实验六移位寄存器的设计
移位寄存器的设计方法
移位寄存器的设计方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!移位寄存器是一种重要的数字电路组件,用于实现数据的移位操作。
移位寄存器及其应用实验报告
移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。
它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。
移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。
在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。
本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。
2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。
3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。
常见的移位规则包括:左移、右移、循环左移、循环右移等。
移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。
本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。
3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。
串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。
3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。
并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。
3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。
2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。
3.使用示波器检查电路的正确性。
4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。
4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。
首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。
通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。
移位寄存器实验报告
移位寄存器实验报告移位寄存器和计数器的设计实—期:专业班级:_姓名:_____________ 学号:一、实验目的1. 了解二进制加法计数器的工作过程。
2. 掌握任意进制计数器的设计方法。
实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)三、实验原理图1. 由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2. 测试74LS161的功能输入端 输出时 清 置 P T Qn钟 J —| —A零 数3. 熟悉用74LS161设计十进制计数器的方法。
①利用置位端实现十进制计数器。
16 15 14 13 12 1 1 10 9 74LS16112 3 4 5 16 7 8 捺出 LD數据输入Ci- GND 允许”邃 <―二^允详置人出 Qo Qi O2 Q?② 利用复位端实现十进制计数器。
四、实验结果及数据处理1. 左移寄存器实验数据记录表要求:输入二进制:11110000移位寄存器状态XX X X 清零+ 1X X 置数+1 1 1 1计数X 1 1 0 X 不计数X 1 1 X 0 不计数1 1— CP-共阴极共阴机数码管数码管C BI s1D C B A74LS161q 小 Ditl IT 「「-1(741SQ0]移位脉冲的次Q4Q3Q2Q1 000001000120011301114111151110 6110071000 800002. 画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路8 进制利用复位法实现8进制计数器,8=1000B将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。
移位寄存器功能及其设计
仿真图:
串入并出 移位 CP 0 1 2 3 4
串行输入 1 1 0 0 0
并行输出(Q3Q2Q1Q0) 0000 1000 1100 0110 0011
并入串出(初始时 Q3Q2Q1Q0 被置为 0011,既有并行输入为 0011)
移位 CP
并行输出
串行输出
1
0011
1
2
0001
1
3
0000
0
4
预置 1 1 1 ↑ × × D0 D1 D2 D3 D0D1D2D3
左移 1 1 0 ↑ DIL × × × ×
×
Q1Q2Q3DIL
右移 1 0 1 ↑ ×
ห้องสมุดไป่ตู้
DIR × × ×
×
DIRQ0Q1Q2
3 、双向移位寄存器 74LS194 的应用
(1)形成扭环计数器电路;(2)组成模 12 计数器 ;(3)形成并串转换电路 。
开关闭合,S1=1,S0=1,实现对两片 74LS194 的预置数,将 A=0101,B=1001 分别置入 74LS194(A),74LS194(B)。然后将开关断开,74LS194(A), 74LS194(B)进行的是右移运 算。通过该电路各芯片之间一系列的作用,在经过 4 个 CP 脉冲后,结果如下:
2、 双向移位寄存器:在控制信号的作用下,既能左移又能右移的多位移位寄存器。74LS94
是 4 位双向移位寄存器,逻辑功能表如下:
功能
输入
S1 S0 CP DIL DIR D0 D1 D2 D3
RD
QQQQ 0123
清除 0 × × × ×
××× ×
×
0000
保持 1 0 0 ↑ ×
实验六 移位寄存器
实验六移位寄存器一:实验目的1. 掌握移位寄存器的工作原理,逻辑功能2. 掌握集成移位寄存器74LS194的逻辑功能及应用二:实验器材74LS00 74LS74 74LS194 CD4008B三:实验原理寄存器用于寄存一组二值代码,它被广泛应用于各类数字系统和计算机中,一个触发器能储存1位二值代码,N个触发器组成的寄存器能储存N位二值代码。
移位寄存器除了具有存储代码功能以外,还具有移位功能。
所谓移位功能,是指寄存器里存储的代码能在移位脉冲的作用下依次左移或右移。
因此,移位寄存器不但可以用来寄存代码,还可以用来实现数据的串行---并行转换,数值的运算和处理。
四.实验内容(一)验证74LS194的逻辑功能,按功能表进行。
结论:74LS194的逻辑功能与实验结果相一致并且与逻辑功能表相符合.二)如图6.3所示,两个二制数A,B,分别存入74LS194(A),74LS194(B),现在要对它们进行按位相加,其和放入74LS194(A)中。
试采用全加器CD4008B和D触发器74LS74组成能实现上述要求的电路,输出用二极管指示。
有图知,满足其特性。
分析以上记录的真值表可知在预设的A为 1010,B为1001情况下,芯片U1用来对A进行移位处理、存放和显示输出结果,U2用来对B进行移位,U3为全加器,本题中设置为一位全加器,故其进位应为S2,全加器将本位的输出和用来控制A右移移位进去的数字,并用D锁存器来存储A、B全加所得和向高位的进位,并将进位结果参与下一次全加运算。
分析真值表可知,每来一个脉冲,A、B实现一次移位,全加器进行一次全加,锁存器存入所得进位数。
四个脉冲到来之后,输出结果即为A、B全加二进制结果,由表中数据得出A+B=10011,符合实验结果;之后由于B已经移出去了,实现的是A 中数与0000的全加的循环移位。
(三)设计二进制转换成十进制的数码转换电路,使上述电路在相加后可以完成用数码管显示相加结果。
移位寄存器实验报告参考
移位寄存器实验报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。
根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。
74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。
该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。
有如下功能表(二)(三)实验内容1.按如下电路图连接电路十个输入端,四个输出端,主体为74194.2.波形图参数设置:End time:2us Grid size:100ns波形说明:clk:时钟信号; clrn:置0s1s0:模式控制端 sl_r:串行输入端abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。
3.数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102clk:122 clk0:125 clrn:95q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72sl_r:82,83结论:下载结果与仿真结果一致,下载正确。
一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。
五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。
根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。
应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。
(2)仿真常规方法步骤是什么?有什么注意事项?a)新建波形文件后波形图参数设置b)添加结点或总线后信号整合与位置分配c)激励输入及分段仿真注意事项:1.激励输入信号与待分析输出信号上下放置,界限分明;时钟信号置顶,其他输入信号可按异步控制,同步控制,数据输入顺序向下放置;同一元器件的控制信号就近放置;同一功能的控制信号就近放置;2.符合总线形式的IO信号优先整合;同一器件和同一属性的控制信号优先整合;脉冲信号一般不整合;整合前信号应按高位到低位顺序向下放置;整合后信号名以能直观反映该信号功能为宜;3.首先设置时钟信号等系统信号激励完成电路初始状态,其次将时间轴划分为连续的时间段,一时间段完成一小步实验内容。
双向移位寄存器实验指导书
4) 回到波形编辑窗口,对所有输入端口设置输入波形,具体可以通过左边的工 具栏,或通过对信号单击鼠标右键的弹出式菜单中完成操作,最后保存次波形文 件。
4. 进行功能仿真 1) 单击 Assignments\Settings…,在弹出对话框中做以下设置:
-5-
制作人:程鸿亮
长安大学 电子与控制工程学院 电子科学与技术系
SPEAKER CLOCK0 CLOCK2 CLOCK5 CLOCK9
引脚号 C13 C7 H3 U3 P3 F4 C10 C16 G20 R20 AB16 AB17 AB18 AB19 AB20 AB7 AB8 AB11 A10 A9 A8 A7 A6 A5 A4 A3 AB9 AB10 B5 Y10
⒈⒉⒊⒋⒌⒍⒎⒏ ⒐⒑⒒⒓⒔⒕⒖⒗
四、实验步骤: 1. 打开 QuartusII 软件,建立一个新的工程: 1) 单击菜单 File\New Project Wizard…
2) 输入工程的路径、工程名以及顶层实体名。 3) 单击 Next>按钮,出现以下窗口
由于我们建立的是一个空的项目,所以没有包含已有文件,单击 Next>继续。 4) 设置我们的器件信息:
如图所示,Simulation mode 设置为 Functional,即功能仿真。指定仿真波形文件 后单击 OK 完成设置。 2) 单击 Processing\Generate Functional Simulation Netlist 以获得功能仿真网络表。 3) 单击 Processing\Start Simulation 进入仿真页面:
E8
I/O29
E7
I/O30
D11
I/O31
D9
I/O32
D8
移位寄存器实验_卢上游
移位寄存器实验三大队三营卢上游C022012020实验一: m 序列的采样实现(内容包括: 迹函数表示法、的陪集分解、m 序列的线性结构)(一)、算法思路1.n21Z *-的陪集分解 Step1:求出集合, 即找出1到中所有与互素的数。
Step2:求 的陪集分解。
采用遍历的方法, 取中的任意元素, 根据平移等价公式:存在整数使得成立, 找出与采样平移等价的序列对应的元素, 并都置为-1, 即取为一个陪集的代表元, 放入到集合中, 由此可知, 当遍历完后就可以得到所有陪集的代表元了, 即为集合的所有元素。
Set3: 取集合中所有元素、、……、, 对所给的n 级m 序列进行采样,得到、、……、, 即所有不同的n 级m 序列。
2.m 序列的线性结构Step1: 对于一个n 级m 序列取前2n 项, 代入递推关系式中, 求解方程组, 得到n 阶本原多项式。
如果能够取得所有的n 级m 序列的前2n 项,那么就能求得所有的n 阶本原多项式, 而获得所有的n 级m 序列, 实验(1)已经给出, 在这个实验中只给出了一个本原多项式。
Step2:对于求解方程组, 的取值, 采用给定一个数值, 使得对应于的二进制数的第位, 如果满足方程组, 则代入到中, 即为本原多项式, 如果不满足, 则, 直到。
3.迹函数表示法取为n 次本原多项式的根, 利用多项式表示法表示出中的所有元素, 对中每一个元素, 求(Tr(),Tr(),Tr(),… ,Tr(),…), 即可得到G (f )中的所有序列。
因为在编程时发现迹函数的化解无法实现, 所以参考了刘帅在这一块的作业。
(二)、实验结果1.n21Z *-的陪集分解 用书上的例3.4.4验证本程序的正确性。
利用程序, 我们对4级m 序列进行采样, 实验结果如下:2.m 序列的线性结构以书上129页19题为例:3.迹函数表示法我们以5次本原多项式为例对程序进行验证, 实验结果如下:实验二: 梅西迭代算法实现(内容包括: 周期序列极小多项式、由已知m序列获得全部n次本源多项式)1.算法思路(1)一般梅西迭代算法(求产生N长二元序列的最短移位寄存器) Step1:取初始值: 。
实验六移位寄存器的设计
实验六移位寄存器的设计一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验预习要求1、复习有关寄存器及串行、并行转换器有关内容。
2、查阅CC40194、CC4011及CC4068 逻辑线路。
熟悉其逻辑功能及引脚排列。
3、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?4、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?5、若进行循环左移,图6-4接线应如何改接?6、画出用两片CC40194构成的七位左移串 /并行转换器线路。
7、画出用两片CC40194构成的七位左移并 /串行转换器线路。
三、实验设备及器件1、+5V直流电源2、单次脉冲源3、逻辑电平开关4、逻辑电平显示器5、CC40194×2(74LS194)CC4011(74LS00) CC4068(74LS30)四、设计方法与参考资料1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图6-1所示。
其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输C为直接无条件清零端;入端,S L为左移串行输入端;S1、S0为操作模式控制端;R图6-1 CC40194的逻辑符号及引脚功能CP为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。
移位寄存器实验报告doc
移位寄存器实验报告篇一:移位寄存器实验报告移位寄存器实验报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。
根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。
74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。
该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。
有如下功能表(三)实验内容1. 按如下电路图连接电路十个输入端,四个输出端,主体为74194. 2. 波形图参数设置:End time:2usGrid size:100ns 波形说明:clk:时钟信号;clrn:置0 s1s0:模式控制端 sl_r:串行输入端 abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。
3. 数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102 clk:122 clk0:125 clrn:95 q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72 sl_r:82,83 结论:下载结果与仿真结果一致,下载正确。
一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。
五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。
根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。
应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。
移位寄存器 实验报告
(一)用D触发器设计左移移位寄存器
(二)利用74LS161和74LS00设计实现任意进制的计数器
设计要求:
以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
三、实验原理图
1.由4个D触发器改成的4位异步二进制加法计数器
(输入二进制:11110000)
2.测试74LS161的功能
3.谈谈电子实验的心得体会,希望同学们提出宝贵意见。
答:通过这学期的电子实验,我对电子电路有了更加深入地了解。初步了解了触发器、寄存器、计数器等电子元件的使用。将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。
五、思考题
1. 74LS161是同步还是异步,加法还是减法计数器?
答:在上图电路中74LS161是异步加法计数器。
2.设计十进制计数器时将如何去掉后6个计数状态的?
答:通过置位端实现时,将Q0、Q3接到与非门上,输出连接到置位控制端。当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
输入端不计数共阴极艮惶注再现前十进制计饕器并简述移位脉冲的次数移位寄存器状态进制利用复位法实现8进制计数器81000b将a端同与非门相连当使复位端获得信号复位从而实现进制
实验四:移位寄存器和计数器的设计
实验室:实验台号:日期:
专业班级:姓名:学号:
一、实验目的
1.了解二进制加法计数器的工作过程。
2.掌握任意进制计数器的设计方法。
输入端
输出
Qn
时钟
清零
置数
P
T
X
0
实验6-移位寄存器功能测试和应用-(实验报告要求)
实验六 移位寄存器功能测试及应用--实验报告要求一. 实验目的(0.5分)1. 熟悉寄存器、移位寄存器的电路结构和工作原理。
2. 掌握中规模4位双向移位寄存器逻辑功能及使用方法。
3. 熟悉移位寄存器的应用。
二. 实验电路D0、D1 、D2 、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;SR 为右移串行输入端,SL 为左移串行输入端;S1、S0 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。
三图2 CC40194/74LS194逻辑功能测试图1 CC40194/74LS194的逻辑符号及引脚功能图3 环形计数器四. 实验原理(0.5分)1.移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用。
74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q0-->Q3),左移(方向由Q3→Q0),保持及清零。
2.移位寄存器应用很广,可构成移位寄存器型计数器:顺序脉冲发生器;串行累加器;可用数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。
本实验研究移位寄存器用作环形计数器和数据的串、并行转换。
(1)环行计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位。
(2)实现数据、并行转换器a)串行∕并行转换器串行∕并行转换器是指串行输入的数码,经转换电路之后变换成并行输出。
b)并行∕串行转换器并行∕串行转换器是指并行输入的数码经转换电路之后,换成串行输出。
五. 实验内容与步骤(共1分)1.测试74LS194的逻辑功能(0.5分)(1)在实验箱上选取一个16P插座,按定位标记插好74LS194集成块。
组成原理实验(五)-移位寄存器实验
计算机组成原理实验(五)-运算器扩展实验实验项目名: 移位寄存器实验实验要求:通过实验,理解移位操作的重要的作用;熟悉实验台上移位寄存器部件的硬件连线和移位操作的控制信号;掌握移位寄存器的控制方法;验证移位运算的意义。
实验内容:(1)完成电路连接。
将运算器单元、输入模块和输出模块挂接到总线上,连接好时序启停模块,为运算器工作提供基本的时序参考信号。
(2)分析运算器单元的移位寄存器的数据通路,确定通过该寄存器实现一次移位操作所需的控制序号序列,根据其发生的先后时序关系,写出相应的微控制信号序列。
(3)通过实验台的微控制输入开关,逐条的输入微控制信号,通过输入单元输入运算数据,在控制信号和时序信号的作用下,利用单步工作模式,控制移位寄存器工作,观察输出的计算结果。
通过实验完成以下内容:A、验证各种移位操作的控制方法,记录结果。
B、设计控制信号,充分利用移位操作,实现以下运算:详细说明:(1)实验中使用的移位寄存器位于运算器单元,是由一片74LS299芯片构造的移位寄存器,通过内部逻辑连接,该移位寄存器可以实现对数据的循环左、右移和带进位CN的循环左、右移。
充分利用各种提供的移位方式,配合上次实验课学过的运算单元,可以实现简单的乘法和除法运算。
下面看下利用移位器进行运算的基本方法和步骤:(a)移位操作的实现方法:✶通过输入模块将待操作的数据送到总线(SW-B);✶将总线上的数据打入移位寄存器(移位寄存器装数操作,见表1);✶对数据进行移位操作(根据表1的说明,合理的设置控制信号)✶将移位结果送到总线上,以便观察或其它使用(299-B);(b)移位运算与加法运算的配合:由于实验台的硬件限制,要实现简单的乘法运算,可以手动根据乘数的对应位值配置加法和移位操作实现。
✶将DR1寄存器作为部分积寄存器,初始化清零;✶将DR2寄存器作为被乘数寄存器,初始化为被乘数的绝对值;✶从乘数(绝对值)的最低位开始,根据对应位的值,控制ALU作DR1+DR2或者不加;✶将加运算的结果送入299移位寄存器,做带进位的循环右移操作,将移位结果重新送回DR1寄存器;根据移位操作执行后CN标志,记录乘积的的最低位;✶重复上述第3-5步,直到所有的乘数位都已考虑,完成乘法运算,乘积为DR1(部分积寄存器)的值(高位)和记录的所有移出CN位(低位)的合并;(2各模块控制信号说明:①输入模块:✶SW-B,开关输入信息送数据总线控制信号。
数电实验之移位寄存器
数电实验之移位寄存器移位寄存器一实验目的1.学习用D触发器构成移位寄存器(环行计数器)2.掌握中规模集成电路双向移位寄存器逻辑功能及使用方法二实验原理1、用4个D触发器组成4位移位寄存器,将每位即各D触发器的输出Q1、Q2、Q3、Q4分别接到四个0—1指示器(LED)将最后一位输出Q4反馈接到第一位D触发器的输入端,则构成一简单的四位移位环行计数器。
2、移位寄存器具有移位功能,是指寄存器中所存的代码能够在时钟脉冲的作用下依次左移或右移。
对于即能左移又能右移的寄存器称为双向移位寄存器。
只需要改变左移、右移的控制信号便可实现双向移位的要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向移位寄存器,型号为74LS194A(或CD40194),两者功能相同,其引脚分布图如下图18.1所示:其中A、B、C、D为并行输入端,A为高位依次排列;QA、QB、QC、QD为并行输出端;SR为右移串行输入端;SL为左移串行输入端;S1、S0为操作模式控制端;CLR为异步清零端;低电平有效;CLK为CP时钟脉冲输入端。
74LS194A有5种工作模式:并行输入,右移(QD→QA),左移(QD←QA),保持和清零。
74LS194功能表如表18.1所示:表18.1三实验器件数字实验箱集成电路芯片:74LS74×2 (CD4013×2);74LS75 ;74LS76 ;74LS194A(CD40194)。
图18.1四实验内容1.用74LS74组成移位寄存器,使第一个输出端点亮LED并使其右移循环。
顺序是FF1、FF2、FF3、FF4。
A) 1. 用两个74LS74按图18.2连接:图18.21. CP时钟输入先不接到电路中(单步脉冲源或连续脉冲源);1. 连接线路完毕,检查无误后加+5V电源;2. 观察4个输出端的LED应该是不亮的,如果有亮的话,应按清零端的逻辑开关,(给出一个低电平信号清零后,再将开关置于高电平)即将4个D触发器输出端的LED清零。
移位寄存器的设计与实现
长沙理工大学《计算机组成原理》课程设计报告移位寄存器的设计与实现张娜学 院 计算机与通信工程 专业 计算机科学与技术 班 级 计07—01 学 号 2 学生姓名 张娜 指导教师 黄 敏 课程成绩 完成日期 2009年12月31日课程设计任务书计算机与通信工程学院计算机科学与技术专业课程设计成绩评定学院计算机通信工程专业计算机科学与技术班级计07—01 班学号 2学生姓名张娜指导教师黄敏课程成绩完成日期2009年12月31日指导教师对学生在课程设计中的评价指导教师对课程设计的评定意见移位寄存器的设计与实现学生:张娜指导老师:黄敏摘要:系统使用EDA技术设计了具有移位功能的寄存器,采用硬件描述语言VHDL进行设计,然后进行编程,时序仿真等。
软件基于VHDL语言实现了本设计的控制功能。
本设计根据移位寄存器的功能设计了三种不同的寄存器:双向移位寄存器、串入串出(SISO)移位寄存器、串入并出(SIPO)移位寄存器。
整个设计过程简单,使用方便。
功能齐全,精度高,具有一定的开发价值。
关键词:EDA;VHDL;移位寄存器Abstract: This system uses EDA designed a shift register, using a hardware description language VHDL , then programming, and timing simulation.This software is based on VHDL language to implement the control functions of this design. This design according to the function of shift register design the three different registers: two-way shift register , string-in string-out (SISO) shift register,string-into parallel-out (SIPO) shift register. The whole design has a simple process and is easy to use. And it has a full function and a high precision, and it’s development value is very high.Keywords: EDA; VHDL; shift register目录1 引言 (1)1.1课程设计的目的 (1)1.2 课程设计的内容 (1)2 EDA、VHDL简介 (2)2.1 EDA简介 (2)2.2VHDL (2)2.2.3 VHDL的设计流程 (3)3 移位寄存器设计过程 (4)3.1设计规划 (4)3.2 各模块工作原理与设计 (4)3.2.1移位寄存器的工作原理 (4)3.2.2双向移位寄存器的设计 (4)3.2.3串入串出(SISO)移位寄存器的设计 (6)3.2.4串入并出(SIPO)移位寄存器的设计 (7)4 系统仿真 (9)4.1双向移位寄存器仿真图分析 (9)4.2 串入串出(SISO)移位寄存器仿真图分析 (9)4.3串入并出(SIPO)移位寄存器仿真图分析 (10)结束语 (11)致谢 (12)参考文献 (13)1 引言随着社会的发展,科学技术也在不断的进步。
移位寄存器 实验报告
实验室:实验台号:日期:
专业班级:姓名:学号:
一、实验目的
1.了解二进制加法计数器的工作过程。
2.掌握任意进制计数器的设计方法。
二、实验内容
(一)用D触发器设计左移移位寄存器
(二)利用74LS161和74LS00设计实现任意进制的计数器
设计要求:
以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
8进制
利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题
1. 74LS161是同步还是异步,加法还是减法计数器?
答:在上图电路中74LS161是异步加法计数器。
2.设计十进制计数器时将如何去掉后6个计数状态的?
答:通过置位端实现时,将Q0、Q3接到与非门上,输出连接到置位控制端。当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
三、实验原理图
1.由4个D触发器改成的4位异步二进制加法计数器
(输入二进制:11110000)
2.测试74LS161的功能
输入端
输出
Qn
时钟
清零
置数
P
T
X
0
X
X
X
清零
1
0
X
X
置数
1
1
1
1
计数
X
1
1
0
X
不计数
X
1
1
X
0
不计数
实验6移位寄存器的应用设计
实验6移位寄存器的应用设计移位寄存器是一种特殊的寄存器,可以在逻辑电路中用于完成各种功能。
它具有较低的建造成本和较高的可靠性,因此在数字系统中被广泛应用。
本文将介绍移位寄存器的基本原理和应用设计。
移位寄存器是一种能够向左或向右移位的寄存器。
根据移位方向的不同,可以分为左移寄存器和右移寄存器。
移位寄存器有一个数据输入端和一个数据输出端,还有一个时钟输入端。
在每个时钟脉冲到来时,输入端的数据会向寄存器的下一个位置移动,并从输出端输出。
移位寄存器有多种应用,在数字系统中的应用非常广泛。
以下是一些常见的应用设计。
1.数据存储器:移位寄存器可以用作数据存储器,在数字系统中存储各种类型的数据。
通过将数据输入到移位寄存器的数据输入端,并在需要时读取输出端的数据,可以实现数据的存储和读取操作。
2.并行-串行数据转换器:移位寄存器可以将并行输入数据转换为串行输出数据。
通过将并行数据输入到移位寄存器的不同位置,并按顺序读取输出端的数据,可以将并行数据转换为串行数据。
3.串行-并行数据转换器:移位寄存器还可以将串行输入数据转换为并行输出数据。
通过连续输入串行数据,并在每个时钟脉冲到来时从输出端读取数据,可以将串行数据转换为并行数据。
4.移位寄存器作为计数器:移位寄存器可以用作计数器,在数字系统中实现各种计数操作。
通过将初始值输入到移位寄存器的数据输入端,并在每个时钟脉冲到来时将寄存器的内容向左或向右移位,可以实现计数操作。
5.并行数据压缩器:移位寄存器可以用于压缩大量的并行数据。
通过将并行数据输入到移位寄存器,并在每个时钟脉冲到来时从输出端读取一部分数据,可以将大量的并行数据压缩为较少的串行数据。
移位寄存器的应用不仅限于上述几种设计,还可以根据具体需求进行更复杂的应用设计。
移位寄存器的灵活性和可编程性为数字系统的设计提供了很大的便利。
总之,移位寄存器是一种重要且应用广泛的数字电路元件。
它可以用于实现数据存储、数据转换、计数和压缩等功能。
移位寄存器设计范文
移位寄存器设计范文首先,我们需要确定移位寄存器的移位方向。
移位方向可以是向左或向右。
考虑到数据在计算机系统中的存储方式,大多数情况下,移位方向选择向左移位。
向左移位意味着最左边的比特位将丢失,并在最右边填充一个新的比特位。
其次,我们需要确定移位寄存器的移位位数。
移位位数指的是在一次移位操作中,需要将存储的数据向左或向右移动的比特位数。
移位位数可以是固定的,也可以由外部输入决定。
在移位位数固定的情况下,我们需要确定移位寄存器中的存储单元数目,以满足预定的移位位数需求。
接下来,我们需要设计移位寄存器的输入/输出接口。
输入接口用于将数据加载到移位寄存器中,输出接口用于从移位寄存器中获取移位后的数据。
对于输入接口,可以采用并行输入或串行输入方式。
并行输入方式需要多个输入引脚,每个引脚对应一个比特位。
串行输入方式只需一个输入引脚,输入数据从一个比特位依次输入。
对于输出接口,同样可以采用并行输出或串行输出方式。
最后,我们需要考虑移位寄存器的时序控制。
时序控制指的是对移位操作的时钟信号进行控制。
通常情况下,移位寄存器的移位操作都是在时钟的上升沿或下降沿触发的。
可以通过时钟信号对存储单元进行同步操作,确保移位寄存器能够按照设计要求正确地进行移位操作。
综上所述,设计一个移位寄存器需要考虑移位方向、移位位数、输入/输出接口和时序控制等因素。
通过合理设计这些因素,可以实现一个高效、可靠的移位寄存器,满足各种应用场景中的需求。
移位寄存器实验报告
移位寄存器实验报告移位寄存器和计数器的设计实—期:专业班级:_姓名:_____________ 学号:一、实验目的1. 了解二进制加法计数器的工作过程。
2. 掌握任意进制计数器的设计方法。
实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)三、实验原理图1. 由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2. 测试74LS161的功能输入端 输出时 清 置 P T Qn钟 J —| —A零 数3. 熟悉用74LS161设计十进制计数器的方法。
①利用置位端实现十进制计数器。
16 15 14 13 12 1 1 10 9 74LS16112 3 4 5 16 7 8 捺出 LD數据输入Ci- GND 允许”邃 <―二^允详置人出 Qo Qi O2 Q?② 利用复位端实现十进制计数器。
四、实验结果及数据处理1. 左移寄存器实验数据记录表要求:输入二进制:11110000移位寄存器状态XX X X 清零+ 1X X 置数+1 1 1 1计数X 1 1 0 X 不计数X 1 1 X 0 不计数1 1— CP-共阴极共阴机数码管数码管C BI s1D C B A74LS161q 小 Ditl IT 「「-1(741SQ0]移位脉冲的次Q4Q3Q2Q1 000001000120011301114111151110 6110071000 800002. 画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路8 进制利用复位法实现8进制计数器,8=1000B将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。
课题六 、 移位寄存器电路的设计与安装
课题六移位寄存器电路的设计与安装一、目的要求培养学生设计电路的思维能力, 掌握原理图设计元器件接线图, 了解电路图的设计步骤和元器件布线的方法。
要求能设计合理的电路接线图, 按照电路图把元器件安装在面包板上, 使元器件布局合理, 跳线最少, 通电后电路能正常的工作。
二、电路设计内容1) 原理图的绘制2)电路图的绘制3)按电路图在面包板上布局元器件4)跳线的布局5)通电调试工作正常三、实习器材、工具仪表集成电路74164 1块电阻470Ω7只集成电路555 1块1K 3只变压器3W9V 1只33K 1只稳压7805 1只面包板1块三极管9013 1只二极管1N4007 4只发光二极管7只电解电容220UF/16V 2只47UF/16V 1只涤纶电容10nF 1只剪线钳1把尖嘴钳1把指针式万用表1块四、移位寄存器原理图移位寄存器面包板安装图五、电路接线图设计步骤1)绘制面包板的草图2)在草图上绘制元器件3)先放集成电路符号4)后放发光二极管5)再放电阻、电容6)最后是跳线7)电路图画好后应检查调整, 纠正错误, 使元器件、跳线不交叉8)按照画好的电路图在面包板上安装元器件9)先安装跳线、后安装元器件10)安装完成后应检查有无错误11)正确后通电调试应工作正常六、出现故障及检查1)无9V整流滤波电压输出, 应检查整流滤波电路元件是否连错或开路, 变压器开路或引线接错。
2)有9V没有5V电压输出, 应检查稳压块7805是否损坏或接错, 引线是否开路。
3)稳压电源5V正常, 发光管不发光A;振荡器555工作不正常,555集成电路引脚连错或引线连错, 外接元器件不正确或开路电阻、电容有损坏, 跳线连接不正确B;集成电路74164工作不正常74164引脚或连线接错, 外接元件错误或开路, 发光管引脚错误, 跳线错误, C;只能移动一次三极管9013连错或损坏, 电阻、跳线错误七、练习题1)绘原理图2)绘电路图3)移位寄存器电路共有多少只元器件4)555集成电路起什么作用5)74164是什么集成电路八、评分标准序号项目配分1 绘原理图102 绘电路接线图203 元器件布局204 引线布局105 通电电路正常工作40九、扣分标准1)原理图绘错每处3分2)电路图绘错每处4分3)元器件、跳线交叉、不平直每处5分4)元器件参数不符每处3分十、改进电路将复位9脚接高电位、1.2脚接三极管的集电极, 基极接4脚为1亮1暗地移动, 接5脚为2亮2暗地移动, 接6脚为3亮3暗地移动, 接10脚为4亮4暗地移动, 接1 1脚为5亮5暗地移动, 接12脚为6亮6暗地移动, 接13脚为7亮7暗地移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、使寄存器清零,除采用 输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?
5、若进行循环左移,图6-4接线应如何改接?
6、画出用两片CC40194构成的七位左移串/并行转换器线路。
1
1
送数
图6-4七位并行/串行转换器
寄存器清“0”后,加一个转换起动信号(负脉冲或低电平)。此时,由于方式控制S1S0为11,转换电路执行并行输入操作。当第一个CP脉冲到来后,Q0Q1Q2Q3Q4Q5Q6Q7
的状态为0D1D2D3D4D5D6D7,并行输入数码存入寄存器。从而使得G1输出为1,G2输出为0,结果,S1S2变为01,转换电路随着CP脉冲的加入,开始执行右移串行输出,随着CP脉冲的依次加入,输出状态依次右移,待右移操作七次后,Q0~Q6的状态都为高电平1,与非门G1输出为低电平,G2门输出为高电平,S1S2又变为11,表示并/串行转换结束,且为第二次并行输入创造了条件。转换过程如表6-4所示。
7、画出用两片CC40194构成的七位左移并/串行转换器线路。
三、实验设备及器件
1、+5V直流电源2、单次脉冲源
3、逻辑电平开关4、逻辑电平显示器
5、CC40194×2(74LS194)CC4011(74LS00)CC4068(74LS30)
四、设计方法与参考资料
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几片移位寄存器用级连的方法来扩展位数。
表6-4
CP
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
串行输出
0
0
0
0
0
0
0
0
0
1
0
D1
D2
D3
D4
D5
D6
D7
2
1
0
D1
D2
D3
D4
D5
D6
D7
3
1
1
0
D1
D2
D3
D4
D5
D6
D7
4
1
1
1
0
D1
D2
图6-1 CC40194的逻辑符号及引脚功能
CP为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。
S1、S0和 端的控制作用如表6-1。
2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累
表6-1
功能
图6-3七位串行/并行转换器
电路中S0端接高电平1,S1受Q7控制,二片寄存器连接成串行输入右移工作模式。Q7是转换结束标志。当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式,当Q7=0时,S1=1,有S1S0=10,则串行送数结束,标志着串行输入的数据已转换成并行输出了。
串行/并行转换的具体过程如下:
由表6-3可见,右移操作七次之后,Q7变为0,S1S0又变为11,说明串行输入结束。这时,串行输入的数码已经转换成了并行输出了。
当再来一个CP脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。
②并行/串行转换器
并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。
图6-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比图6-3多了两只与非门G1和G2,电路工作方式同样为右移。
转换前, 端加低电平,使1、2两片寄存器的内容清0,此时S1S0=11,寄存器执行并行输入工作方式。当第一个CP脉冲到来后,寄存器的输出状态Q0~Q7为01111111,与此同时S1S0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的SR端加入。随着CP脉冲的依次加入,输出状态的变化可列成表6-3所示。
实验六 移位寄存器的设计
一、实验目的
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验预习要求
1、复习有关寄存器及串行、并行转换器有关内容。
2、查阅CC40194、CC4011及CC4068逻辑线路。熟悉其逻辑功能及引脚排列。
CP
Q0
Q1
Q2
Q3
0
1
0
0
0
1
0
1
0
0
2
0
0
1
0
3
0
0
0
1
图6-2环形计数器
如果将输出QO与左移串行输入端SL相连接,即可达左移循环移位。
(2)实现数据串、并行转换
①串行/并行转换器
串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。
图6-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。
表6-3
CP
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
说明
0
0
0
0
0
0
0
0
0
清零
1
0
1
1
1
1
1
1
1
送数
2
dO
0
1
1
1
1
1
1
右
移
操
作
七
次
3
d1
d0
0
1
1
1
1
1
4
d2
d1
d0
0
1
1
1
1
5
d3
d2
d1
d0
0
1
1
1
6
d4
d3
d2
d1
d0
0
1
1
7
d5
d4
d3
d2
d1
d0
0
1
8
d6
d5
d4
d3
d2
d1
d0
0
9
0
1
1
1
1
1
D3
D4
D5
D6
D7
5
1
1
1
1
0
D1
D2
D3
D4
D5
D6
D7
6
1
1
1
1
1
0
D1
D2
D3
D4
D5
D6
D7
7
1
1
1
1
1
1
0
D1
D2
D3
D4
D5
D6
D7
8
1
1
1
1
1
1
1
0
D1
D2
D3
D4
D5
D6
D7
9
0
D1
D2
D3
D4
D5
D6
D7
五、设计任务和要求
1、环形计数器
自拟实验线路用并行送数法予置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表6-5中。
表6-5
CP
Q0
Q1
Q2
Q3
0
1
2
3
4
2、数据的串、并行转换
(1)串行输入、并行输出
按参考图6-3接线,进行右移串入、并出实验,串入数码自定;改接线路用左移方式实现并行输出。自拟表格,记录之。
(2)并行输入、串行输出
参考图6-4接线,进行右移并入、串出实验,并入数码自定。再改接线路用左移方式实现串行输出。自拟表格,记录之。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图6-1所示。
其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;SR为右移串行输入端,SL为左移串行输入端;S1、S0为操作模式控制端; 为直接无条件清零端;
六、实验报告
1、分析表6-4的实验结果,总结移位寄存器CC40194的逻辑功能并写入表格功能总结一栏中。
1、根据实验内容2的结果,画出4位环形计数器的状态转换图及波形图。
2、分析串/并、并/串转换器所得结果的正确性。
输入
输出
CP
S1
S0
SR
SL
DO
D1
D2
D3
Q0
Q1
Q2
Q3
清除
×
0
×
×
×
×
×
×
×
×
0
0
0
0
送数
↑
1
1
1
×
×
a
b
c
d
a
b
c
d
右移
↑
1
0
1
DSR
×
×
×
×
×
DSR
Q0
Q1
Q2
左移
↑
1
1
0
×
DSL
×
×
×
×
Q1
Q2
Q3
DSL
保持
↑