基础物理学下册 答案

合集下载

大学基础物理学课后习题答案_含思考题(1)

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。

对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。

在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。

相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。

<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。

伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。

如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。

<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。

斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。

练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。

在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。

练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。

新编物理基础学(上下册)课后习题详细答案 王少杰 顾社主编

新编物理基础学(上下册)课后习题详细答案 王少杰 顾社主编
质量重的人与滑轮的距离:
。此题得证。
2-10.分析:受力分析,由牛顿定律列方程。
解:物体的运动如图2—10(a),
以m1为研究对象,如图(b),有:
以m2为研究对象,如图(c),有:
又有:
则:
2—11.分析:(1)小物体此时受到两个力作用:重力、垂直漏斗壁的支承力,合力为向心力;(2)小物体此时受到三个力的作用:重力、垂直漏斗壁的支承力和壁所施的摩擦力。当支承力在竖直方向分量大于重力,小球有沿壁向上的运动趋势,则摩擦力沿壁向下;当重力大于支承力的竖直方向分量,小球有沿壁向下的运动趋势,则摩擦力沿壁向上。这三个力相互平衡时,小物体与漏斗相对静止。
解:设底板、人的质量分别为M,m,
以向上为正方向,如图2-4(a)、(b),
分别以底板、人为研究对象,
则有:
F为人对底板的压力, 为底板对人的弹力。
F=
又:

由牛顿第三定律,人对绳的拉力与 是一对
作用力与反作用力,即大小相等,均为245(N)。
2-5.分析:加斜向下方向的力,受力分析,合力为零。
解:如图2—5,建坐标系,以沿斜面向上为正方向。在 与 所在的平面上做力 ,且
分析:要求 可通过积分变量替换 ,积分即可求得。
证:
,
1-3.一质点在xOy平面内运动,运动函数为 。(1)求质点的轨道方程并画出轨道曲线;(2)求 时质点的位置、速度和加速度。
分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的运动学方程 表达式。对运动学方程求一阶导、二阶导得 和 ,把时间代入可得某时刻质点的位置、速度、加速度。
解:取向上为正,如图2-2,分别以M1、M2和m为研究对象,
Байду номын сангаас有:

基础物理学答案

基础物理学答案

第三篇 波动和波动光学第九章 振动和波动基础 思考题9-1 符合什么规律的运动是简谐振动、简谐振动的特征量由什么决定?答:某一物理量在某一量值值附近随时间作周期性往复变化的运动是简谐运动, 或者是描述系统的物理量ψ遵从微分方程ψωψ222-=dtd , 则该系统的运动就是简谐运动. 其特征量为振幅(由初始状态决定),频率(由做简谐振动系统的物理性质决定),初相位(由振动的初始状态决定).9-2 说明下列运动是不是谐振动: (1)完全弹性球在硬地面上的跳动; (2)活塞的往复运动;(3)如本问题图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短);(4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动;(5)一质点做匀速圆周运动,它在直径上的投影点的运动。

(6)小磁针在地磁的南北方向附近摆动。

答:简谐振动的运动学特征是:振动物体的位移(角位移)随时间按余弦或正弦函数规律变化;动力学特征是:振动物体所受的合力(合力矩)与物体偏离平衡位置的位移(角位移)成正比而反向。

从能量角度看,物体在系统势能最小值附近小范围的运动是简谐振动。

所以: (1)不是简谐运动,小球始终受重力,不满足上述线性回复力特征。

(2)不是简谐振动。

活塞所受的力与位移成非线性关系,不满足上述动力学特征。

(3)是简谐振动。

小球只有在“小幅度”摆动时才满足上述特征。

(4)是简谐振动。

(5)是简谐振动。

因为投影点的方程符合物体的位移(角位移)随时间按余弦或正弦函数规律变化(6)是简谐振动。

小磁针只有在“小幅度”摆动时才满足上述特征。

9-3 一弹簧振子由最左位置开始摆向右方,在最左端相位是多少?过中点、达右端、再回中点、返回左端等各处的相位是多少?初相位呢?若过中点向左运动的时刻开始计时,再回答以上各问。

答:在最左端相位是π思考题 9-2 图9-4 同一弹簧振子,当它在光滑水平面上做一维谐振动和它在竖直悬挂情况下做谐振动,振动频率是否相同?如果它放在光滑斜面上,它是否还做谐振动,振动频率是否改变?如果把它拿到月球上,由频率有什么变化?9-5 做谐振动的弹簧振子,当其(1)通过平衡位置时;(2)达到最大位移时;速度、加速度、动能、弹性势能中,哪几个达到最大值,哪几个为零?答: (1)当弹簧振子通过平衡位置时, 速度和动能达到最大, 加速度和弹性势能为零. (2) 达到最大位移时, 加速度和弹性势能最大, 速度和动能达到最大.9-6 受迫振动的频率与强迫力的频率相同,相位是否相同?从相位看,共振应发生在何值?9-7 什么是波动?振动和波动有什么区别和联系?波动曲线与振动曲线有什么不同? 答:波动是振动状态的传播过程, 波动的产生要有激发波动的振动系统, 既波源, 振动是原因, 波动是结果. 波传播过程中各点的振动频率都应与波源频率相同. 振动具有一定的能量, 波动过程伴随能量的传播. 波动曲线是一个点自波源由近及远传播, 振动曲线是表示一个点在最大位移处与平衡位置处的振动. 波动曲线的横轴为波传播的位移, 振动曲线横轴为振动的时间.9-8 试判断下面几种说法,哪些是正确的,哪些是错误的? (1)机械振动一定能产生机械波;(2)质点振动的速度和波的传播速度是相等的; (3)质点振动的周期和波的周期数值是相等的; (4)波动方程式中的坐标原点是选取在波源位置上。

基础物理学课程试题及答案详解

基础物理学课程试题及答案详解

一 选择题(每题3分,共30分)1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v . (B) mkT π831=x v . (C) mkT π38=x v . (D) =x v 0 . [ ] 2.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 /V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3.3.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%.(C) 25%. (D) 0. [ ]4.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ ]5.玻尔兹曼分布律表明:在某一温度的平衡态,(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.(2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些.(4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关.以上四种说法中,(A) 只有(1)、(2)是正确的.(B) 只有(2)、(3)是正确的.(C) 只有(1)、(2)、(3)是正确的.(D) 全部是正确的. [ ]6.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]7.若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是 (A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和.(C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能.(D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和. [ ]8.在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]9. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A→B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B.(B)是A →C.(C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。

物理基础训练(8年级下)答案

物理基础训练(8年级下)答案

物理(8年级下)答案第六章 电压 电阻一. 电压1.伏特;伏;V ;kV 、mV 、μV2.家庭用电,220V ;一节干电池,1.5V3.并;大于4.L 1;1.1V5.F ;E (或D );D (或E );C (或B )6.D7.B8.C9.测量L 1的电压,电路如图1 10.A 金属棒为负极,B 金属棒为正极 11.电路图和实物图如图2 ⑴量程选择偏大 ⑵正负接线柱接反 12.略二.探究串、并联电路电压的规律1.1.5;1500;220;0.22;1000000 2.相同点:电流都是“+”进“-”出,使用前都要调零,且被测值不能超出仪表的最大测量值。

不同点:电路符号不同,与被测电路连接方式不同,电流表不能直接接电源,电压表可以直接接电源。

3.C 4.D 5.甲图中测量L 1的电压,乙图中测量L 的电压,电路图如图3、 图4所示 6.⑴电流表和电源;⑵灯泡两端电 压(或电源电压);电流表无示数;⑶灯泡两端电压和流过灯泡的电流 7.D 8.(1)可能与金属片之间的距离有关,取一西红柿,控制铜片与锌片插入深度,改变金属片之间的距离,电池、太阳能电池、原子电池共4种;⑵锂电池,较小的体积自重下,能放出较大的电能三、电阻1.硬币、铅笔芯、小刀片、铁丝;2.电流;阻碍;欧姆;欧;Ω;k Ω;M Ω3.0.008;4.把5Ω的导体接入电路时,灯光较亮;电阻越小对电流的阻碍作用越小 5.D 6.C7.A 8.C 9.⑴D ;⑵温度越低,电流越小,使用寿命越长 10.⑴a ,c ;⑵导体长度;在其他条件相同的情况下,长度越长,电阻越大;⑶影响蒸发的因素;伽利略对摆动的研究;⑷①用酒精灯给灯丝加热,观察电流表示数的变化。

②见图5 11.(1)螺旋状,增大导体的长度(2)“瓦”数大的灯丝较粗。

四、变阻器1.长度;变阻器 2.最大电阻为20Ω; 允许通过的最大电流为1A3.一些金属和合金,当温度低于某一温度时,电阻变为零的现象;远距离输电、超大型 电磁铁、磁悬浮列车 4.D 5.D 6.B7.B 8.⑴最大 ⑵见图6、图7 ⑶逐渐减小滑动变阻器的阻值本章检测题1.D 2.A 3.A 4.C 5.B 6.C 7.B 8.B 9.C 10.D 11.形成电流;电源 12.并;“+” 13.滑动变阻器;改变电路中导体长度来改变电路中的电阻大小。

基础物理学下册答案

基础物理学下册答案

基础物理学下册答案1、下列说法正确的是()*A.一定质量的理想气体,放热的同时外界对其做功,其内能可能减少(正确答案)B.单晶体有固定的熔点,多晶体和非晶体没有固定的熔点C.热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体(正确答案)D.当分子间的距离增大时,分子之间的引力和斥力均同时减小,而分子势能一定增大2、3.空间站以恒定的速率绕地球转动:因为空间站速度大小不变,所以加速度为零.[判断题] *对错(正确答案)3、导体中的自由电子做定向移动时,它的周围就产生磁场[判断题] *对(正确答案)错答案解析:自由电子做定向移动时产生电流,电流周围存在磁场4、磁场中某一点的磁场方向是由放在这一点的小磁针的N极决定的[判断题] *对错(正确答案)答案解析:磁场方向用小磁针来判断5、3.物体在一条直线上运动时,路程和位移的大小相等,且位移是矢量,路程是标量.[判断题] *对错(正确答案)6、57.彩色电视机荧光屏上呈现各种颜色,都是由三种基本色光混合组成的,这三种基本色光是()[单选题] *A.红、橙、绿B.红、绿、蓝(正确答案)C.蓝、靛、紫D.红、黄、蓝7、水平桌面上的文具盒在水平方向的拉力作用下,沿拉力的方向移动一段距离,则下列判断正确的是()[单选题]A.文具盒所受拉力做了功(正确答案)B.文具盒所受支持力做了功C.文具盒所受重力做了功D.没有力对文具盒做功8、21.关于声现象,下列说法正确的是()[单选题] *A.人听到声音是否响亮只跟发声体发声时的振幅有关B.人们可以用声学仪器接收到超声波判断地震的方位和强度C.倒车雷达是利用回声定位探测车后的障碍物(正确答案)D.用大小不同的力敲击同一音叉是为了探究音调与频率的关系9、在足球比赛中,下列说法正确的是()[单选题]A.飞行过程中,足球不受力的作用B.头顶足球时头会感到疼,说明力的作用是相互的(正确答案)C.下落过程中,足球的惯性变大D.足球在地面上越滚越慢,说明物体的运动需要力来维持10、63.下列说法中正确的是()[单选题] *A.空气中细小的灰尘就是分子B.弹簧能够被压缩,说明分子间有间隙C.由于分子非常小,人们无法直接用肉眼进行观察(正确答案)D.把一块铜锉成极细的铜屑就是铜分子11、夏天从冰箱里取出的可乐瓶上有小液滴,是可乐瓶周围的空气液化形成的[判断题]*对错(正确答案)答案解析:是周围的水蒸气液化形成的12、24.运用你学过的物理知识进行“特殊测量”,下面的几种方法中()①用天平、水测出墨水瓶的容积;②用天平、刻度尺测出一卷细铜丝的长度;③用量筒、水测出小钢珠的质;④用量筒测出20g酒精. [单选题] *A.只有①③正确B.只有②④正确C.只有①②③正确D.①②③④都正确(正确答案)13、估测在实际生活中的应用十分广泛,下列所估测的数据中最接近实际的是()[单选题] A.健康的成年人脉搏跳动一次的时间约为10sB.一般教室的高度约为6mC.我国10元纸币的票面长度约为14cm(正确答案)D.去年北京夏天的最高气温为26℃14、4.骑着自行车前行时前轮和后轮所受摩擦力的方向相同.[判断题] *对错(正确答案)15、49.小苗夜间路过一盏路灯时,在路灯光的照射下,她在地面上影子的长度变化情况是()[单选题] *A.先变长,后变短B.先变短,后变长(正确答案)C.逐渐变短D.逐渐变长16、1.与头发摩擦过的塑料尺能吸引碎纸屑。

基础物理学第七章(电磁感应)课后习题答案

基础物理学第七章(电磁感应)课后习题答案

第七章电磁感应变化电磁场思考题7-1感应电动势与感应电流哪一个更能反映电磁感应现象的本质?答:感应电动势。

7-2 直流电流表中线圈的框架是闭合的铝框架,为什么?灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就发生偏转。

切断电流后线圈在回复原来位置前总要来回摆动好多次。

这时如果用导线把线圈的两个接头短路,则摆动会马上停止。

这是什么缘故?答:用导线把线圈的两个接头短路,线圈中产生感应电流,因此线圈在磁场中受到一力偶矩的作用,阻碍线圈运动,使线圈很快停下来。

7-3让一块磁铁在一根很长的铅直铜管内落下,若不计空气阻力,试描述磁铁的运动情况,并说明理由。

答:当磁铁在金属管中时,金属管内感应感生电流,由楞次定律可知,感生电流的方向,总是使它所激发的磁场去阻止引起感应电流的原磁通量的变化,即:阻碍磁铁相对金属管的运动。

磁铁在金属管内除重力外,受到向上的磁力,向下的加速度减小,速度增大,相应磁力增大。

当磁力等于重力时,磁铁作匀速向下运动,达到动态平衡。

7-4用金属丝绕制的标准电阻是无自感的,怎样绕制才能达到自感系数为零的目的?答:如果回路周围不存在铁磁质,自感L的数值将与电流无关,仅由回路的几何性质、匝数以及周围磁介质的磁导率所决定。

把一条金属丝接成双线绕制,就能得到自感系数为零的线圈。

做纯电阻用的电阻器都是这样绕制的。

7-5 举例说明磁能是贮藏在磁场中的。

7-6如果电路中通有强电流,当你突然拉开闸刀断电时,就会有火花跳过闸刀。

试解释这一现象。

答:当突然拉开通有强电流电路中的刀闸而断电时,电路中电流迅速减小,电流的变化率很大,因而在电路中会产生很大的自感电动势。

此电动势可以把刀闸两端间的空气击穿,因而在刀闸处会有大的火花跳过。

7-7 变化的电场所产生的磁场,是否一定随时间而变化?变化的磁场所产生的电场,是否也一定随时间而变化?7-8 试比较传导电流与位移电流。

答:位移电流具有磁效应-与传导电流相同。

两者不同之处:产生机理不同,传导电流是电荷定向运动形成的,位移电流是变化的电场产生的;存在条件不同,传导电流需要导体,位移电流不需要导体,可以存在于真空中、导体中、介质中;位移电流没有热效应,传导电流产生焦耳热。

基础物理学下册【韩可芳】第10章习题答案

基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。

10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。

(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。

10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。

那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。

当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。

10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。

波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。

10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。

大学基础物理学第2版习题答案

大学基础物理学第2版习题答案

大学基础物理学第2版习题答案大学物理课后习题答案
2
3 用十年光阴交换半生痴狂ゆ
4
5 用十年光阴交换半生痴狂ゆ
6
7 用十年光阴交换半生痴狂ゆ
8
9 用十年光阴交换半生痴狂ゆ
10
11 用十年光阴交换半生痴狂ゆ
12
13 用十年光阴交换半生痴狂ゆ
14
15 用十年光阴交换半生痴狂ゆ
16
17 用十年光阴交换半生痴狂ゆ
18
19 用十年光阴交换半生痴狂ゆ
20
21 用十年光阴交换半生痴狂ゆ
22
23 用十年光阴 交换半生痴狂 ゆ
24
25 用十年光阴交换半生痴狂ゆ
26
27 用十年光阴交换半生痴狂ゆ
28
29 用十年光阴交换半生痴狂ゆ
30
31 用十年光阴交换半生痴狂ゆ
32
33 用十年光阴交换半生痴狂ゆ
34
35 用十年光阴交换半生痴狂ゆ
36
37 用十年光阴交换半生痴狂ゆ
38
39 用十年光阴交换半生痴狂ゆ
40
41 用十年光阴交换半生痴狂ゆ
42
43 用十年光阴交换半生痴狂ゆ
44
45 用十年光阴交换半生痴狂ゆ
46
47 用十年光阴交换半生痴狂ゆ
48
49 用十年光阴交换半生痴狂ゆ
50
51 用十年光阴交换半生痴狂ゆ
52
53 用十年光阴交换半生痴狂ゆ
54
55 用十年光阴交换半生痴狂ゆ
56。

基础物理学下册 答案

基础物理学下册 答案

图17.1第十七章 真空中的静电场17-1 解: 设等边三角形的边长为a ,则由顶点到中心的距离为.123q q q q ===放在三角形中心的电荷为Q ,Q 与q 反号. Q 受其他三个电荷的合力为零,与Q 的大小无关.一个q 受其他三个电荷的合力大小为21322002cos302424q qQ F F aπεπε-=⨯⨯-⎫⎪⎝⎭)2034q Q a πε=-此合力为零给出Q =∴ 3Q q =17-2 解: 0m +=F g 0q m +=E g343R gmgq E Eρπ==()36548513141641098319210....-⨯⨯⨯⨯⨯=⨯ 1980210C .-=⨯图17.2图17.3图17.45e =17-3 解: 在带电环线上任取一长为d l 的电荷元,其电量d d q l η=.电荷元在O 点的场强为d E ,d E 沿两个轴方向的分量分别为d x E 和d y E .由于电荷分布对于Ox 轴对称,所以全部电荷在O 点的场强沿y 方向的分量之和为零.因而O 点的总场强E 应沿x 轴方向,并且 d x E E =⎰20d sin d d sin 4x l E E R ηθθπε==()d =d l R l R θθ=0sin d d 4x E Rηθθπε=000sin d cos 44E R R ππηθηθθπεπε==-⎰02R ηπε=02Rηπε=E i17-4 解: (1) 选半球球心的坐标原点O d d φ=⋅1E S 1d cos E S ϕ= 21d sin d d S R ϕϕθ= ∴ 21c o s s i n d dER φϕϕϕθ=⎰2220sin2d d 2ER ππϕθϕ=⎰⎰图17.522cos22R E πϕπ=-2R E π=(2) 半球面1S 和任意形状曲面2S 组成闭合曲面.由高斯定理得:12010i'qφφε+==∑内∵ 此时1S 的法向方向与原来相反 ∴211'R E φφπ=-=-∴ 221'R E φφπ=-=17-5 解: (1) 立方体的六个面组成闭合曲面,由高斯定理得 通过闭合曲面的电通量 0qφε=由于正立方体的六个侧面对于其中心对称,所以每个面通过的电通量为 12345606q φφφφφφε======(2) d =d d S φ⋅=⋅E S E n 由于正方体有三个面与E 垂直 ∴1230φφφ===∴ q 所在的三个面的电通量为零以q 为中心,小正方体的边长a 的二倍为边长做一正方体.则通过大正方体的电通量为qε.因为小正方体是大正方体的18,则通过小正方体其它三个面的总电通量为8qε.由于这三个面对电荷所在顶点是对称的,所以通过它们每个面的电通量为0013824q qεε⨯=图17.717-6 解: (1) 设想地球表面为一均匀带电球面,总面积为S .则它所带的总电量为 0d q ES εε=⋅=-⎰E S()212688510200431463710...-=-⨯⨯⨯⨯⨯⨯590210C .=-⨯(2) 从地面1400m 到地面的大气所带总电量为0d d S'Sq'q q 'εε=-=⋅-⋅⎰⎰E S E S 总00E'S'ES εε=-+ 0001.ES'ES εε=-+ ()001E S .S'ε=- 581110C .=⨯()5331881110431463714637103q'.V ...ρ⨯==⨯⨯-⨯ 12211410C m .-=⨯17-7 解: 根据电荷分布对壁的平分面的面对称性,可知电场分布也具有这种对称性.由此可选平分面与壁的平分面重合的立方盒子为高斯面.高斯定理给出 02q E S ε=内当2dD <时 2q DS ρ=内 0D E ρε=当2dD >时 q dS ρ=内 02d E ρε=方向垂直板面 0q > 向外 0q < 向内图17.917-9 解: (1) (a)1r R<时, Ⅰ区1d0⋅=⎰⎰E S2140E rπ⋅=1E=(b)12R r R<<时, Ⅱ区12dQε⋅=⎰⎰E S2124QE rπεε⋅=1224QErπε=1224Qrπε=E r(c)2r R>时Ⅲ区123dQ Qε+⋅=⎰⎰E S21234Q QE rπε+⋅=12324Q QErπε+=12324Q Qrπε+=E r(2) (a)2r R>时Ⅲ区()12332d d4r rQ QU rrπε∞∞+=⋅=⎰⎰E r r12120044rQ Q Q Qr rπεπε∞++=-=图17.10(b) 12R r R << Ⅱ区()22223d d R rR U r ∞=⋅+⋅⎰⎰E r E r221122200d d 44R rR Q Q Q r r rr πεπε∞+=+⎰⎰221120044R rR Q Q Q rrπεπε∞+=--120214Q Q r R πε⎛⎫=+ ⎪⎝⎭(c) 1r R <时, Ⅰ区 ()12121123d d d R R r R R U r ∞=⋅+⋅+⋅⎰⎰⎰E r E r E r2121122200d d 44R R R Q Q Q r r rr πεπε∞+=+⎰⎰2121120044R R R Q Q Q rrπεπε∞+=--1201214Q Q R R πε⎛⎫=+ ⎪⎝⎭17-10 解: (1) 情况(a)可以间接用高斯定理求解,情况(b)不可以.(2) 这是一个非对称分布的电荷,因而不能直接用高斯定理求定解.但半径为R 的球及半径为r 的空腔是球对称的.可以利用这一特点把带电体看成半径为R 的均匀带电ρ+的球体与半径为r 的均匀带电ρ-的球体迭加.相当于在原空腔处补上体电荷密度为ρ+和ρ-的球体.这时空腔内任一点P 的场强12=+E E E其中1E 与2E 分别是带ρ+的大球和带ρ-的小球在P 点的场强. 1E 与2E 都可用高斯定理求得.图17.11()1113ρε==E r OP r()2223'ρε=-=E r O P r()120033ρρεε=-=OO'E r r r 由上述结果可知在空腔内各点场强都相等,方向由O 指向O',这是均匀场.17-11 解: 如图选取高斯面 (1) r R <时210d d r l πρε⋅=⎰⎰E S210d 2d r lE r l πρπε⋅=102r E ρε=102r ρε=r E e r R >时220d d R l πρε⋅=⎰⎰E S220d 2d R lE r l πρπε⋅=2202R E r ρε=2202R rρε=r E e(2) 求电势,选圆锥面为等势面 r R <时 ()2200d d 24RRr rrr U r R r ρρεε=⋅==-⎰⎰E r图17.12图17-13r R >时2200d d ln 22RRr rrR R RU r r rρρεε=⋅==⎰⎰E r17-12 解: (1) 根据场强迭加原理,O 点的场强 012340=+++=E E E E E (2) 根据电势迭加原理, O 点的电势 01234U U U U U =+++ 044qrπε=99244010910510.--⨯⨯⨯⨯=⨯()328810v .=⨯(3) ()000A q U =-()93101028810..-=⨯⨯-⨯628810J .-=-⨯(4) W A ∆=- 628810J .-=⨯17-13 解: (1) 00104q q U R R πε⎛⎫=-= ⎪⎝⎭ 0143D q q U R R πε⎛⎫=-⎪⎝⎭06q Rπε=-()00D A q U U =-006q qRπε=图17-15图18.1(2) 0U ∞=()0D A q U U ∞=-- 006q qRπε=17-14 解:(1)68310100310V U Ed ∆==⨯⨯=⨯ (2)一次释放的能量为8931030910J W q U =∆=⨯⨯=⨯17-15 (1)00d P rU =⋅⎰E r00cos d E r θ=⎰0cos r E r = 0cos E r θ=- 0E z =-(2)将电荷由P 点移至O 点,电场力所做的功为()P O P O A W W q U U =-=- 0co s q E r θ=- 0q E z =- ∴ 0cos P W qE r θ=- 0q E z=- 第十八章 静电场中的导体和电介质18-1 解:(1)B,C 极接地,所以B,C 极为零电势。

新编基础物理学下册习题解答和分析

新编基础物理学下册习题解答和分析

《新编基础物理学》下册习题解答和分析第九章习题解答9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距时,任一球受另一球的斥力为.试求总电荷在两球上是如何分配的?分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有 q 1+q 2=×10-5C ①由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯=== ②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T Rε==︒ ①sin30mg T =︒②题9-1解图联立①②得:2o 024tan30mg R qπε= ③其中223sin 606103310(m)2r l --=︒=⨯⨯=⨯ 2R r =代入③式,即: q =×10-7C9-3 电场中某一点的场强定义为0F E q =,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。

9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =,AC =,求C 点电场强度E的大小和方向(cos37°≈, sin37°≈.分析:运用点电荷场强公式及场强叠加原理求解。

基础物理学(下)答案(梁绍荣、管靖)主编

基础物理学(下)答案(梁绍荣、管靖)主编

基础物理学(下)答案1. 力学与运动学牛顿第一定律:物体在不受外力作用时,将保持静止状态或匀速直线运动状态。

牛顿第二定律:物体的加速度与作用力成正比,与物体的质量成反比,加速度的方向与作用力的方向相同。

牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一直线上。

2. 热力学与热传导热力学第一定律:能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

热力学第二定律:热量不能自发地从低温物体传递到高温物体。

热传导:热量通过物体内部的微观粒子传递,传递速率与温度梯度成正比。

3. 电磁学库仑定律:两个静止点电荷之间的作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。

法拉第电磁感应定律:当磁通量发生变化时,会在导体中产生感应电动势。

安培环路定理:通过闭合路径的磁通量与路径上的电流成正比。

4. 光学折射定律:光线从一种介质进入另一种介质时,入射角和折射角的正弦值之比等于两种介质的折射率之比。

反射定律:光线在光滑表面上的反射遵循反射角等于入射角的规律。

光的干涉与衍射:当两束或多束光线相遇时,它们会相互干涉,产生明暗相间的干涉条纹。

光线通过狭缝或障碍物时,会发生衍射现象。

5. 量子力学波粒二象性:微观粒子如电子、光子等既具有波动性又具有粒子性。

海森堡不确定性原理:我们不能同时精确地知道一个微观粒子的位置和动量。

薛定谔方程:描述微观粒子状态的量子力学基本方程。

6. 相对论狭义相对论:光速在真空中是一个常数,与观察者的运动状态无关。

时间膨胀:在接近光速运动的物体中,时间会变慢。

长度收缩:在接近光速运动的物体中,长度会变短。

基础物理学(下)答案1. 力学与运动学牛顿第一定律:物体在不受外力作用时,将保持静止状态或匀速直线运动状态。

这一原理揭示了惯性的概念,即物体保持其运动状态不变的性质。

牛顿第二定律:物体的加速度与作用力成正比,与物体的质量成反比,加速度的方向与作用力的方向相同。

《物理学基本教程》课后答案 第二章 牛顿定律

《物理学基本教程》课后答案 第二章  牛顿定律

第二章 牛顿定律2-1 在如图2-1(a)所示的倾角为︒30的斜面上,由一轻杆相连的二滑块A 、B 质量相同,m A = m B = 2.5 kg ,与斜面间的滑动摩擦系数分别为20A .=μ,10B .=μ.求杆中的张力(或压力)以及滑块的加速度.分析 应用牛顿定律解力学问题的基本步骤为:(1)根据题意选取研究对象;(2)分析研究对象的受力情况,并画出示力图;(3)选取坐标系,将力或加速度沿坐标轴分解为分量,根据牛顿第二定律列出各个物体的运动方程;(4)求解方程,先进行文字运算,再代入数据,计算出结果.在分析力的过程中,必须注意每个力是哪个物体施给它的,没有施力物体的力是不存在的.在涉及斜面的问题中,斜面上物体所受到的作用力有重力、斜面压力和摩擦力,而不存在上滑力或下滑力.在连接体之间存在张力或压力.解 分别选取滑块A 、B 为研究对象,受力分析分别如图2-1(b )、(c )所示.假设杆中为张力,由于轻杆质量可以忽略,施加于A 和B 的张力大小应相等,即T TB TA F F F ==.取Oxy 坐标系如图2-1所示,应用牛顿第二定律,得滑块A 的运动方程为 x 方向: a m F F g m A fA T A =--θsin (1)FO θTB ︒30 m B g m A gx(a) (b) (c)图2-1y 方向: 0A NA =-θcos g m F (2) 滑块B 的运动方程为x 方向: a m F F g m B fB T B =-+θsin (3) y 方向: 0B NB =-θcos g m F (4) 由(2)式得θcos g m F A NA =,摩擦力θμμcos g m F F A A NA A fA ==,代入(1)式得a m g m F g m A A A T A =--θμθcos sin (5)由(4)式得θcos g m F B NB =,摩擦力θμμcos g m F F B B NB B fB ==,代入(3)式得a m g m F g m B B B T B =-+θμθcos sin (6)从(5)和(6)式消去F T ,并注意到m A = m B = 2.5 kg ,得222B A BA BB A A m/s 633m/s 2 38921020m/s 2189 2.....cos sin cos sin =⨯⨯+-⨯=+-=++-=θμμθθμμθg g g m m m m g a 代入(5)式,得N 061N 238952102050 21A A T ...)..(.cos )(-=⨯⨯⨯-⨯=-=θμμg m F B 上式中结果的负号表明,滑块A 所受轻杆的作用力方向与原假设相反,即受到沿斜面向下的推压力,因此杆中出现的是压力,量值为1.06 N .2-2 一金属链条放置于水平桌面上,其纵向与桌子边缘垂直,当链条长度的1/4部分垂挂于桌子边缘时,此链条刚好能开始在桌面上滑动,求链条与桌面之间的摩擦系数为何值? 分析 对于质量连续分布的物质,例如链条、绳和长杆等,根据题意,在运动过程中任一瞬时,可以将其分割成各自独立的部分作为研究对象,这些独立部分可以视为质点,作出示力图,分析各部分的受力情况,于是原来是内力的张力或压力就变成了分割出的独立部分所受到的外力,就可以应用牛顿第二定律建立运动方程了.解 设链条质量为m ,当链条刚好能开始在桌面上滑动时,桌面上的链条质量为m m 431=,悬垂部分的链条质量为m m 412=.分别以这两部分为研究对象,作示力图如图2-2所示.作用于桌面上链条的力有:重力m 1g ,桌面的正压力F N ,摩擦力F f ,悬垂部分对它的张力F T1.作用于悬垂链条的力有:重力m 2g ,桌面部分对它的张力F T2.不考虑桌面边沿的形状和摩擦,则链条两部分中的张力大小应相等,F T1= F T2= F T . 由于链条刚好能开始在桌面上滑动,摩擦力为最大静摩擦力N f F F μ=,此时链条加速度为零,可得mg g m F 431N == N f T F F F μ==T 241F mg g m ==m 2g图2-2由以上各式可解得 31=μ 2-3一物体沿倾角为30°的斜面向上滑动,在斜面底部时其初速为12m/s ,物体与斜面间摩擦系数为0.2,求(1)物体达到最高点所需要的时间,(2)返回底部时的速度,(3)摩擦系数为多大时,将使物体上升到速度为零后就不再往下滑动.分析 滑动摩擦力始终与运动物体相对滑动的方向相反,因此物体在斜面上向上滑动和向下滑动时的摩擦力正好反向,则物体所受合外力不同,加速度也就不同.通常取加速度方向为坐标轴正向,分别就向上滑动和向下滑动选取坐标系建立运动方程.由于牛顿第二定律建立的方程确定的是力和加速度之间的关系,因此,当所讨论的问题涉及到速度、位移和运动时间等运动学的物理量时,还要应用运动学中已经获得的相关公式求解.解 (1) 在上滑过程中,物体受力如图2-3(a)所示,摩擦力F f1沿斜面向下,且N 1f F F μ=.选Oxy 坐标系如图所示,设加速度1a 方向沿x 轴正向,应用牛顿第二定律得上滑过程的运动方程为x 方向: 11f 30ma F mg =-︒-siny 方向: 030N =︒-cos mg F由以上各式解得)cos (sin ︒+︒-=30301μg a由初始条件:0=t 时,m /s 120=v ,而到达最高点时速度为零,有t a 100=-v则到达最高点所需时间为s 1.82s 866020508912 3030010=⨯+⨯-=︒+︒-=-=)...(.)cos (sin μg a t v v (2) 物体向下滑时,受力如图2-3(b)所示,摩擦力F f2沿斜面向上,且N f2F F μ=.选Oxy 坐标系如图所示,设加速度2a 方向沿x 轴正向,应用牛顿第二定律得下滑过程的运动方程为x 方向: 2f230ma F mg =-︒siny 方向: 030N =︒-cos mg F由以上各式解得)cos (sin ︒-︒=30302μg a (1)物体上升时的位移为)cos (sin ︒+︒=-=30302220120μg a s v v 下滑过程由静止开始,到达底部时速率为m/s 8.36m/s 128660205086602050 30303030202=⨯⨯+⨯-=︒+︒︒-︒==......cos sin cos sin v v μμs a(3) 令02=a 代入(1)式,则物体位于最高点时速度为零,又无向下加速度,︒30 m g ︒30 m g(a) (b)图2-3即不再向下滑动,可得577030.tan =︒=μ2-4 细绳跨过轻滑轮连接着质量分别为5kg 和1kg 的二物体,滑轮吊在弹簧称下悬挂于升降机之中,如图2-4(a)所示.(1)当升降机静止不动时,问弹簧称上的示重是多少?(2) 当弹簧称上的示重为58.8 N 时,求升降机的加速度.分析 物体的重量是物体施加在称重仪器设备上的压力或张力,其大小等于称重仪器设备反作用在物体上的压力或张力.当物体在地面上处于静止或作匀速直线运动状态进行称重时,地球对物体的引力和称重仪器设备作用的压力或张力等大而反向,物体的重量与重力的量值相等.当物体在地表附近有沿竖直方向的加速度时,物体的重量与重力的量值就不再相等了.牛顿定律只适用于惯性参考系,当所讨论的问题中参考系本身也有加速度时,就要应用相对运动的加速度合成定理.通常可以选取地球(地面)作为静止参考系,物体相对于地面的加速度PS a 等于物体相对于运动参考系加速度S P 'a 与运动参考系相对于地面加速度S S'a 的矢量和,即S S'PS'PS a a a +=解 二物体质量分别为m 1 = 5 kg , m 2= 1 kg .二物体和滑轮的受力情况如图2-4(b)所示.对于细绳和轻滑轮,忽略绳和滑轮间的摩擦,应有T1T1F F =',T2T2F F =',T2T2F F '='和T2T1T F F F '+'=,因此有 T2T1T F F F += 设升降机有一向上的加速度a ’,物体m 1相对于升降机的加速度a ,方向a ’F F am 2g m 1g(a ) (b )图2-4向下,物体m 2相对于升降机的加速度a ,方向向上.如果假设对于地面参考系,物体m 1的加速度方向向下,物体m 2的加速度方向向上,并以它们各自加速度的方向为坐标轴正向,则根据相对运动加速度合成定理,物体m 1相对于地面的加速度为a -a ’,物体m 2相对于地面的加速度为a +a ’.由牛顿第二定律可得其运动方程分别为)(a a m F g m '-=-1T11 (1))(a a m g m F '+=-22T2 (2)(1) 当升降机静止时,0='a ,由(1)和(2)式以及张力之间的关系,得弹簧称上的示重为N 32.7N 891515112 1221212T =⨯+-+⨯⨯=+-+=.)()(g m m m m m F (2) 当弹簧称上的示重为N 858T .=F 时,由(1)和(2)式以及张力之间的关系,得升降机的加速度为222121T 21m/s 847m/s 1548915485815 44...)()(=⨯⨯⨯⨯⨯-⨯+=-+='m m gm m F m m a 2-5质量均为m 形状相同、相互接触的梯形木块A 、B 放置在光滑的水平桌面上,如图2-5(a)所示.设两木块之间的接触面是光滑的,斜面与水平面之间的夹角为α,今以一水平力F 作用在A 上,求A 、B 之间无相对运动时A 、B 对桌面的压力.分析 在解动力学问题时,隔离物体法是一个基本方法.在有些求物体所受力的问题中,往往碰到该物体的运动状态难以确定的情况,这时可以先求该物体对其他运动物体的反作用力,再利用牛顿第三定律确定所求力的大小和方向.解 分别选取木块A 、B 为研究对象,受力情况如图2-5(b)所示.根据题意,两木块加速度a 相等,且沿外力F 方向.木块之间相互作用的压力大小相等,即T TB TA F F F ==.选取如图所示的Oxy 坐标系,应用牛顿第二定律得其运动方程分别为木块A 的x 方向: ma F F =-αsin Ty 方向: 0T NA =--mg F F αcos木块B 的x 方向: ma F =αsin Ty 方向: 0T NB =--mg F F αcos解以上方程得αcot F mg F 21NA += αcot F mg F 21NB -= 根据牛顿第三定律,木块A 、B 对桌面的压力的大小分别等于桌面给予它们的反作用力F NA 和F NA ,方向向下.2-6在一轻滑轮上跨有一轻绳,绳之两端连接着质量分别为1kg 和2kg 的物A B TB F TA O xm g m g(a ) (b )图2-5体A 、B ,现以50N 的恒力F 向上提滑轮的轴,如图2-5(a)所示,A 和B 的加速度各为多少?不计滑轮质量及滑轮与绳间摩擦.分析 在物体和滑轮组合成系统的动力学问题中,如果滑轮静止,不计滑轮质量及滑轮与绳间摩擦的情况下,用细绳跨过滑轮连接的两物体的速度和加速度的大小相等、方向相反.然而,一旦滑轮本身具有加速度,如果以滑轮为运动参考系,那么细绳跨过滑轮连接的两物体相对于滑轮的加速度大小相等、方向相反,但是它们对于地面参考系的加速度则必须根据相对运动加速度合成定理叠加计算.通常当不必求滑轮加速度时,可以先设定两物体对地面的加速度方向,最后再根据计算结果的正负确定实际加速度的方向.解 以滑轮和物体A 、B 为研究对象,分别作出示力图如图2-6(b )所示.取竖直向上为y 轴正向,假设物体A 、B 的加速度a A 和a B 方向向上,由于不计滑轮质量及滑轮与绳间摩擦,绳中张力大小相等,即T T2T1T2T1F F F F F ='='==,应用牛顿第二定律得滑轮的运动方程为02T =-F F物体A 的运动方程为A A A T a m g m F =-物体B 的运动方程为B B B T a m g m F =-yF T2A B a A a BA B m A g m B g (a ) (b ) 图2-6联立求解得222A A m/s 215m/s 89m/s 12502..=-⨯=-=g m F a 222B B m/s 72m/s 89m/s 22502..=-⨯=-=g m F a 2-7在光滑斜面上沿斜面倾斜方向放有一匀质长杆AB ,长为l ,质量为m ,斜面与水平面间夹角为θ,现沿斜面以恒力F 拉杆,如图2-7(a )所示,求杆内各部分间的相互作用(张力)沿棒长方向的变化规律.分析 求质量连续分布的杆或绳中的内力,要采用隔离物体法,取其中一段作为研究对象分析受力情况,应用牛顿定律建立方程.计算结果通常与所选取的段长有关,即为段长的函数.解 取如图2-7(b )所示的xy 坐标系,以长杆AB 为研究对象,加速度a 沿斜面向上,根据受力情况,应用牛顿第二定律得运动方程为ma mg F =-θsin再取长为x 的一段杆AC 为研究对象,其质量为mg lx m =C ,在C 处杆内张力F T 对于AC 部分成为外力,但AC 仍具有与整个杆相同的加速度,应用牛顿第二定律得AC 部分的运动方程为y x F T θ A A θm C g m g(a ) (b )图2-7ma lx mg l x F =-θsin T 于是可解得F lx g a m l x F =+=)sin (θT 结果表明杆内张力随C 点位置变化.2-8 在如图2-8所示的物体系统中,不计绳和滑轮的质量,并忽略m ’与水平桌面、m ’与m 1之间的摩擦力.问应以多大的水平推力作用在m ’上,才能使系统运动过程中m 1和m ’之间无相对滑动?此时m ’对桌面的压力为多少?(m 1> m 2)分析 当几个物体构成一个系统并以相同的速度平动时,可以将这些物体构成的系统作为一个质点,应用牛顿定律建立合外力与加速度之间的关系,而不必考虑各部分之间的相互作用内力.但是当这个系统的各部分之间有发生相对运动的可能性存在时,就仍然需要用隔离物体法,分析各部分的受力情况,分别建立运动方程,找到发生或不发生相对运动的条件.解 分别取m 1、m 2和m ’为研究对象.根据题意,m 1、m 2和m ’组成系统以同一加速度a 沿水平方向运动,因此连接m 2的细绳将发生倾斜,与竖直方向夹角为θ,绳中张力的水平方向分量使m 2获得加速度a ,各物体受力情况和’ m m 1g F ”T F ’Tm ’ m 2 y F θx N1F ' m ’g m 2g (a ) (b )图2-8坐标选取如图2-8(b)所示.不计绳和滑轮的质量,忽略摩擦,应有T TT F F F ''='=,m 1和m ’之间的压力大小相等N1N1F F '=,应用牛顿第二定律得m 1的运动方程为x 方向: a m F 1T = y 方向: 01N1=-g m Fm 2的运动方程为x 方向: a m F 2T =θsin y 方向: 02T =-g m F θcosm ’的运动方程为x 方向: a m F F F '=--θsin T T y 方向: 0T N1N ='---g m F F F θcos联立求解得g m m m m m m F 2222121-'++=g m m m F )('++=21Nm ’对桌面的压力大小等于桌面对m ’的压力N F ,方向向下.从上式可以看出该压力量值上等于整个系统所受的重力,因为系统中各物体的运动发生在水平面内,竖直方向无加速度和位移.2-9如图2-9(a)所示的滑轮组系统中,不计绳子与滑轮质量,m 1与桌面间无摩擦,求m 1和m 2的加速度以及绳中张力.分析 在质点力学中,对于滑轮和物体组成的连接体问题,往往忽略滑轮质量以及绳与滑轮之间的摩擦,才使得跨过滑轮的绳中张力大小相等.在第五章掌握了刚体的运动定律后,将不再忽略滑轮质量,问题的分析就更接近实际了.当存在动滑轮时,动滑轮的加速度和跨过滑轮的绳上连接物体的加速度之间的相互关系,要根据题意建立方程确立.解 分别以m 1、m 2和动滑轮为研究对象,受力情况如图2-9(b )所示.m 1的加速度a 1向右,m 2和动滑轮的加速度a 2向下.不计绳子与滑轮质量,应有T1T1F F '=,T2T2F F '=.因为都只作直线运动,可取各自的运动方向为坐标轴正向,应用牛顿第二定律,它们的运动方程分别为m 1: 11T1a m F =m 2: 22T22a m F g m =-动滑轮: 02T1T2=-F F 因为绳长不变,当m 1位移为x 时,m 2位移为x /2,于是可得加速度a 1和a 2之间的关系:22222122d d 2d d a x t t x a === 联立以上各式,解得g m m m a 122142+= g m m m a 12224+=a 1 F F ’T1 F ’T2 m F T1 a 2m 1g F T2 m 2gm 2(a ) (b )图2-9g m m m m F 1221T142+= 2-10 在如图所示的滑轮系统中,滑块A 的质量为m A ,与桌面间的摩擦系数为μ,B 是起始质量为m B 的冰块,因溶化使其质量随时间的减少率为k .不计绳与滑轮质量,求A 、B 由静止开始运动后t 时刻的速率.分析 由于有了微积分的基础,在大学物理中可以分析变力作用下的直线运动问题.因为力是时间的函数(有些问题中也可能表示为位置的函数,即为时间的隐函数),应用牛顿定律建立的运动方程就成为微分方程,解微分方程并利用初始条件可以获得所需要的解.在动力学的其他几章和电磁学中都会碰到这类应用积分或求解微分方程的问题,这对于巩固高等数学知识,学会建立物理模型以便为今后工程技术实际应用打下基础,有着重要意义.这些问题对于初学者有一定的难度,但是通过一些习题的训练,是可以逐步掌握方法和技巧的. 解 以滑块A 和冰块B 为研究对象,隔离物体并作受力分析如图2-10(b)所示.不计绳与滑轮质量,绳中张力大小相等,即T T F F '=.取二物体各自运动方向为坐标轴正向,作为连接体它们的加速度大小相等,均为a ,应用牛顿第二定律得其运动方程分别为滑块A : a m F F A f T =- A’Ta B F f m A g m B g(a) (b)图2-10冰块B : ma F mg =-T根据题意,其中t 时刻冰块质量kt m m -=B ,作用于滑块A 的摩擦力g m F A f μ=,由以上各式可得g ktm m m g kt m m kt m m a ])([-++-=-+--=B A A B A A B 11μμ 因ta d d v =,则上式可写为 g ktm m m t ])([-++-=B A A 11d d μv 分离变量:t g ktm m m d 11d B A A ])([-++-=μv 由于初始时,0 0==v ,t ,设t 时刻滑块和冰块速率为v ,上式两边积分t g ktm m m t d 11d B A A 00])([-++-=⎰⎰μv v得 g kt m m km t )]ln()([-+++=B A A 1μv 2-11 质量为0.5kg 的物体沿x 轴作直线运动,在沿x 方向的力t F 610-=的作用下,t = 0时其位置与速度分别为x 0 =5,v 0 =2,求t = 1时该物体的位置和速度.(其中F 以N 为单位,t 以s 为单位,x 0以m 为单位,v 0以m/s 为单位)分析 当作用于物体的力是时间的函数时,由建立的运动方程积分可以求得速度.所求出的速度必定也是时间的函数,当还需要计算t 时刻该物体的位置时,就应该利用速度的定义式tx d d =v ,再积分求出位置的表示式. 解 由加速度的定义ta d d v =,应用牛顿第二定律,可得t t m F t 122050610d d -=-==.v 分离变量:t t d 1220d )(-=v两边积分得C t t +-=2620v由初始条件:t = 0时v=v 0 =2,得20==v C ,即26202+-=t t v (1)因tx d d =v ,上式可写为 2620d d 2+-=t t tx 分离变量:t t t x d 2620d 2)(+-=两边积分得1322210C t t t x ++-=由初始条件:t = 0时x=x 0 =5,得501==x C ,即5221032++-=t t t x (2)当t = 1s 时,由(1)和(2)式得m/s 16=v ,m 15=x . 2-12物体与地面间的摩擦系数为0.20,以轻绳系于物体之一端,并通过滑轮以一水平力F = 8 N 拉此物体,如图2-12(a)所示.设物体的质量为2kg ,(1)问绳与水平方向的夹角α为何值时,物体的加速度有最大值?(2)求此时的加速度以及地面对物体的作用力.分析 若作用力的大小不变,但方向在不断改变,则该作用力仍然是变力.在力的分析过程中就要特别注意力的作用方向与物体运动方向间的关系.求某一物理量的最大值或最小值,通常可以采用数学中的求极值的方法,即对该物理量的表达式求导数并令其等于零,得到相关参量的方程,根据题意求解,得到取最大值或最小值的条件.解 恒力通过滑轮改变方向后作用于物体上,力F 的作用方向与物体运动方向间的夹角α随物体位置变化,运动中物体受力情况如图2-12(b)所示.取图中所示的坐标系,应用牛顿第二定律得运动方程为x 方向: ma F F =-f αcos y 方向: 0N =-+mg F F αsin其中摩擦力N f F F μ=,联立解得g mF a μαμα-+=)sin (cos (1) αsin F mg F -=N (2)(1) 当0d d =αa 时,加速度有极值,因此由(1)式得 0d d =+-=)cos sin (αμααmF a 811120'︒===).arctan(arctan μα(2) 将上面的结果代入(1)和(2)式,得222m/s 2.12 m/s 8920m/s 811120811128 =⨯-'︒⨯+'︒⨯=-+=..)sin .(cos )sin (cos g mF a μαμαFy F f xm g(a) (b)图2-12N 18N 81118N 892 N ='︒⨯-⨯=-=sin .sin αF mg F摩擦力为 N 3.6N 1820N f =⨯==.F F μ2-13 质量为1.5 kg 的物体被竖直上抛,初速度为60 m/s ,物体受到的空气阻力数值与其速率成正比,v k F =阻,s/m N 030⋅=.k ,求物体升达最高点所需的时间及上升的最大高度.分析 在忽略空气阻力的情况下,地面附近的抛体在重力作用下以恒定的重力加速度g 运动.但在实际问题中,空气阻力是不可忽略的,当物体的速度较小时,空气阻力的大小与速率成正比;对于高速运动的物体,空气阻力的大小与速率的平方成正比.下面将应用解微分方程的方法,求解一些简单的直线运动情况下有空气阻力存在时的质点运动问题.解一阶微分方程可以用不定积分也可以用定积分方法.如果采用不定积分,积分常数利用初始条件确定.分离变量法则是通常采用的比较简捷的算法.解 以竖直向上为y 坐标正向,应用牛顿第二定律得物体运动方程为tm k mg d d v v =-- (1) 物体达到最高点时,0=v ,初始条件:0=t 时,m /s 600==v v ,将上式分离变量并积分:⎰⎰+-=000d d v v v k mg m t t 得 s 85s 18951600300305110.)...ln(..)ln(=+⨯⨯⨯=+=mg k k m t v 由于yt y y t d d d d d d d d v v v v ==,代入(1)式,得 ym k mg d d v v v =--根据始末条件,分离变量并积分:⎰⎰+-=000d d v v v v k mg m y y 得 m 170m 600301895160030895103051 100=⎥⎦⎤⎢⎣⎡⨯-⎪⎭⎫ ⎝⎛+⨯⨯⨯⨯⨯-=⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-=....ln ....ln v v k mg k mg k m y2-14 将相同材料制作的半径分别为R 和2R 的二小球在粘滞系数为η的液体中无初速地释放.根据斯托克斯定律,半径为r 的小球速度为v 时在液体中受到的粘滞阻力为v r πη6.试计算两球的初始加速度之比和终极速度之比.分析 由斯托克斯定律确定的流体粘滞阻力大小与物体的速率成正比,即为变力,为了求物体的运动状态,需要用到积分方法.由于在例题2-5中已经严格推导出了速度与时间的函数关系,以及小球的运动方程,因此可以利用其结果进行相关的计算.解 设球的密度为ρ,液体的密度为ρ',二小球质量分别为ρπ3134R m =和1328234m R m ==ρπ)(,作用于二小球的液体浮力分别为g R F ρπ'=31B 34和B13B28234F g R F ='=ρπ)(,液体的粘滞阻力分别为v R F πη6r1=和r1r2226F R F ==v )(πη.取竖直向下方向为x 轴的正方向,则二小球的运动方程分别为11r1B11a m F F g m =--22r2B22a m F F g m =--初始时刻0=v ,则0r2r1==F F ,由以上二式及二小球对应量间的关系,得12B21B121=--=m F g m F g a a //由例题2-5的(2-27)式,知半径为r 的小球在液体中下落,足够长时间后的终极速度为2092gr ηρρ'-=v ,因此半径分别为R 和2R 的二小球终极速度比为 4122221==)(R R v v 2-15 质量为1000kg 的船,发动机熄火时速度为90km/h ,水的阻力与船速成正比,F r =-kv ,其中k = 100kg/s .假设水面静止不流动,求(1)熄火后船速减小到45km/h 所需要的时间;(2)熄火后1分钟内船的行程,以及船的最大航程.分析 当作直线运动的物体只受到一个与速率成正比的阻力作用时,用分离变量法解此一阶微分方程比较简单.解 船只受水的阻力F r =-kv 作用,船的运动方程为tm k d d v v =- 初始条件为0=t 时,m /s 25km /h 900==v ,将上式分离变量并积分:⎰⎰-=t t m k 0d d 0vv v v得 v v 0ln k m t = (1) (1) 当船速减小到m/s 512km/h 45.==v 时,由上式得s 936s 512251001000..ln =⨯=t (2) 由(1)式得 t m kt x -==e d d 0v v 初始条件为0=t 时,00=x ,积分得k m t x t m k t t m k )(--⎰-==e 1d e 000v v (2)当s 60=t 时,由上式得m 249.4m 1001000e 190601000100=⨯-⨯=⨯-)(x 当∞→t 时,由(2)式得船的最大航程为m 250m 100100090=⨯=x 结果表明,熄火后1分钟船已接近停止.2-16 长度不等的两根细绳,各系一物体悬于同一点,使二物体在同一高度处作圆周运动,证明这样的两个圆锥摆周期相同.分析 在忽略空气阻力的情况下,如图2-16(a)所示的圆锥摆绕竖直轴线回转一圈的时间为定值,称为周期.当物体作圆周运动时,必定存在法向加速度,在分析力和建立运动方程的过程中,通常选取指向圆心的方向为坐标轴之一的正向,将外力分解到该方向后,可以建立法向合外力与法向加速度之间的关系.证 设物体回转的水平位置距悬点的高度为h ,回转半径为r ,悬线与竖直方向夹角为θ,物体质量为m ,物体受重力g m 与悬线张力T F 作用,选竖直方向为y 轴正向,水平指向回转圆心方向为x轴正向,如图2-16(b)所示,可得运动方程为x 方向: r m F 2T ωθ=sin y 方向: 0T =-mg F θcosm g(a) (b) 图2-16因为物体无切向加速度,作匀速圆周运动,角速度Tπω2=,又由几何关系得hr =θtan ,于是可解得 gh T π2= 结果表明,摆动周期T 只与物体回转高度有关,与物体质量无关,与回转半径无关.2-17 在光滑水平面上固定着一半径为R 的圆环形围屏,质量为m 的滑块沿环形内壁转动,滑块与壁间摩擦系数为μ,如图2-17(a )所示,(1)当滑块速度为v 时,求它与壁间的摩擦力及滑块的切向加速度,(2)求滑块的速率v 由变为v /3所需的时间。

基础物理学(下)答案(梁绍荣、管靖)主编

基础物理学(下)答案(梁绍荣、管靖)主编

六面中每一个面的通量 等且都等于 相
q
.

零.
q . 6 0 1
§17 真空中的静电场 P27 17-6. (1) 设地球表面附近的场强约为200V· m-1.方向指向地心, 试求地球所带总电量. (2) 在离地面1400米处, 场强为20V· m-1, 方向仍指向地心, 是计算1400米以下大气里平均电荷替密度.
*
.

. 3 0, 极大值,不稳定平衡 .
OA
, f (可以在那里放电量不同 各顶点受力各分量为 (). , f () 0, f '() 0 or 0,稳定性分析 ,........(它若是哪个函数的极值 就好了 哪个?下周定义: 电势U.
y :高斯定理d *S /0 2E'S (2)板外距中线处 d E 因为电场线关于中层面 对 称,考虑方向 20 d d E k (z d /2), E k (z d /2). 20 20
,
§17 真空中的静电场 P27 17-8. 求电荷面密度为σ 的无限长均匀带电圆柱面(半径为R)的 场强分布, 并画出E-r曲线. E z r 0 R
x
A
cos30
FAy FAx
b
0 20

b
2
3)
a/2
3 a/ 2 OA 2 a 3
B
3 q0; (对B,C的分析完全一样 ) 3 这里:物理系统的平衡决定于 个函数 () 一 f 0; 这个平衡点的稳定
FAy FAx 0 ; 0,稳定. 决定于f ()在这个 *处的导数 0,不稳定小于 , 数 如果是多元函数那就是只要有一个偏导 正的就是不稳定的 FAx

大学物理基础教程全一册答案

大学物理基础教程全一册答案

大学物理基础教程全一册答案1. 光的干涉和衍射不仅说明了光具有波动性,还说明了光是横波。

[单选题] *对错(正确答案)2. 拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。

[单选题] *对错(正确答案)3. 爱因斯坦提出的光子说否定了光的波动说。

[单选题] *对错(正确答案)4. 太阳辐射的能量主要来自太阳内部的裂变反应。

[单选题] *对错(正确答案)5. 全息照片往往用激光来拍摄,主要是利用了激光的相干性。

[单选题] *对(正确答案)错6. 卢瑟福的α粒子散射实验可以估测原子核的大小。

[单选题] *对(正确答案)错7. 紫光光子的能量比红光光子的能量大。

[单选题] *对(正确答案)错8. 对于氢原子,量子数越大,其电势能也越大。

[单选题] *对(正确答案)错9. 雨后天空出现的彩虹是光的衍射现象。

[单选题] *对错(正确答案)10. 光的偏振现象说明光是横波。

[单选题] *对(正确答案)错11. 爱因斯坦提出光是一种电磁波。

[单选题] *对错(正确答案)12. 麦克斯韦提出光子说,成功地解释了光电效应。

[单选题] *对错(正确答案)13. 不同色光在真空中的速度相同但在同一介质中速度不同。

[单选题] *对(正确答案)错14. 当原子处于不同的能级时,电子在各处出现的概率是不一样的。

[单选题] *对(正确答案)错15. 同一种放射性元素处于单质状态或化合物状态,其半衰期相同 [单选题] *对(正确答案)错16. 原子核衰变可同时放出α、β、「射线,它们都是电磁波。

[单选题] *对错(正确答案)17. 治疗脑肿瘤的“「刀”是利用了r射线电离本领大的特性。

[单选题] *对错(正确答案)18. β射线的电子是原子核外电子释放出来而形成的。

[单选题] *对错(正确答案)19. 玻尔理论是依据α粒子散射实验分析得出的。

[单选题] *对错(正确答案)20. 氢原子核外电子从小半径轨道跃迁到大半径轨道时,电子的动能减小,电势能增大,总能量增大。

大学基础物理学(第四版)课后题答案

大学基础物理学(第四版)课后题答案

面向21世纪课程教材学习辅导书普通高等教育“十一五”国家级规划教材配套参考书大学基础物理学第四版习题解答陈建军主编后德家王贤锋副主编高等教育出版社内容简介本书是与“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)配套的学习辅导书.全书的内容按照主教材的章节顺序编排,习题解答过程规范、详细.本书可为学生学习课程内容,复习和巩固知识以指导与帮助.本书适合于选用“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)的学校选作教学辅导书,也可供其他大学物理学习者使用.前言 (1)第1章流体力学 (1)第2章气体动理论 (7)第3章热力学基础 (12)第4章静电场恒定电场 (20)第5章恒定磁场 (28)第6章交变电磁场 (36)第7章光的波动性 (41)第8章光的量子性 (46)第9章量子力学初步 (49)第10章光谱分析原理及应用 (51)第11章放射性核物理及其应用 (52)测试练习(一) (55)测试练习(一)参考答案 (59)测试练习(二) (62)测试练习(二)参考答案 (65)《大学基础物理学》(第四版)是专为高等农林院校农、林类专业编写的大学物理课程教学的教材,本书是与之配套的教学参考书.大学物理课程学习中,做习题是一个不可缺的教学环节,不仅可以检查学生对课程知识点掌握的程度,还能巩固所学的知识,而且有利于提高分析问题和解决问题的能力.为了帮助学生掌握正确的解题方法,我们修订了《大学基础物理学》(第三版)《习题解答》教学参考书.全书的内容按照主教材的章编排,习题解答规范,过程详细.本书将给农林院校农、林类专业学生学习大学物理课程以极大的帮助.本书第一章(流体力学)、第二章(气体动理论)、第三章(热力学基础)、第八章(光的量子性)、第九章(量子力学初步)由华中农业大学陈建军修订;第四章(静电场恒定电场)、第五章(恒定磁场)、第六章(交变电磁场)由华中农业大学王贤锋修订;第七章(光的波动性)、第十章(光谱分析原理及应用)、第十一章(放射性核物理及其应用)由华中农业大学后德家修订.华中农业大学谭佐军、卢军、魏薇、程其娈、张纾、邓海游参与题目审核工作,刘玉红参与公式编辑工作,陈建军负责全书统稿和定稿.华中农业大学罗贤清和丁孺牛细致审阅了本习题解答,并提出了许多建设性的意见,在此表示衷心的感谢.同时编者也对参加第一版、第二版和第三版编写工作的同志表示诚挚的谢意.感谢教育部大学物理课程教学指导委员会农林水工作委员会、全国高等农林水院校物理教学委员会对本次修订工作的指导.由于编者水平有限,书中难免有错误和疏漏之处,我们衷心期待得到广大读者、同行专家的批评、指正,感谢对编者的关爱和帮助.编者2017年6月于狮子山南湖畔第1章流体力学1.1从水龙头缓缓流出的水流,下落时逐渐变细,为什么?答:从水龙头缓缓流出的水流,下落时由于重力做功,水流的速度越来越大.根据连续性原理Sv =常量,可知水流的速度越大,其横截面积就越小,所以从水龙头缓缓流出的水流,下落时逐渐变细.22121122121v v ρρgh ρp p -++=Pa1062Pa 52100121108910010510012110515233235⨯=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=........1.4如习题1.4图所示,一水管向水井中放水的流量为141094--⋅⨯=s m .3Q ,井底有一截面积为2cm .50=S 的小孔,当井中水面不再升高时,井中水深多高?习题1.4图解:本题是关于伯努利方程的应用.设机翼上面的气流速率为v 2,机翼下面的气流速率为v 1,由于飞机机翼比较薄,所以可近似取h 1=h 2,机翼压强差为p 1–p 2=1000Pa.根据伯努利方程有2222112121v v ρp ρp +=+机翼上面的气流速率为11221212s m 107s m 10029110002)(2--⋅=⋅+⨯=+-=.v v ρp p 1.6水从管1流入,通过支管2和3流入管4,管4的出口与大气相通,整个管道系统在同一水平面内.已知各管的横截面积分别是S 1=15cm 2,S 2=S 3=5cm 2,S 4=10cm 2,管1中的体积流量Q 1=600cm 3·s -1.求(1)各管中的流速;(2)各管中的压强与大气压强之差.Pa 0Pa =⨯-⨯⨯⨯=-=-=--42232224420210)6060(100.121)(21v v ρp p p p 同理,Pa 0=-03p p .1.7将一半径为1.0mm 的钢球,轻轻放入装有甘油的缸中,当钢球的加速度是其自由落体加速度一半时,其速度是多少?钢球的最大速度是多少?钢球的密度为8.5×103kg·m -3,甘油的密度为1.32×103kg·m -3,甘油的粘度为0.83Pa·s.解:本题是关于斯托克斯定律的应用.钢球在甘油中下落,所受重力为g ρr mg 钢球3π34=,所受甘油的浮力为g ρr F 甘油浮3π34=,根据斯托克斯定律所受黏性阻力为v r ηF f 甘油π6=.根据牛顿第二定律F =ma ,钢球的加速度是其自由落体加速度的一半时,有mg ―F f ―F 浮=ma =mg /2,即解:本题是关于斯托克斯定律及雷诺数的应用.对下落雨滴进行受力分析,雨滴所受重力为ρg r mg 3π34=,所受空气的浮力为g ρr F 空气浮3π34=,根据斯托克斯定律,所受黏性阻力为v r ηF π6=f .当雨滴受到的空气黏性阻力加上空气对雨滴的浮力等于其受到的重力,雨滴将匀速下落,此时速度为终极速度,于是有ρg r g ρr r 33π34π34π6=+空气v η雨滴的终极速度为23223352m m kg sPa s m )10600()2911001(10818992)(92⨯⋅⨯⋅⋅⨯⨯⨯-⨯⨯⨯⨯==----.....-空气空气r ρρg ηv 11s m 1034--⋅⨯=.根据泊肃叶定律lηR p p Q V 8)π(421-=,得大动脉内单位长度上的压强差Pa 10092ms m m s Pa )10521(1431050110048π844134363421⨯=⋅⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===∆----.....-R lQ ηp p p V 根据圆管中实际流体的流速随半径的分布规律公式)(42221r R ηlp p --=v ,得轴心处(即r =0)血液流动速度为122334221s 04m 2m ms Pa Pa )10251(0110044100924---⋅=⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯=-=.....R ηl p p v第2章气体动理论2.1气体的平衡态有何特征?与力学中所指的平衡有什么不同?答:所谓平衡态是指系统与外界没有能量交换,内部也没有化学变化等形式的能量转化,系统的宏观性质不随时间变化.当气体处于平衡时,其状态的宏观参量值不随时间变化,即气体内部各部分具有相同的压强、密度和温度.热力学系统的平衡态与力学中所指的平衡是两个不同的概念.力学中的平衡平动动能也相等.(2)平均动能包括分子的平均平动动能、平均转动动能和平均振动动能,与每个分子的自由度数有关,为T k iB 2.氢气和氦气分子结构不同,则自由度数i 不相同,所以它们的平均动能不相等.(3)根据RT i M m 2,虽然温度T 和物质的量Mm相同,但氢和氦两种气体分子自由度i 不同,所以它们的内能不相等.2.4温度为27℃时,计算1mol 氮气的平均动能,平均转动动能和内能.解:本题是关于理想气体的能量均分定理及内能的应用.氮气分子是双原子分子,自由度为5,根据能量均分定理,其平均动能为23-120B 551.3810300J K K 1.0351022J--==⨯⨯⨯⨯⋅⨯=⨯w k T2.6将kg 10×83的氧气从10℃加热到20℃,求氧气的内能增加多少?解:本题是关于理想气体内能公式的应用.氧气分子是双原子分子,自由度为5,氧气的摩尔质量M =32×10-3kg·mol-1,根据理想气体内能公式RT iM m 2,可知氧气增加的内能[]J52mol kg K K mol J kg )10273()20273(31.8251032108211133=⋅⋅⋅⋅⨯⨯+-+⨯⨯⨯⨯⨯=∆=-----T R i m E M 2.7储有氮气的容器以速度-1200m sυ=⋅运动,假若该容器突然停止,气体的全部机械平动动能转化为气体的内能,这时气体的温度将会升高多少?(设氮气可看做理想气体.)解:设容器内氮气总质量为m ,则全部机械平动动能为0p (4)⎰∞2d )(υυf υ表示气体分子速率平方的平均值;(5)υυnf d )(表示单位体积内,分子速率在v ~v +d v 区间的分子数.2.9求在温度为27℃时氧气分子的平均速率、方均根速率以及最概然速率.解:本题是关于理想气体分子平均速率、方均根速率和最概然速率公式的应用.氧气的摩尔质量M =32×10-3kg·mol -1,温度T =(273+27)K=300K,可求得121113O s m 1044molkg KK mol J 10323.14300318882-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯⨯==6..M πRTv 121113O O 2s m 10834mol kg K K mol J 10323003183322-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯==..M RT v(1)按题给条件,速率分布函数是分段的.在F v v <<0速率区间,速率分布函数f (v )与v 2成正比;当F v v >时,速率分布函数f (v )为零.于是可画出速率分布函数曲线,如解题2.11图所示.(2)由归一化条件1=⎰∞d )(v v f ,有解题2.11图1===⎰⎰∞3F 0203d d )(Fv v v v v v A A f 得3F3v =A (3)根据最概然速率的定义,由图知,F p v v =.根据平均速率的定义式⎰∞=0d )(v v v v f ,得电子平均速率F F 033F 02075043d 3d A d )(FF v v v v v v v v v v v v v v .=====⎰⎰⎰∞f 根据方均速率的定义式⎰∞=022d )(v v v v f ,得电子速率平方平均值2F 043F 02202253d 3d A d )(FF v v v v v v v v v v v v v ====⎰⎰⎰∞f 所以,电子方均根速率为F F 27750515v v v .==第3章热力学基础3.1系统的温度升高是否一定要吸热?系统与外界不作任何热交换,而系统的温度发生变化,这种过程可能吗?答:系统的温度要升高不一定要吸热,外界对系统做功也可以使系统的温度升高;系统与外界不作任何热交换,而使系统的温度发生变化,这种过程是可能的,可以通过外界对系统做功或系统对外界做功来实现系统温度的变化.3.2(1)0.50kg 的水在大气压下用电热器加热,使水的温度自20℃缓慢的加热到30℃,试计算此水的内能的变化(水的比热容为3-1-14.1810J kg K⨯⋅⋅.)(2)一保温瓶里装有0.50kg、20℃的水,用力摇荡此瓶,使水的温度升高到30℃,初态及终态的压强均为大气压,试求水内能的变化及水所做的功.解:(1)在此过程中,等压地对水所加的热量为= t =0.5×4.18×10 ×10J =t.0 ×104J由于水的体积变化很小,故准静态过程的功A=0,依热力学第一定律有内能的变化= =t.0 ×104J (2)此过程不是准静态过程.但其始末状态与(1)相同,故内能变化与(1)相同,即= =t.0 ×104J由于系统被保温瓶所隔着,故无热量的传递,所以Q =0依 = + ,得水所做的功为=− =−t.0 ×104J3.3系统由习题 3.3图中的a 态沿abc 到达c 态时,吸收了400J 的热量,同时对外作150J 的功.(1)如果将沿adc 进行,则系统做功40J,问这时系统吸收了多少热量?(2)当系统由c 态沿着ca 返回a 态时,如果外界对系统做功80J,这时系统是吸热还是放热?热量传递时多少?习题 3.3图解:本题是关于热力学第一定律在准静态过程中的应用.根据热力学第一定律Q=△E+A,得a、b状态内能的变化△Eab =Eb-Ea=Qac b-Aac b=400J-150J=250J(1)对于adb过程,a、b状态相同,内能变化相同,根据热力学第一定律Q=△E+A,得此过程交换的热量为Qad b =△Eab+Aad b=250J+40J=290J(2)对于ba过程,由b→a,内能变化为负,即△Eba =Ea-Eb=150J-400J=-250J根据热力学第一定律Q=△E+A,得此过程交换的热量为Qba =△Eba+Aba=-250J-80J=-330J式中负号表示放热.3.41mol的氦气,在1atm、20℃时、体积为V.令使其经过一下两种过程达到同一状态;(1)先保持体积不变,加热,使其温度升高到80℃,然后令其做等温膨胀,体积变为原来的2倍.(2)先使其等温膨胀至原来体积的2倍,然后保持体积不变,加热到80℃.试分别计算上述两种过程中气体吸收的热量,气体对外所做的功和气体内能的增量.解:本题是关于热力学第一定律在准静态过程中的应用.依据题意,作出p-V图,如解题3.4图所示.图3.4abcd 四个状态(p ,V ,T ):a(1,V 0,T 1)b(p b ,V 0,T 2)c(p c ,2V 0,T 2)d(p d ,2V 0,T 1)T 1=293K,T 2=353K(1)先作等体升温(ab 过程),再作等温膨胀(bc 过程).①等体过程,氧气从热源吸取热量全部转化为系统内能的增加,做功为零,即121233d ()22T ab ab Tm m Q E R T R T T =∆==-⎰M M =1×t×8. 1× 5 −t ×mol ×J ∙mol −1∙K −1×K =香4香. J A ab =0②等温膨胀,氧气从热源吸取热量全部转化为对外做功,而内能不变,即11d d ln cbcc bc bc bbV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1× 5 ×lnt ×mol ×J ∙mol −1∙K −1×K =t.0 ×10 J△E bc =0abc 过程吸取的热量为Q ab c =Q ab +Q bc =747.9J +2.03×103J =2.78×103Jabc 过程做的功为A ab c =A bc = 2.03×103Jabc 过程内能改变为△E ab c =△E ab =香4香. J(2)a →d 等温膨胀过程,氧气从热源吸取热量全部转化为对外做功,而内能不变,即22d d ln dadd ad ad aaV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1×t ×lnt ×mol ×J ∙mol −1∙K −1×K =1. ×10 J△E dc =0习题 3.5图解:根据方程()00V V e p p -=,有9ln ln000c +=+=V p p V V c。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案

第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。

对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。

静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。

5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。

通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。

只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。

5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。

由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。

但不能保证面内各局部空间无净电荷。

例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。

5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。

0lE dl⋅=⎰表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r2
O' P r2
E
3 0
r1
r2
3 0
rOO'
由上述结果可知在空腔内各点场强都相等,方向由 O 指向 O' ,这是均匀场.
17-11 解: 如图选取高斯面
(1) r R 时
E1
dS
r 2dl 0
E1
2
rdl
r 2 dl 0
图 17.11
E1
r 2 0
E1
r 2 0
er
r R时
U3 r
r E3 dr
Q1 Q2 dr r 40r2
Q1 Q2 Q1 Q2 40r r 40r
(b) R1 r R2 Ⅱ区
U2
r
R2 r
E2
dr
R2 E3 dr
R2 r
Q1 4 0 r 2
dr
R2
Q 1 Q 4 0 r 2
2dr
Q1
R2
Q 1 Q
高斯面.高斯定理给出
E2S q内 0
当D d 时 2
q内 2DS
图 17.7
E D 0
当D d 时 2
q内 dS
E d 2 0
方向垂直板面 q 0 向外 q 0 向内
图 17.9
17-9 解: (1) (a) r R1 时, Ⅰ区
E1 dS 0 E1 4 r2 0
E1 0
(b) R1 r R2 时, Ⅱ区
E2
dS
Q1 0
E2
4 r2
Q1 0
E2
Q1 4 0 r 2
E2
Q1 4 0 r 2
r
(c) r R2 时 Ⅲ区
E3
dS
Q1 Q2 0E3Fra bibliotek4 r2
Q1 Q2 0
E3
Q1 Q2 4 0 r 2
E3
Q1 Q2 4 0 r 2
r
(2) (a) r R2 时 Ⅲ区
EdS1cos
dS1 R2sindd
∴ 1 ER2c o s s i n d d
2
d
2
ER2
sin2
d
0
0
2
R2E cos2 2 20
R2E
(2) 半球面 S1 和任意形状曲面 S2 组成闭合曲面.由高斯定理得:
1 ' 2
1 0

qi 0
∵ 此时 S1 的法向方向与原来相反
E2
dS
R 2dl 0
E2
2
rdl
R 2 dl 0
R2 E2 20r
量为 1 q q 3 80 240
17-6 解: (1) 设想地球表面为一均匀带电球面,总面积为 S .则它所带的总电量为
q 0 E dS 0ES 8.851012 200 43.14 6.37106 2
9.02105 C
(2) 从地面1400 m 到地面的大气所带总电量为
q' q总 q 0 E' dS 0 E dS
图 17.3
而 O 点的总场强 E 应沿 x 轴方向,并且
E dEx
dEx
dEsin
dlsin 4 0 R 2
dEx
sin 4 0 R
d
E sin d cos
0 40R
4 0 R
0
2 0 R
E
i
2 0 R
l R dl = Rd
图 17.4
17-4 解: (1) 选半球球心的坐标原点 O d E dS1
2
40r r 40r R2
1 4 0
Q1 r
Q2 R2
(c) r R1 时, Ⅰ区
U1
r
R1 r
E1
dr
R2 R1
E2
dr
R2 E3 dr
R2 Q1 dr Q1 Q2 dr
R1 40r 2
R2 40r 2
Q1 R2 Q1 Q2 40r R1 40r R2
图 17.5

1 2 3 0
∴ q 所在的三个面的电通量为零 以 q 为中心,小正方体的边长 a 的二倍为边长做一正方体.
则通过大正方体的电通量为 q .因为小正方体是大正方体的 1 ,则通过小正方体其它三个
0
8
面的总电通量为 q .由于这三个面对电荷所在顶点是对称的,所以通过它们每个面的电通 8 0
1 4 0
Q1 R1
Q2 R2
17-10 解: (1) 情况(a)可以间接用高斯 定理求解,情况(b)不可以. (2) 这是一个非对称分布的电荷,因而 不能直接用高斯定理求定解.但半径为
R 的球及半径为 r 的空腔是球对称的.
可以利用这一特点把带电体看成半径
为 R 的均匀带电 的球体与半径为
图 17.10
r 的均匀带电 的球体迭加.相当于 在原空腔处补上体电荷密度为 和
的球体.这时空腔内任一点 P 的场强 E E1 E2
其中 E1 与 E2 分别是带 的大球和带 的小球在 P 点的场强. E1 与 E2 都可用高斯定理
求得.
E1 30 r1
OP r1
E2
3 0
∴ 1' 1 R2E
∴ 2 1' R2E
17-5 解: (1) 立方体的六个面组成闭合曲面,由高斯定理得
通过闭合曲面的电通量 q 0
由于正立方体的六个侧面对于其中心对称,所以每个面通过的电通量为
1
2
3
4
5
6
q 6 0
(2) d = E dS E ndS
由于正方体有三个面与 E 垂直
S'
S
0E' S' 0ES
0.10ES' 0ES
0E S 0.1S'
8.11105 C
q'
8.11105
V 4 3.14 6.37143 6.373 1018
3
1.141012 C m2
17-7 解: 根据电荷分布对壁的平分面的面对称性,可知电场分布也
具有这种对称性.由此可选平分面与壁的平分面重合的立方盒子为
2
40
3 2
3
a
q
3q 3Q
4 0 a 2
此合力为零给出
Q
3q 3

Q 3q 3
图 17.2
17-2 解: F mg 0
qE mg 0
q
mg
4 R3g 3
E
E
8 5 1 4 .3 1 4
.
1
646
3
10
.
98
3 1. 9 2 150
8.021019 C
5e
17-3 解: 在带电环线上任取一长为 dl 的电荷元,其电量 dq dl .电荷元在 O 点的场强为 dE , dE 沿两个轴方向 的分量分别为 dEx 和 dEy .由于电荷分布对于 Ox 轴对称, 所以全部电荷在 O 点的场强沿 y 方向的分量之和为零.因
第十七章 真空中的静电场
17-1 解: 设等边三角形的边长为 a ,则由顶点到中心的距离

3 3
a
.
q1
q2
q3
q
放在三角形中心的电荷为
Q
,
Q
与 q 反号. Q 受其他三个电荷的合力为零,与 Q 的大小无关.
图 17.1
一个 q 受其他三个电荷的合力大小为
q2
3
qQ
2F1cos30
F3 2 40a2
相关文档
最新文档