因式的方法分解即可;(2)首先运用平方差公式分解,然后运用完全平方公式继续分解; (二)(1)运用平方差公式解答便可; (2)根据平方差公式计算即可. 解:(一)(1)原式(2)(3)a m n =++; (2)原式2222()(2)a b ab =+-,2222(2)(2)a b ab a b ab =+-++, 22()()a b a b =-+;(二)(1)原式11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019=-⨯+⨯-⨯+⨯-⨯+⨯⋯⨯-⨯+, 1324352018202022334420192019,1202022019=⨯, 10102019=; (2)原式2(10001)(10002)(10002)=--+⨯-,2210002000110004=-+-+,1995=-.【点拨】本题考查了用提公因式法和公式法进行因式分解以及平方差公式的应用,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,熟记公式是解答本题的关键.8.(2020·重庆南开中学八年级开学考试)()()()222222x y x y x y -+++-+- 【答案】84-+xy 【分析】运用完全平方公式、平方差公式进行计算. 解:原式()()222222x y x y =-+-+()()222222x y x y =--++()()22224x y x y x y x y =-++---+()424x y =⋅-+ 84xy =-+.【点拨】本题考查完全平方公式、平方差公式,灵活变形应用平方差公式是关键. 举一反三:【变式】(2020·上海市静安区实验中学七年级课时练习)利用分解因式计算: (1)359910088⨯ (2)2220152253851-+⨯ 【答案】(1)39999964;(2)253000 【分析】(1)利用平方差公式运算;(2)先利用平方差公式进行运算,然后再提公因式继续运算即可. 【详解】(1)原式5510010088⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭2251008⎛⎫=- ⎪⎝⎭251000064=- 39999964= (2)原式()()2015220152253851=+⨯-+⨯253149253851=⨯+⨯ ()253149851=⨯+2531000=⨯ 253000=【点拨】本题考查了因式分解,根据具体数据分析确定因式分解的方法是解题的关键. 类型六、因式分解的应用9.(2020·江西九江市·八年级期末)解答下列问题:()1一正方形的面积是()22690,0a ab b a b ++>>,则表示该正方形的边长的代数式是 .()2求证:当n 为正整数时, ()()222121n n +--能被8整除.【答案】(1)3a b +;(2)见解析 【分析】(1)根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,分解因式即可;(2)原式利用平方差公式分解得到结果,即可做出判断. 解:(1)∵()22269=+3++a ab b a b , 该正方形的边长的代数式是3a b +,故答案为:3a b +.(2)证明:∵ ()()()()()()22212121212121n n n n n n ⎡⎤⎡⎤+--=++-+--⎣⎦⎣⎦=42n ⨯ =8n∵原式能被8整除.【点拨】本题考查了因式分解,是分解因式的实际应用,要知道分解所得的因式在实际环境中所表示的意思.同时还考查了用公式法进行因式分解.能用公式法进行因式分解的式子的结构特点需要熟记. 举一反三:【变式】 (2020·成都市金牛实验中学校七年级月考)若a ,b ,c 为ABC 的三边. (1)化简:|a ﹣b+c|+|c ﹣a ﹣b|﹣|a+b|;(2)若a ,b ,c 都是正整数,且a 2+b 2﹣2a ﹣8b+17=0,ABC 的周长. 【答案】(1)a ﹣b ;(2)9 【分析】(1)根据三角形的三边关系化简即可;(2)根据非负数的性质和三角形的三边关系化简即可得到结论. 解:(1)∵a ,b ,c 为∵ABC 的三边,∵a ﹣b+c >0,c ﹣a ﹣b <0,a+b >0,∵|a ﹣b+c|+|c ﹣a ﹣b|﹣|a+b|=a ﹣b+c ﹣c+a+b ﹣a ﹣b =a ﹣b ;(2)∵a 2+b 2﹣2a ﹣8b+17=(a 2﹣2a+1)+(b 2﹣8b+16)=(a ﹣1)2+(b ﹣4)2=0,∵a =1,b =4,∵a ,b ,c 为∵ABC 的三边, ∵4﹣1<c <4+1, ∵3<c <5,∵若a ,b ,c 都是正整数,。
第四章因式分解复习课件
a² -b² =(a+b)(a-b) ;
a² ±2ab+b² =(a±b)²
4.因式分解的注意事项: (1)先考虑用提公因式法,再用公式法;
(2)分解一定要彻底。
复习检测3(8分钟) 1.完成报纸第27版“练习3” T1: (a+3)(a-3) T3: (x+8)(x-8) 2.完成报纸第27版“练习4” T1: (x-1)² T2: (a-b-c)² 3.完成报纸第27版“练习5” T1: 4(x-1)² T3: (x-2)² T2: (x+3y)(x-3y)
Байду номын сангаас
T2: 2(x+1)(x-1)(x² +1)
T3: x² y² (x+y)(x-y)
复习指导4(5分钟) 知识点四:因式分解的应用 1.完成报纸第27版“练习6” T1 解:原式=a² -2ab+2a² -2b² +a² +2ab+b² =4a² -b² =(2a+b)(2a-b) 当2a-b=0时 此类题型要先因式分 解,再整体代入求值。
复习检测2(4分钟)
1.完成报纸第27版“练习2” 1)x(y-3); 2)ab(a-2b);
3)a(a-2)
复习指导3(2分钟) 知识点三:公式法因式分解
1.公式法:利用乘法公式把某些多项式因式分解, 这种因式分解的方法叫做公式法。 2.完全平方式:形如a² ±2ab+b² 的式子。 3.利用公式法因式分解用到的两个公式:
3、利用分解因式简化计算: (1)、22011-22010 (2)、7.6×201.1+4.3×201.1-1.9×201.1
解:(1)、22011-22010=22010(2-1)=22010 (2)、201.1(7.6+4.3-1.9) =201.1×10=2011
学生版《因式分解》全章复习与巩固(提高)知识讲解
國式分解+2ab +b 2=(a +b )2,-2ab +b 2=(a -b )2 《因式分解》全章复习与巩固(提高)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系;2. 掌握提公因式法分解因式,理解添括号法则;3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题【知识网络】4提公因式法*十字相乘法*分组分解法【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式•因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算要点二、提公因式法把多项式网+祇+痕分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是(直+B+C ,即朋◎+泌+沁二淞'仗+W ),而仗+3+C 正好是忍盘+曲+臟除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、添括号的法则括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号 要点四、公式法1. 平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即: a 2一b 2=(a +b )(a -b )2. 完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.形如a 23+2ab +b 2,a 2-2ab +b 2的式子叫做完全平方式.2完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.右边要点诠释(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.要点五、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法对于二次三项式X2+bx+c,若存在C,贝y x2+bx+c=(x+p)(x+q)[P+q二b分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解一一分组分解法即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式⑴2a2bc2+8ac2-4abc;(2)m(m+n)3+m(m+n)2一m(m+n)(m一n).02、利用分解因式证明:257-512能被120整除.3套用公式时要注意字母a和b的广泛意义,a、b可以是字母,也可以是单项式或多项式.类型二、公式法分解因式举一反04、计算^^^3、放学时,王老师布置了一道分解因式题:(x+y)2+4(x-y匕-4C—y2),小明思考了半天,没有答案,就打电话给小华,小华在电话里讲了一句,小明就恍然大悟了,你知道小华说了句什么话吗?小明是怎样分解因式的.【变式】下面是某同学对多项式C2-4x+2)C2-4x+6)+4进行因式分解的过程.解:设x2—4x二y原式=G+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2—4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的().A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果•(3)请你模仿以上方法尝试对多项式C-2x)(x2—2x+2)+1进行因式分解.11111(1—22)(1—32)(1—石)7—站)(1—20052(3)4a2-4ab+b2-6a+3b-4【变式】设a二32-12,a二52-32,—,a=(2n+1)2—(2n-1)2(n为大于0的自然数).⑴探究a是12nn否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a,a,…,a,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条12n件时,a为完全平方数(不必说明理由).n类型三、十字相乘法和分组分解法分解因式5、分解因式:(1)C x2-2)-C x2-2)-2(2)C x2+4x)-x2-4x-20举一反三:【变式】下列何者是22x7-83x6+21x5的因式?()A.2x+3B.x2(11x一7)C.x5(11x-3)D.x6(2x+7)06、已知长方形周长为300厘米,两邻边分别为x厘米、y厘米,且x3+x2y-4xy2-4y3丸求长方形的面积.【变式】因式分解:1-4x 2-4y 2+8xy ,正确的分组是()A.(1-4x 2)+(8xy -4y 2) C.(1+8xy)-(4x 2+4y 2)B.(1-4x 2-4y 2)+8xyD.1-(4x 2+4y 2-8xy)【巩固练习】一.选择题 下列式子变形是因式分解的是(A.x 2一5x +6=x (x -5)+6B.x 2-5x +6=(x -2)(x -3)2 C.(x -2)()D.x 2-5x +6=(x +2)(x +3)已知:AABC 的三边长分别为a 、 b 、c ,那么代数式a 2一2ac+c 2一b 2的值(A.大于零B.等于零C.小于零 D 不能确定3)A C.38D.72已知x 3-12x +16有一个因式是x +4,把它分解因式后应当是()A.(x +4)(x —2)2B.(x +4)(x 2+x +1)C.(x +4)(x +2)2D.(x +4)(x 2一x +1)4.若(x +a )(x +b )=x 2+px +q ,且p >0,q <0,那么a ,b 必须满足条件(A.a ,b 都是正数 C.a ,b 都是负数 5.下列因式分解错误的是()x 2-y 2=(x +y )(x -y ) B. a ,b 异号,且正数的绝对值较大D.a ,b 异号,且负数的绝对值较大B.x 2+6x +9=(x +3)26.将下述多项式分解后,有相同因式x -1的多项式有() ①x a -7z+6; ②+2_x _1;③+5x _6;④—氐一9⑤15?-23x+8;⑥护+11^—12A.2个B.3个C.4个D.5个7.已知(19x —31)(13x —17)-(13x —17)(11x —23)可因式分解成(ax +b )(8x +c ),其中a,b,c 均为整数,则a +b +c =()A.—12B.—32 &将x 3—x 2y -xy 2+y 3分组分解,下列的分组方法不恰当的是()A.(x 3-x 2y)+(-xy 2+y 3)B.(x 3-xy 2)+(-x 2y +y 3)C . x 2+xy = x (x +y ) D.x 2+y 2=(x +y )zam22)(x—2)2+x—8二.填空题9.15x2(y+4)一30x(y+4)=,其中x=2,y=—2.10.分解因式:9(a+b)2—(a-b)2=.11.已知m2+2m+n2一6n+10=0,贝ymn=.12. _________________________________ 分解因式:(a+2)(a 一2)+3a=.13.若2x3—x2—13x+k有一个因式为2x+1,则k的值应当是_14.把多项式ac—bc+a2—b2分解因式的结果是.15.已知a+b=5,ab=3,则a3b—2a2b2+ab3=.16.分解因式:(1)x4—5x2+4=;(2)a3+m3一a2m一三.解答题17.求证:817—279—913能被45整除.18.把下列各式分解因式(1)4x3—9x19.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块(3)请你模仿以上方法尝试对多项式2—22—2x +2)+1进行因式分解.20.下面是某同学对多项式\x 2—4x +2丿X 2—4x + 解:设x 2—4x 二y原式=(y +2)(y +6)+4(第一步) =y 2+8y +16(第二步) =(y +4)2 (第三步) =(2—4x +4) (第四步)① 用两种不同的方法,计算图2中长方形的面积;② 由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a 2+5ab +2b 2因式分解的结果,画出你的拼图. 回答下列问题:(1)该同学第二步到第三步运用了因式分解的()A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式 进行因式分解的过(2)该同学因式分解的结果是否彻底?(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式2—22—2x+2)+1进行因式分解.。
专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
八年级数学上册因式分解公式法
拓展应用
知识小结
评价反馈
3. 如图,在一块边长为a cm的正方形纸片 的四角,各剪去一个边长为b cm的正方形, 求剩余部分的面积.如果a=3.6,b=0.8呢?
解:剩余部分的面积是:a2-4b2=(a+2b)(a-2b) 当a=3.6,b=0.8时,原式=(a+2b)(a-2b) =(3.6+2×0.8)(3.6-2×0.8)
复习巩固
新知学习
拓展应用
公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
知识小结
评价反馈
完全平方式,特征: ①三项式 ②两平方项的符号同正 ③首尾2倍中间项
整式乘法
(a+b)2 因式分解
整式乘法
(a-b)2 因式分解
a2+2ab+b2 a2-2ab+b2
复习巩固
新知学习
拓展应用
第四章 因式分解 4.3.2 公式法
学习目标
1.了解完全平方式及公式法的概念,会用完全平方 公式进行因式分解. 2.综合运用提公因式法和完全平方公式对多项式进
行因式分解.
目录
CONTENTS
1 复习巩固 2 新知学习 3 拓展应用 4 知识小结 5 评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
2.已知4x2+kxy+9y2 是一个完全平式,则k= ±12 .
3.已知a(a+1)-(a2-b)=-2, 求 a2 b2 ab 的值. 2
解: 由a(a+1)-(a2-b) =a2+a-a2+b
数学八年级下第四章《因式分解》复习课PPT
⑴ 27m2n 9mn2 18mn
解: 原式 9mn(3m n 2)
公因式既可以是单 项式,也可以是多 项式,需要整体把 握。
⑵ 4b(1 b)3 2(b 1)2
解:原式 4b(1 b)3 2(1 b)2
2(1 b)22b(1 b) 1
2(1 b)2 (2b 2b2 1)
典例分析
例3.把下列各式分解因式
(m n)2 (m n)2 解 :原式 (m n) (m n)(m n) (m n)
2m 2n 4mn
(x y)2 10(x y) 25
解:原式 (x y 5)2
x2 3x 9 4
解:原式 (x 3)2 2
(2a b)2 8ab
整理得:xx
y y
24 40
解得:xy
32 8
答:两个正方形的边长分别为32cm,8cm.
典例分析
五:基于分解因式的整除问题
例8.利用分解因式说明: 257 512 能被120整除。
解:原式 527 512 (57 56 )(57 56 ) 56 6 56 4 120 511
知识回顾
• 1、举例说明什么是分解因式。 • 2、分解因式与整式乘法有什么关系? • 3、分解因式常用的方法有哪些? • 4、试着画出本章的知识结构图。
知识结构图
整式乘法
互 为 逆 运 算
因式分解
方法
把一个多项式化成几个整式 的积的形式,这种变形叫做 把这个多项式分解因式。
如果一个多项式的各项含有公因式, 那么就可以把这个公因式提出来, 从而将多项式化成两个因式乘积的 形式,这种分解因式的方法叫做提 公因式法。
A. y2 3y 4 y( y 3) 4 A选项没有化成几个整式的积的形式;
因式分解复习课课件
公式法
利用平方差公式、完全平 方公式等对多项式进行因 式分解。
分组分解法
将多项式中的项进行分组, 然后对每组进行因式分解。
因式分解的注意ห้องสมุดไป่ตู้项
确保因式分解后的每个整式都 是最简形式。
注意符号和顺序,确保因式分 解后的结果与原多项式相等。
注意因式分解的多样性,不同 的方法可能得到不同的结果。
[ ] $x^3 + 2x^2 + x =$?
提高练习题
[ ] $3x^3 - 6x^2 + 3x =$? [ ] $5x^3 - 10x^2 =$?
[ ] $4x^3 + 8x^2 - 16x =$? [ ] $6x^3 + 12x^2 + 6x =$?
综合练习题
[ ] $4x^4 - 8x^3 + 4x^2 =$?
注意点
使用公式法时,要确保多项式符合相应的公式形 式。
分组分解法
1 2
定义
分组分解法是指将多项式分组后再进行因式分解。
例子
$a^2 + 2ab + b^2 = (a + b)^2$
3
注意点
分组时,要确保分组后的多项式能够进行因式分 解。
十字相乘法
定义
十字相乘法是指利用十字 交叉相乘的方法进行因式 分解。
THANKS FOR WATCHING
感谢您的观看
例子
$x^2 + 5x - 6 = (x + 6)(x - 1)$
注意点
使用十字相乘法时,要确 保交叉相乘后的结果与多 项式的常数项相等。
04 因式分解的应用
因式分解复习课教案
因式分解复习课教案教学目标:知识与技能:能熟练运用提取公因式法和公式法进行多项式的因式分解;过程与方法:通过复习,对因式分解中的常见错误有更深的认识,从而提高因式分解的正确率;情感态度与价值观:培养学生应用因式分解解决问题的能力。
教学重难点:利用因式分解解决问题。
教学过程:一、知识回顾:1、因式分解的定义:2、因式分解的方法:(利用点名提问的方法)二、例题解析:例:把下列各式因式分解:(1)m(x-y)-n(y-x) (2)16-8xy+x2y2(3)25(a+b)2-9(a-b)2 (4)mp2-6mnp+9mn21、让学生说一说有什么方法分解因式?2、指名板演,学生析错,自纠,同桌互纠。
3、查缺补漏:(反思)因式分解中常会出现那些错误?三、学以致用:已知a,b,c是△ABC的三边的长,且满足a2+b2+c2=ab+ac+bc,试判断此三角形的形状。
分小组讨论后,写出完整的过程。
四、巩固提高:1、下列变形是否是因式分解?(1)6a2b3=2a2 3b3 (2)3x2y-xy+y=y(3x2-x)(3)(x-2)(x+2)=x2-4 (4)4a2-4a+1=4a(a-1)+1(抢答)2、说出下列多项式应该运用什么方法分解因式?(1)ab2+ab+3a (2)-a4+1(3)4x2-4xy+y2 (4)a4x4-a4y4(同桌说一说)3、利用简便方法计算:(1)6002-1200×597+5972(2)1003×997(板演)五、课末小结:这节课你有什么收获?学到了什么?有什么疑问提出来?六、布置作业:1、因式分解(1)6a3b-9a2b2c (2)-2m3+8m2-2m(3) x2 y – 4y (4) –a4+162、设n为整数,用因式分解说明(2n+1) - 25能被4整除。
3、思考题:观察下列各式:1–9 = - 8, 4-16= -12,9-25=-16, 16-36= -20 ······(1)把以上各式所含的规律用含n(n为正整数)的等式表示出来。
第四章-因式分解(复习课)教学设计精选全文完整版
可编辑修改精选全文完整版
第四章因式分解(复习课)教学设计
【教学目标】
1.进一步理解因式分解的概念和意义,了解因式分解和整式乘法的关系——方向相反的恒等变形;
2.复习提公因式法、公式法因式分解的过程,会综合运用提公因式法、公式法分解因式;
【教学重点】综合运用提公因式法、公式法分解因式.
【教学难点】根据题目的结构特点,选择合理的方法进行因式分解.
【教学思路】情境导入→知识回顾→例题讲解→练习巩固→中考链接→小结→作业布置
【教学过程】
环节一:情境导入
环节三:例题讲解
1.本单元复习题。
第四章 因式分解
第四章因式分解4.1 因式分解教学目标:知识与技能:使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力。
过程与方法:认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能运用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识。
情感与态度:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
重点:因式分解的概念难点:难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法教学过程:第一环节复习回顾:下题简便运算怎样进行问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67第二环节比较探究:问题3:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
993-99 = 99×992-99 = 99(992-1)∴993-99能被99整除(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993-99能被100整除想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据。
(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?(老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?)小结:以上三个问题解决问题的关键是把一个数式化成了几个数的积的形式。
(完整版)因式分解复习教案(教师版)
因式分解复习教案(教师教学案)教学目标: 1。
复习巩固用提公因式、平方差公式、完全平方公式分解因式的方法。
2.会综合运用提公因式、平方差公式、完全平方公式分解因式.教学重点:综合运用提公因式、平方差公式、完全平方公式分解因式。
教学难点 :根据题目的结构特点,合理选择方法。
教师活动一、引入本章我们学习了分解因式,学习分解因式同学们要掌握以下知识:(1)什么叫分解因式?(2)怎样分解因式?或者分解因式有哪些方法?下面我们一起带着这些问题进行复习二、教授新课知识点1:分解因式的定义(教师和学生一起复习定义及特征,强调因式分解与整式的乘法的关系) 思考:什么是分解因式?因式分解与整式的乘法有何关系分解因式的特征,左边是 , 右边是 。
针对练习:下列选项,哪一个是分解因式( )(学生自主完成此题,并指出错在哪里)A .x x x x x 6)3)(3(692+-+=+-B 。
103)2)(5(2-+=-+x x x xC 。
22)4(168-=+-x x xD 。
y x x y x ⋅⋅=552知识点2:分解因式的第一种方法—-——--提公因式法思考:如何提公因式?(教师强调公因式公有的意思-——你有我有大家有才是公有)注意:(学生一起读一遍)公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式 (5)某一项被作为公因式完全提出时,应补为例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3。
342)()()(n m m n y n m x +++-+的公因式是__________提公因式法分解因式分类:1.直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)423)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2.首项符号为为负号的类型:(1)33222864y x y x y x -+- =_________(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时) 如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D 。
《因式分解》复习课件
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
=56(56+44)
=(101+99)(101-99)
=56×100
=200×2
=5600
=400
二.多项式的除法
(2mp-3mq+4mr) ÷(2p-3q+4r)=_m____
变式: 用因式分解说明257-512能被120整除.
三.整体法求值
若m+n=6,mn=8,则m2n+mn2=_4_8__
变式:若2a-b=2,则6+8a-4b=_1_4__
3.当a、b为何值时,代数式a2+b2 +2a–4b+6
的值最小?最小值是多少?
通过复习这节课你有那些新的收获与 感受?
说出来与大家一起分享!
1.将下列各式因式分解: (1). x2y-2xy2+y3 (2).(m+n)3-4(m+n)
2.已知a-b=2,ab=4,则a3b-2a2b2+ab3的值 为多少?
( 4)9x2n+3-27xn+1
2ab
-m2n2
2x(x+y)
9xn+1
(5) p(y-x) - q(x-y)
y-x
1.公因式确定 (1)系数:取各系数的最大公约数; (2)字母:取各项相同的字母; (3)相同字母的指数:取最低指数。
提公因式法:
公因式可以是数字、 字母、单项式,也 可以是多项式
若9x2+kxy+36y2是完全平方式,则k=__
解:∵9x2+kxy+36y2是完全平方式
∴kxy=±2·3x·6y=±36xy ∴k=±36
因式分解全章教案和练习题
因式分解全章教案和练习题第一章:因式分解的基本概念教学目标:1. 理解因式分解的含义和意义。
2. 掌握因式分解的基本方法和步骤。
教学内容:1. 因式分解的定义和作用。
2. 提公因式法:找出多项式的公因式,并进行提取。
3. 分解因式:将多项式分解为两个或多个因式的乘积。
教学方法:1. 采用讲解法,讲解因式分解的基本概念和方法。
2. 利用例题进行讲解和示范,让学生跟随老师一起进行因式分解。
教学步骤:1. 导入新课,介绍因式分解的概念和意义。
2. 讲解提公因式法,让学生理解并掌握提取公因式的步骤。
3. 讲解分解因式的方法,让学生理解并掌握分解因式的步骤。
4. 进行课堂练习,让学生运用所学知识进行因式分解。
教学评价:1. 课堂练习的完成情况。
2. 学生对因式分解的基本概念和方法的理解程度。
第二章:提公因式法教学目标:1. 掌握提公因式法的基本步骤。
2. 能够运用提公因式法进行因式分解。
教学内容:1. 提公因式法的步骤:找出多项式的公因式,进行提取。
2. 提公因式法的应用:对多项式进行因式分解。
教学方法:1. 采用讲解法,讲解提公因式法的步骤和应用。
2. 利用例题进行讲解和示范,让学生跟随老师一起进行提公因式法。
教学步骤:1. 回顾上一章的内容,复习因式分解的基本概念。
2. 讲解提公因式法的步骤,让学生理解并掌握提取公因式的步骤。
3. 讲解提公因式法的应用,让学生理解并掌握如何运用提公因式法进行因式分解。
4. 进行课堂练习,让学生运用所学知识进行提公因式法。
教学评价:1. 课堂练习的完成情况。
2. 学生对提公因式法的基本步骤和应用的理解程度。
第三章:十字相乘法教学目标:1. 掌握十字相乘法的基本步骤。
2. 能够运用十字相乘法进行因式分解。
教学内容:1. 十字相乘法的步骤:找出多项式的两个因式的乘积,进行相乘。
2. 十字相乘法的应用:对多项式进行因式分解。
教学方法:1. 采用讲解法,讲解十字相乘法的步骤和应用。
北师大版八年级数学下册第四章《因式分解》复习 教案
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点②
与因式分解有关的开发题
1 1 1、给出三个多项式: x2+2x-1, x2+4x+1, 2 2 1
=(1-2)+(2-3)+…+(999-1000) =1-1000
=-999
今天我们的收 获
。
知识点①
巧用整体思想因式分解
1、因式分解:(x+2)(x+4)+x2-4
温馨提示:全部展开计算费事哦,能不能把某些 解原式=(x+2)(x+4)+(x+2)(x-2) 部分看成一个整体呢? =(x+2)(x+4+x-2)
=(x+2)(2x+2) =2(x+2)(x+1)
2、已知xy=5,a-b=6,求xya2+xyb2-2abxy的值
第四章因式分解
复习与巩固
执教:桐林中学曾志谋
要点归纳
一、因式分解
1、因式分解:把一个多项式化成几个整式 乘积 的形 式叫做因式分解。 2、因式分解的方 法:(1) 提公因式法 ;(2) 运用公式法
.
3、因式分解的一般步骤:
(1)如果一个多项式各项有公因式,一般应 先 。 提公因式
(2)如果一个多项式各项没有公因式,一般应先 考虑 运用公式法 ; 如果多项式有两项应考虑 用 平方差公式 应考虑用 完全平择你喜欢的两个多项式进行加法 x 2 运算,并把结果因式分解。
2、写出一个只含有一个未知数的二次三项式,它的 二次项系数是1,常数项是4,并且能因式分解,则 这个二次三项式是 。
知识点③ 通过因式分解进行简便计算
12-22 1+2 + 22+32 2+3 + … 9992+10002 999+1000
。 (3)因式分解时必须要分解到 不能再分解
4、重要公式 平方差公式: a2-b2=(a+b)(a-b)
2±2ab+b2=(a±b)2 a 完全平方公式:
十字相乘: x2+(a+b)x+ab=(x+a)(x+b)
二、本章要注意的几个问题
1、运用提公因式法进行因式分解时,数字公因数 也要提出来,当第一项的系数是负数时,把负号一 并提取出来。 2、因式分解的三个步骤:“一提、二套、三检 查”,即在因式分解时首先是提公因式,第二步 是套公式,第三步是检查符号正确与否,每个因 式是否可以在继续因式分解。 3、注意整体思想在因式分解中的运用。