化工原理第一章 流体流动
化工原理—第一章流体流动
化工原理—第一章流体流动流体流动是化工工程中的重要内容之一,是指在一定的条件下,流体沿特定的路径进行移动的现象。
流体流动在化工工程中有着广泛的应用,例如在管道输送、搅拌、混合、分离等过程中都会涉及到流体的流动。
流体流动的研究内容主要包括流体的运动规律、流体的运动特性以及流体流动对设备和工艺的影响等方面。
在化工原理中,主要关注的是流体的运动规律和运动特性,以便更好地了解流体的性质和行为。
在理解流体流动性质前,首先需要了解流体分子的间隙结构。
一般来说,液体的分子之间距离较小,存在着较强的分子间吸引力,因此液体的分子有较强的凝聚力,可以形成一定的表面张力。
而气体的分子之间距离较大,分子间的相互作用力比较弱,因此气体的分子呈现无规则的运动状态。
流体流动有两种基本形式,即连续流动和非连续流动。
连续流动是指流体在管道或通道内以连续的形式流动,比较常见的有层流和湍流两种形式。
层流是指流体在管道中以层层相叠的方式流动,流速和流向都比较均匀,流线呈现平行或近似平行的形式。
层流特点是流动稳定,流速变化不大,并且流体分子之间相互滑动。
而湍流是指流体在管道中以旋转、交换和混合的方式流动,流速和流向变化较大,流线呈现随机分布的形式。
湍流特点是流动动荡,能量损失较大,并且流体分子之间会发生相互的碰撞。
流体流动的运动规律受到多种因素的影响,其中包括流体的黏度、密度、流速、管道尺寸、摩擦力等。
黏度是流体流动中的一个重要参数,它反映了流体内部分子之间相互作用的强度。
密度是流体流动中的另一个重要参数,它反映了单位体积内流体分子的数量。
流速是指流体单位时间内通过其中一横截面的体积。
流体流动对设备和工艺的影响也十分重要。
例如在管道输送过程中,流体的流速和流体动能的传递与损失会影响到输送效果和能耗;在搅拌过程中,流体的流动对传质和传热起着重要作用;在分离过程中,流体的流动会影响到分离设备的设计和操作。
因此,对流体流动的研究和掌握对于化工工程的设计和操作都具有重要意义。
化工原理-1章流体流动
yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
化工原理第一章(流体的流动现象)
ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。
化工原理 第一章 流体的流动现象
/
m3
m0kg0s0
2019/8/3
4、流动形态的判别方法 大量的实验结果表明,流体在直管内流动时:
(1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流 区; (3)当2000< Re <4000 时,流动可能是层流,也可 能是湍流,与外界干扰有关,该区称为不稳定的过 渡区。
2019/8/3
【例】20℃的水在内径为50mm的管内流动,流速为 2m/s,试分别用SI制和CGS制计算Re数的数值。
注意:在计算Re时,一定要注意各个物理量的单位 必须统一。
【解】(1)用SI制计算:从附录五查得20℃时:
ρ=998.2kg/m3,μ=1.005mPa.s,
已知:管径d=0.05m,流速u=2m/s,
2019/8/3
【剪应力】 【定义】单位面积上的内摩擦力称为剪应力,以τ表 示,单位为Pa。
前式可改变为: du
dy
【结论】 流体层间的内摩擦力或剪应力与法向速度 梯度成正比。
2019/8/3
(6)牛顿型流体非牛顿型流体
【牛顿型流体】剪应力与速度梯度的关系符合牛顿 粘性定律的流体,包括所有气体和大多数液体; 【非牛顿型流体】不符合牛顿粘性定律的流体,如 高分子溶液、胶体溶液及悬浮液等。
2019/8/3
飞机的“隐形杀手”-晴空湍流
1999年10月17日中午一架由昆明飞往香港的南方 航空公司的班机在香港上空突然遇到一股强大气流 ,在5至10秒内飞机急坠2000英尺,导致45人撞向机 舱顶部受伤。导致这场飞行事故的“罪魁祸首” 就 是人称飞机的“隐形杀手”-晴空湍流。
一般来说,飞机在穿越云层或遇到强大气流时, 会出现颠簸。在万里晴空中,有时也会像平静的海 面下藏有汹涌的暗流一样,偶尔会出现强烈的扰动 气流,使飞机产生剧烈颤簸,航空气象专家称这种 来无影去无踪的气流为晴空湍流。
化工原理第一章 流体流动
§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m
xwA
A
xwB
B
xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体
化工原理第一章_流体流动
非标准状态下气体的密度: 混合气体的密度,可用平均摩尔质量Mm代替M。 式中yi ---各组分的摩尔分数(体积分数或压强分数)
比体积
• 单位质量流体的体积称为流体的比体积,用v表示, 单位:m3/kg
• v=V/m=1/ρ
5 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简 称压强。流体的压强具有点特性。工程上习惯上将压强 称之为压力。
R
a
b
0
2. 倒置 U 型管压差计
用于测量液体的压差,指示剂密度 0 小于被测液体密度 , U 型管内位于同 一水平面上的 a、b 两点在相连通的同一 静止流体内,两点处静压强相等
p1 p2 R 0 g
由指示液高度差 R 计算压差
若 >>0
p1 p2 Rg
0
a
b
R
p1 p2
3. 微差压差计
p1 p2 R 01 02 g
对一定的压差 p,R 值的大小与 所用的指示剂密度有关,密度差越小, R 值就越大,读数精度也越高。
p1 p2
02
a
b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液柱高度 , 控制器内压力不变或者防止气体泄漏。
为了控制器内气体压力不超过给定的数值,常常使用安全液 封装置(或称水封装置),其目的是确保设备的安全,若气体压 力超过给定值,气体则从液封装置排出。
传递定律(巴斯葛原理):当液面上方有变化时,必 将引起液体内部各点压力发生同样大小的变化。
液面上方的压强大小相等地传遍整个液体。
静力学基本方程式的应用
1.普通 U 型管压差计
U 型管内位于同一水平面上 的 a、b 两点在相连通的同一静 止流体内,两点处静压强相等
化工原理之一 流体流动
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
化工原理第一章流体流动课件
流体静力学基本方程
STEP 02
STEP 01
流体静力学基本方程是流 体静压强与其密度和重力 加速度的关系式。
STEP 03
该方程是流体静力学中的 基础方程,对于理解流体 静力学中的各种现象非常 重要。
该方程可以用来计算流体 的静压强、流体的密度和 重力加速度之间的关系。
静压力对流体的作用力
流体在静压力作用下会产生压缩或膨 胀,这与其弹性有关。
Part
04
流体流动的阻力
流动阻力的产生与分类
流动阻力
流体在管道中流动时,由于流体内部及 流体与管壁之间的摩擦而产生的阻力。
VS
阻力分类
直管阻力和局部阻力。直管阻力是流体在 管道中流动时,由于流体的粘性和管壁的 粗糙度引起的摩擦阻力;局部阻力则是流 体流经管路中的阀门、弯头等局部结构时 ,由于流体的方向和速度发生急剧变化而 引起的阻力。
流体微团的运动分析
流体微团的定义
流体微团是指流体中无限接近的、密合在一起的若干分子组成的微小团体。
流体微团的运动分析
通过对流体微团的运动分析,可以研究流体的宏观运动规律,如速度场、加速 度、角速度等。这些参数对于理解流体动力学的基本原理和工程应用非常重要 。
牛顿粘性定律及流体的分类
牛顿粘性定律的定义
绝对压力
以完全真空为零点测量的 压力,单位为帕斯卡(Pa )。
表压
以当地大气压为基准测量 的压力,单位也为帕斯卡 (Pa)。
真空度
与大气压相比的压力差值 ,单位为帕斯卡(Pa)。
流体静压强分布规律
流体静压强大小与流体的 密度、重力加速度和高度 有关。
在重力场中,流体静压强 随高度增加而减小。
在同一高度上,不同流体 的静压强不同。
化工原理--流体流动
第一章流体流动1.1概述1.1.1 流体流动是各单元操作的基础化工生产中,经常应用流体流动的基本原理及其流动规律:流体的输送、压强、流速和流量的测定、为强化设备提供适宜的流动条件等。
流程分析:流体(水和煤气)在泵(或鼓风机)、流量计以及管道中流动等,是流体动力学问题。
流体在压差计,水封箱中的水处于静止状态,则是流体静力学问题。
为了确定流体输送管路的直径,需要计算流体流动过程产生的阻力和输送流体所需的动力。
根据阻力与流量等参数选择输送设备的类型和型号,以及测定流体的流量和压强等。
流体流动将影响系统中的传热、传质过程等,是其他单元操作的主要基础。
1.1.2 连续介质假定连续性假定:研究流体在静止和流动状态下的规律性时,常将流体视为由无数质点组成的连续介质。
所谓流体质点是指含有大量分子的极小单元或微团。
1.1.3 流体流动中的作用力在流体中任取一微元体积作为研究对象,进行受力分析,它受到的力有表面力和质量力两类。
表面力与作用的表面积成正比,单位面积上的表面力称之为应力。
通常可以将表面力分解为法向分力与切向分力,如图1.1.2所示。
法向应力总是垂直且指向流体微元之任一表面。
单位面积上的法向力又称之为压强。
单位面积上的切向力称之为剪切应力F c(N/m2)。
静止流体不能承受任何剪切力,所以,只有法向力。
1.1.4 流体的特征和密度及其压缩性流体:液体和气体统称为流体。
流体区别于固体的主要特征是具有流动性,其形状随容器形状而变化;受外力作用时内部产生相对运动。
密度是流体的物理性质。
液体的密度几乎不随压强而变化,但温度对液体密度有一定影响。
液体的密度可由实验测定或用查找手册计算的方法获取。
气体的密度随温度和压强而变化,而且比液体显著得多,因此要根据温度及压强条件来确定气体的密度。
1.2 流体静力学流体静力学主要研究流体在静止状态下所受的各种力之间的关系,实质上是讨论流体静止时其内部压强变化的规律。
1.2.1 流体的压强及其特性Array工程上,习惯上常常将压强称之为压力,流体的压力除了用不同的单位来计量外,还可以用如图所示的不同的计量基准来表示: 绝对压力、表压、真空度。
化工原理第一章
(2)怎样看成连续性?
考察对象:流体质点(微团)-------足够大,足够小
流体可以看成是由大量微团组成的,质点间无空
隙,而是充满所占空间的连续介质,从而可以使
用连续函数的数学工具对流体的性质加以描述。
第二节 流体静力学 本节将回答以下问题: 静力学研究什么?
采用什么方法研究?
主要结论是什么? 这些结论有何作用?
在静止流体中,任意点都受到大小相同方向不同的压强
静压强的特性:具有点的性质,p=f(x,y,z),各相同性
1.流体静力学方程的推导
向上的力 : pA 向下的力: ( p dp) A
重力: mg gAdZ
静止时三力平衡,即 :
pA ( p dp) A gAdz 0
dp gdZ 0
p A pB ( i ) gR g ( Z A Z B ) ( p A gZ A ) ( pB gZB ) ( i ) gR
p gZ
A B ( i ) gR
4. 斜管压差计
R R' sin
流体静力学(二)
1-4
流体静力学基本方程的应用
一. 压强与压强差的测量 1.简单测压管
p A p0 hR
A点的表压强
p A (表) p A p0 gR
特点:适用于对高于大气压的液体压强的测定,不适用于气体。
2. U型测压管 由静力学原理可知
p1 p A gh
p 2 p 0 i gR
这是两个非常重要的方程式,请大家注意。
1-5 流量及流速
一、流量:单位时间内流过管道内任一截面的流体量
体积流量qV
m3 / s
化工原理 第一章 流体流动
连续性方程式(质量守恒)
柏努利方程式(能量守恒) 这是两个非常重要的方程式,请大家注意。
28
1.2.1 流量与流速 一、流量
1、体积流量qv :单位时间内流经管道任意截面的流体体积, m3/s或m3/h。 2、质量流量qm :单位时间内流经管道任意截面的流体质量, kg/s或kg/h。
二、流速
1、平均流速u :单位时间内流体在流动方向上所流经的距离, m/s。 2、质量流速w :单位时间内流经管道单位截面积的流体质量, kg/(m2· s)。
p1 p2 Rg( A C )
26
上式的(ρ A - ρ C)是两种指示液的密度差,不是指示 液与被测流体的密度差。 扩大室的内径与U形管内径之比应大于10。这样,扩大 室的截面积比U形管的截面积大很多,即使U形管内指示液 A的液面差R很大,两扩大室内的指示液C的液面变化仍很微 小,可以认为维持等高。
15
二、压力的表示方法
1)表压 = 绝对压力 - 大气压力 2)真空度 = 大气压力 - 绝对压力
16
静压力的特性
流体压力与作用面垂直,并指向该作用面; 任意界面两侧所受压力,大小相等、方向相反; 作用于任意点不同方向上的压力在数值上均相同。
17
一、静力学基本方程 P2 = P0 + ρ gh 推导 二、静力学基本方程的应用 1. 压力及压差的测量
第一章 流体流动
1
① 研究流体流动问题的重要性
流体流动与输送是最普遍的化工单元操作
之一;
研究流体流动问题也是研究其它化工单元
操作的重要基础。
4
② 连续介质假定 假定流体是由无数内部紧密相连、彼此间没有
间隙的流体质点(或微团)所组成的连续介质。
化工原理——第一章 流体流动
黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。
或
m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn
化工原理 第一章 流体流动
2. 混合物
l→ 1 x wA x wB ... x wn (体积不变)
m A B
n
g→ m A xVA B xVB n xVn (质量不变)
3. 不可压缩流体:改变T或p时, Const; 可压缩流体:改变T或p时,ρ显著变化。
注意→若T或p变化不大时,ρ变化很小,气体视 为不可压缩流体。
推导伯努利方程
1. 能量形式
内能→U;位能→gZ,基准面以上为+,以下为-;
动能→u2/2;静压能(流动功)→
pA
V A
pV;
pV m
p
;
热量→Qe,吸+放-;外功(净功或有效功)→We, 得+失-,Ne wsWe
总机械能→位能、动能和静压能的总和。
流体流动的基本方程 -伯努利方程
2. 流体稳态流动时机械能衡算方程
牛顿型流体:所有气体和大多数液体; 非牛顿型流体:血液、油漆等流体。
流体性质-压强
1. 压强单位
1 atm=1.0133105 Pa 101.33 kPa 0.10133 MPa 760 mmHg 10.33 mH2O 1.013 bar 1.033 kgf/cm2 14.697 PSI
流体性质-黏度
2. 牛顿黏性定律
F u S y
F u S
y
F u
S y
du
dy
黏度:反映流体黏性的大小。T l , g ; p对影响小
1 Pags 10 P 1000 cP
运动黏度 1 m2 gs-1 104 St 106 cSt
1
常压气体
混合物: m
yi i M i 2
x Rex0.5
湍流 0.376
化工原理 第一章 流体流动
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
2.当量长度法le:是将流体流过管件或阀门 所产生的局部摩擦阻力损失折合成流过长 度为le的直管的摩擦阻力损失。
轴 功率,设泵的效率0.65。e/d=0.002
第五节 管路计算
1.简单管路
2.复杂管路
qV1
qV
qV2
串联管路
A
C
O
A
B
qV3
并联管路
B
分支管路
简单管路-串联管路
1
2
A
3
B
qVAB=qV1 qV 2 qV 3
h fAB=h f 1 h f 2 h f 3
复杂管路-并联管路
qV1
qV
qV2
A
B
qV3
qVAB qV1 qV 2 qV 3
h fAB h f 1 h f 2 h f 3
第六节 流量的测定
一. 测速管
pC
p
(p
u
2 A
)
p
u
2 A
rr r2 r 2
pC p (r指-r)gR
uA
2p
r
2(r指-r )gR r
优点:是对流体的阻力较小,适用于 测量大直径管路中的气体流速。 缺点:只能测出流体的点速,不能直 接测出平均速度,另外当流体中含有 固体杂质时,不宜采用。
度之比。 r4℃水=1000kg/m3
rm
V
pV nRT
m
RT
M
r m pM
V RT
例1-2 氮氢混合气体中的N2与 H2的体积比为1:3,试求氮氢混 合气体在压力100kPa(绝对压
力)和温度25℃时的密度。
例1-3 已知硫酸与水混合液中 硫酸的质量分数为0.6。试求
混
合液在20 ℃下的密度。
l u2 d2
4.非圆形管的当量直径
de
4 流通截面积 A 润湿周边长度
a
d
b a
d
D
D
二.局部摩擦阻力损失
局部摩擦阻力损失:由阀门、 管件,及突然缩小或扩大等局部位 置所产生的流体摩擦阻力损失。
计算方法有局部阻力系数法和 当量长度法。
1.局部阻力系数法z 读音截塔
表1-2 管件和阀件的局部阻力系数与当量长度值(用于湍流)
单位截面积的质量 kg/(m2s) 。
w
qm
w ru
A
3.管路的直径 d 4qV
u
一般液体的流速为0.5~3m/s, 气体的流速为10~30m/s。
例1-6 某食品厂混合液用泵输 送,要求每小时输送混合液 9.0×104kg,流速为1.5m/s, 20℃时此混合液体的相对密度为 1.06。式估算并选择管道的直径。
u1 ( d2 )2 u2 d1
A d2
4
• 例1-5 设图1-11中,管内径 d1=10cm, d2=5cm,大管 流量为8L/s,求各段水管内 平均流速。
三.伯努利方程式 1.伯努利方程式 位能gZ:单位质量(1kg)流体所 具有的位能 J/kg 动能u2/2:单位质量(1kg)流体 所具有的动能 J/kg 静压能p/r:单位质量(1kg)流 体所具有的静压能 J/kg
d
le
z
u2 2
摩擦系数 管件、阀件、截面 变化局部阻力系数
压头损失的计算公式
Hf
l
d
le
z
u2 2g
例1-10 如图所示,用泵将敞口贮液池中 20℃的水经由的钢管送至塔顶,塔内压力 为6.866×103Pa(表压)。管子总长为 80m,装有一个吸滤网和底阀,还有一个 90o弯头。泵的排出管路中装有一个闸门 阀(全开)和两个90о弯头。当管路中的体积 流量50m3/h时,试求泵的有效功率及其
可压缩性流体: 流体的体积随压力发生 变化,如气体。
1.压力:流体垂直作用于单位面积上的 力称为流体的压强,也称为压力。
标准大气压: 1atm=1.013×105Pa=760mmHg=10.33mH2O
压力有不同的计量基准: 绝对压力、 表压和真空度。
绝对压力 以绝对真空为基准测得的压力。
表压或真空度 以大气压为基准测得的压力。
光滑管
完全粗糙管
只与Re有关,与e/d无关 只与e/d 有关,与Re无关
表1-1 某些工业管道绝对粗糙度
雷诺数的范围分为四个不同的区域。
(1)层流区 (Re≤2000) ,与Re为直线关系,而
与e/d无关。
(2)过渡区(2000<Re<4000)流动类型不稳定,
为安全起见,按湍流计算。
(3)湍流区 Re≥4000及虚线以下的区域。这个区的
表压=绝对压力-大气压
真空度=大气压-绝对压力
真空度=-表压
p1
表压
绝对压力
真空度
p2
大气压
绝对压力
绝对真空
例1-1 用真空表测量某台离心泵进 口的真空度为30kPa,出口压力表 测量的表压为350kPa。设当地大气 压为101kPa,求他们的绝对压力。
2.密度:单位体积流体的质量。
相对密度d:液体密度与4℃水的密
第一章 流体流动
第一节 流体静力学 第二节 流体流动的基本方程式 第三节 管内流体流动现象 第四节 管内流体流动的摩擦阻力损失 第五节 管路计算 第六节 流量的测定 第七节 流体输送机械
章总目录
第一节 流体静力学
一流体的基本性质 流体:具有流动性的物体--气体和液体。
不可压缩性流体:流体的体积不随压力变 化而变化,如液体;
压头:单位重量流体所具有的能量
z1
u12 2g
p1
rg
z2
u22 2g
p2
rg
位压头 动压头 静压头 单位:J/N=m
(1).
2.
实
际机
流械
体 机 械 能 衡
能 损 失 ( 压 头
算损
式失
)
(2)外加机械能W,单位:J/kg
实际流体机械能衡算式---能量
gz1
u12 2
p1
r
W
gz2
u22 2
第四节 管内流体流动的摩擦阻力损失
一.直管中流体摩擦阻力损失的测定
层流 64
Re
hf
l d
u2 2
湍流 e/d :读音兰布达 Re e:读音伊普西龙
绝对粗糙度e:管壁粗糙面凸出部分的平均高度。 相对粗糙度e/d:绝对粗糙度与管内径的比值。
湍流流动时:
d
d e
u 湍流主体
u 湍流主体
d de
二.流体流动类型与雷诺数 1.雷诺实验
层流或滞流 a
湍流或紊流 c
若在直径不同的管内用不同的流体进 行试验,发现:除了流速外,管径, 流体密度和流体黏度,对流动状况也 有影响,流动类型由dur/决定。
雷诺数Re
Re dur
雷诺数没有单位、 量纲为1
Re≤2000时,为层流; Re≥4000时,为湍流; 2000<Re<4000,可能是层流 也可能是湍流,或是两者交替出现
一.流量与流速 1. 流量
qm rqV
体积流量 qV :单位时间内流体流经
管道任一截面的体积,单位是m3/s
质量流量 qm :单位时间内流体流经
管道任一截面的质量,单位是kg/s
2.流速 平均流速(流速)u:单位时间内液体 质点在流动方向上所流经的距离m/s。
u qV A
A d2
4
质量流速w:单位时间内流体流过管道
在静止的、连续的同一液体内,处于 同一水平面上的各点压力相等,称为 等压面。
三.流体静力学基本方程式的应用 (一)压力测量 1.U形管液柱压差计
p1 p2 (r指-r)gR
测量气体时,r<<r指 故r指-rr
p1 p2 r指 gR
例1-4: 如图所示,常温水在管道中流过。为测 定
a、b两点的压力差,安装一U型压差计,指示液 为汞已知压差计的读数100mmHg,试计算a、b 两点的压力差为多少?已知水与汞的密度分别为 1000kg/m3及13600kg/m3。