基于单片机的风扇转速测量设计报告
基于单片机温控风扇转速的设计(毕业论文)资料
080902 学科分类号(二级学科)Ningxia Normal University本科学生毕业论文(设计)题目基于单片机的温控风扇转速的设计姓名颜亮亮学号 201005230129 论文编号 En14141029 院(系)物理与信息技术学院专业电子科学与技术指导教师黄晓青职称(学历)助教(研究生)完成时间 2014年5月15日宁夏师范学院教务处制本设计为一种基于单片机的温控风扇转速系统,具有灵敏的温度感测、显示功能和电机稳定换挡停机功能;系统采用51系列单片机AT89C51作为控制平台对风扇的转速进行控制,利用DS18B20数字温度传感器采集实时温度,经单片机处理后通过两个三极管驱动直流风扇的电机。
另外可由用户设置高、低温度值,所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值。
风扇档位控制状态随外界温度而定,当温度升高超过所设定的温度时自动切换到全速运转档位;当温度小于所设定的温度时自动关闭风扇,当测得温度值在高低温度之间时打开风扇的相应风档。
关键词:自动控制;单片机AT89C51;温控;风扇;温度感测This design for a fan speed control system based on single chip microcomputer, a smart temperature sensors, display and motor steady shift stop function; System USES 51 series microcontroller AT89C51 as the control platform to control the speed of the fan, using DS18B20 digital temperature sensor to collect real-time temperature and treated with single chip microcomputer through two triode driven dc fan motor. Another high and low temperature can be set by the user, set high and low temperature values stored in internal temperature sensor DS18B20 E2ROM, still can keep the power lost when the last value. Fan gear control state varies with temperature and decide, when the temperature exceeds the set temperature automatically switch to the running gear at full speed; When the temperature is less than the set temperature automatically shut down the fan, when measured temperature between high and low temperature open the corresponding wind profile of the fan.Keywords: automatic control; AT89C51 MCU; temperature control; fan;temperature sensor.目录摘要 (I)Abstract..................................................................... I I 0绪论.. (1)0.1 本课题的研究实践意义 (1)0.2 研究本课题的主要内容 (1)1 基于单片机的温控风扇转速系统部分模块的方案选用及论证 (2)1.1 温度采集模块的选用 (2)1.2 控制核心模块的方案选择 (2)1.3 显示模块选用方案 (3)1.4 调速方式及设计方案 (3)2 基于AT89C51单片机的温控风扇转速系统的硬件设计 (4)2.1 系统简述 (4)2.2 本系统各器件简介 (4)2.2.1 DS18B20 单线数字温度传感器简介 (4)2.2.2 AT89C51 单片机简介 (5)2.2.3八段LED 数码管简介 (7)2.3 本系统部分模块的硬件设计 (7)2.3.1 温度采集和温度设定上下限模块电路 (7)2.3.2 控制核心模块电路 (8)2.3.3 显示模块电路 (9)2.3.4 驱动风扇模块电路 (10)3 基于AT89C51单片机的温控风扇转速系统的软件设计 (11)4 结束语 (14)谢辞 (15)参考文献 (15)附录 (16)附录1:本系统总电路图: (16)附录2:基于AT89C51单片机温控电机转速系统实物图 (16)附录3:源程序 (17)0绪论0.1 本课题的研究实践意义随着电子技术的发展,用计算机控制的方面也涉及到各个领域,其中用单片机控制温度、是应用于实践的重要方面之一。
基于单片机的智能风扇的设计
基于单片机的智能风扇的设计智能风扇的设计是基于单片机的一种智能化家电产品,通过集成了传感器、单片机、通信模块和风扇控制电路等功能模块,能够实现自动感知环境温度、湿度等参数,并根据用户的需求自动调节风扇的转速和工作模式。
下面将详细介绍智能风扇的设计。
1.硬件设计智能风扇的硬件设计包括传感器模块、单片机模块、通信模块和控制电路模块。
传感器模块:智能风扇的传感器模块通常包括温度传感器和湿度传感器,用于感知环境的温度和湿度。
可以选择常见的数字温湿度传感器,如DHT系列传感器。
单片机模块:单片机模块是智能风扇的核心控制模块,可选择一款适合的单片机,如51单片机或STM32系列单片机,并结合开发板进行开发。
单片机模块负责读取传感器数据,并根据温度和湿度的变化进行风扇转速和工作模式的调节。
通信模块:通信模块用于实现智能风扇与其他设备的远程控制和数据传输功能。
可以选择Wi-Fi模块或蓝牙模块,实现与智能手机或其他智能设备的连接。
控制电路模块:控制电路模块包括电机驱动电路和电源电路。
电机驱动电路用于控制风扇电机的转速,可以选用H桥驱动芯片。
电源电路负责为各个模块供电,可以采用稳压模块和滤波电路,保证各个模块的正常运行。
2.软件设计智能风扇的软件设计主要包括数据采集、数据处理和控制策略。
数据采集:单片机模块通过传感器模块采集到温湿度数据,并将数据转换为数字信号以供程序识别。
数据处理:单片机模块通过算法处理采集到的温湿度数据,进一步计算出风扇应该运行的转速和工作模式。
可以根据不同的温湿度阈值设置不同的转速和工作模式,如低温低湿度下风扇停止运行,高温高湿度下风扇全速运行。
控制策略:单片机模块根据处理后的数据,通过控制电路模块控制风扇的转速和工作模式。
控制策略可以通过采用PID控制算法,根据环境温湿度的反馈信息进行动态调节,使风扇以最佳转速运行。
3.功能设计智能风扇可以通过通信模块与智能手机或其他智能设备连接,实现远程控制和数据传输的功能。
基于51单片机的风速测量仪设计
基于51单片机的风速测量仪设计风速是指空气运动的速度。
风速测量仪是用于测量风速的仪器,广泛应用于气象观测、环境监测、航空航天等领域。
本文将基于51单片机设计一款简单的风速测量仪。
1.硬件设计:本设计中,使用51单片机作为主控制芯片,传感器采用热丝风速传感器。
风速传感器的原理是通过电热丝的冷却效果来测量风速,当风速增加时,电热丝的冷却效果也相应增加,通过测量电热丝的电阻变化来计算风速。
2.软件设计:为了实现风速测量仪的功能,需要编写相应的程序代码。
首先需要对51单片机的GPIO进行初始化,设置风速传感器的控制引脚为输入引脚,设置LED灯的控制引脚为输出引脚。
接下来,通过定时器中断的方式进行测量。
通过设置定时周期和计数器,可以定时进行风速测量。
在每次定时器中断时,通过读取风速传感器的电阻值来计算实际风速。
具体的计算公式可以根据风速传感器的特性进行确定。
为了方便测量结果的显示,可以使用数码管或LCD显示屏来显示测量结果。
通过数码管或LCD显示屏的控制引脚,可以将测量结果进行输出。
3.系统测试:在完成硬件和软件的设计后,需要进行系统测试验证。
可以通过实验室条件模拟不同的风速,并通过对比测量仪的测量结果与实际风速进行验证。
在测试过程中,可以调整定时器中断周期和计数器的取值,以获得更加准确的测量结果。
同时,还可以进行边界测试,即在测量传感器的最小和最大风速范围内进行测试,以保证测量仪在不同条件下的准确性和稳定性。
4.总结和改进:通过以上的设计和测试,可以得出目前风速测量仪的性能和功能。
总结设计的优点和存在的不足之处,可以给予后续改进的方向。
例如,可以进一步优化传感器的灵敏度和准确性,提高测量结果的精度;还可以加入温度和湿度传感器,以提供更加全面的环境信息。
最后,可以进行用户调研,收集用户的反馈和意见,以进一步改进设计,满足用户的需求。
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计【摘要】本文基于51单片机设计了一款温控风扇系统,通过硬件设计、软件设计、温度检测与控制算法、风扇控制逻辑和系统测试与优化等内容详细介绍了该系统的设计过程。
实验结果表明,该系统在温度控制和风扇控制方面均取得了良好的效果。
设计总结中总结了系统的优点和不足之处,并提出了未来改进的方向。
本文旨在为基于51单片机的温控风扇系统的设计提供参考,对于提高室内温度舒适度和节能具有积极意义。
【关键词】51单片机、温控风扇设计、引言、研究背景、研究意义、研究目的、硬件设计、软件设计、温度检测与控制算法、风扇控制逻辑、系统测试与优化、实验结果分析、设计总结、展望未来。
1. 引言1.1 研究背景随着科技的不断发展,人们对舒适生活的需求也越来越高。
温度的控制是一个非常重要的环节,尤其是在室内环境中。
夏季炎热时,人们往往需要通过风扇来降低室内温度,提升舒适度。
而随着智能技术的兴起,基于单片机的温控风扇设计成为了一个热门的研究方向。
传统的风扇控制通常是通过开关控制,无法实现温度自动调节。
而基于51单片机的温控风扇设计可以利用单片机的强大功能实现温度检测、实时控制风扇转速等功能。
通过设计合理的算法,可以实现智能化的温控系统,提高舒适度的同时实现能源的节约。
研究如何利用51单片机设计一套温控风扇系统,对于提升室内生活质量、节约能源具有重要的意义。
本文旨在通过具体的硬件设计、软件设计以及温度检测与控制算法的研究,实现一套稳定可靠的基于51单片机的温控风扇系统,并对系统进行测试优化,为今后类似应用提供参考和借鉴。
1.2 研究意义在工业生产中,温控风扇设计也具有重要意义。
通过合理设计温控系统,可以有效地控制设备的温度,保证设备在安全的工作温度范围内运行,提高设备的稳定性和可靠性,减少设备的故障率,降低维护成本,提高生产效率。
开展基于51单片机的温控风扇设计研究具有重要的理论和实践意义。
通过该研究,不仅可以提高温控风扇的控制精度和稳定性,还可以为温控系统的设计和应用提供参考和借鉴,推动智能家居和工业生产的发展。
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计一、引言风扇是家庭和办公室中常见的电器产品,用于调节室内温度和空气流通。
而随着科技的发展,人们对风扇的功能和性能也提出了更高的要求。
本文将介绍一种基于51单片机的温控风扇设计方案,通过温度传感器和单片机控制,实现智能温控风扇的设计。
二、设计方案1. 硬件设计本设计方案采用51单片机作为控制核心,温度传感器作为温度检测模块,风扇作为输出执行模块。
51单片机可以选择常见的STC89C52,温度传感器可以选择DS18B20,风扇可以选择直流风扇或交流风扇。
2. 软件设计软件设计包括温度检测、温度控制和风扇控制三个部分。
通过程序控制单片机对温度传感器进行采集,再根据采集到的温度数值进行判断,最后控制风扇的转速来达到温控目的。
三、电路连接1. 连接51单片机和温度传感器51单片机的P1口接DS18B20的数据线,P1口上拉电阻连接VCC,GND连接地,即可完成单片机和温度传感器的连接。
2. 连接风扇通过晶闸管调速电路或者直接控制风扇的开关电路来控制风扇的转速。
通过设置不同的电压或者电流来控制风扇的转速,从而实现温控风扇的设计。
四、软件设计1. 温度检测通过单片机的程序控制,对温度传感器进行采集,获取室内温度的实时数据。
2. 温度控制将获取到的温度值与设定的温度阈值进行比较,通过程序控制来实现温度的控制。
3. 风扇控制根据温度控制的结果,通过单片机控制风扇的转速,从而实现室内温度的调节。
六、总结本文介绍了一种基于51单片机的温控风扇设计方案,通过硬件和软件的设计,实现了智能温控风扇的设计。
这种设计方案可以广泛应用于家庭和办公环境,提高了风扇的智能化程度,为人们提供了更加舒适和便利的生活体验。
该设计方案也为单片机爱好者提供了一个实用的项目案例,帮助他们在学习和实践中提高自己的能力。
希望本文对读者有所帮助。
基于51单片机的温控风扇毕业设计
基于51单片机的温控风扇毕业设计温控风扇基于51单片机的毕业设计一、引言随着科技的不断进步,人们对于生活品质的要求也越来越高。
在夏季高温天气中,风扇成为了人们不可或缺的家用电器。
然而,传统的风扇常常不能够根据环境温度自动调节风速,给人们带来了一定的不便。
因此,设计一个基于51单片机的温控风扇成为了一项有意义的毕业设计。
二、设计目标本设计的目标是实现一个自动调节风速的温控风扇系统,通过测量周围环境的温度来调节风扇的风速,使风扇在不同温度下达到最佳工作效果,提高舒适度和节能效果。
三、硬件设计1.51单片机:采用AT89S52单片机作为主控制器,该单片机具有较强的性能和丰富的外设资源,能够满足本设计的需求。
2.温度传感器:采用DS18B20数字温度传感器,具有高精度和简单的接口特点。
3.风扇控制电路:通过三极管和可变电阻来控制风扇的转速,根据温度传感器的输出值来调节电阻的阻值,从而实现风扇的风速调节。
四、软件设计1.硬件初始化:包括对温度传感器和风扇控制电路的初始化设置。
2.温度检测:通过DS18B20传感器读取环境温度的值,并将其转换为数字量。
3.风速控制:根据不同的温度值,通过控制电阻的阻值来调整风扇的风速,从而实现风速的自动调节。
4.显示界面:通过LCD显示器将当前温度值和风速等信息显示出来,方便用户了解当前状态。
五、系统测试及结果分析经过对系统的调试和测试,可以发现该温控风扇系统能够根据环境温度自动调节风速。
当环境温度较低时,风扇转速较低,从而降低能耗和噪音;当环境温度较高时,风扇转速会自动提高,以提供更好的散热效果。
六、结论通过对基于51单片机的温控风扇系统的设计和测试,可以得到以下结论:1.该系统能够根据环境温度自动调节风速,提高舒适度和节能效果。
2.通过LCD显示界面,用户可以方便地了解当前温度和风速等信息。
3.本设计的目标已得到满足,具备一定的实用和推广价值。
七、展望在未来的研究中,可以进一步优化该温控风扇系统,例如添加遥控功能、改进风扇控制电路的效率等,以提高用户体验和系统的整体性能。
《2024年基于单片机的多功能自动调温风扇系统设计》范文
《基于单片机的多功能自动调温风扇系统设计》篇一一、引言随着人们对生活品质的要求不断提高,家用电器也向着多功能、智能化方向发展。
本文设计了一种基于单片机的多功能自动调温风扇系统,该系统不仅能够实现传统风扇的调速、定向等功能,还能根据环境温度自动调节风速和风向,以满足用户在不同环境下的需求。
二、系统设计概述本系统以单片机为核心控制器,通过温度传感器实时监测环境温度,根据预设的温度范围自动调节风扇的转速和风向。
同时,系统还具有手动控制功能,用户可以根据自己的需求对风扇进行调节。
此外,系统还具有定时开关机、睡眠模式等附加功能,以满足用户多样化的需求。
三、硬件设计1. 单片机控制器:本系统采用STC12C5A60S2单片机作为核心控制器,其具有高性能、低功耗、易于编程等优点。
2. 温度传感器:采用DS18B20数字温度传感器,其具有测量精度高、抗干扰能力强等特点。
3. 电机驱动模块:采用电机驱动芯片驱动风扇电机,实现风扇的调速和定向功能。
4. 显示模块:采用LCD显示屏,用于显示当前环境温度、风扇转速和风向等信息。
5. 其他辅助电路:包括电源电路、复位电路、按键电路等。
四、软件设计1. 主程序流程:系统上电后,首先进行初始化设置,然后进入主循环。
在主循环中,不断读取温度传感器的数据,根据数据调节风扇的转速和风向。
同时,根据用户的按键操作或定时任务执行相应的功能。
2. 温度控制算法:本系统采用PID(比例-积分-微分)控制算法对风扇的转速进行控制。
根据环境温度与设定温度的差值,计算风扇的转速调整量,以达到快速、准确地调节环境温度的目的。
3. 定时任务与睡眠模式:系统支持定时开关机功能,用户可以设置风扇在特定时间自动开启或关闭。
此外,系统还具有睡眠模式功能,在用户设定的时间段内自动降低风扇的转速和亮度,以达到节能降耗的目的。
五、功能实现1. 自动调温功能:系统通过温度传感器实时监测环境温度,当环境温度高于设定温度时,自动增加风扇转速;当环境温度低于设定温度时,自动降低风扇转速。
单片机温控风扇实验报告
单片机温控风扇实验报告
一、实验目的
本实验的目的是通过利用单片机实现温控风扇,控制电机的转速来达到调节环境温度的目的。
二、实验原理
温控风扇的实现原理是核心的模糊控制,它以反馈为基础,依据房间里的温度,通过单片机来控制电机的转速,实现温度的调节。
通过温度的反馈来让温度控制在一定的范围之中,当房间里的温度超过或低于设定值时,系统可以自动调整电机的转速从而降低或提高室温,达到温控效果。
三、实验内容
1. 准备实验材料
温控风扇实验要准备材料,主要包括:
(1)单片机综合开发板、微型步进电机;
(2)温湿度传感器模块;
(3)变压器等。
2. 详细实验过程
a. 安装单片机、微型步进电机
首先我们要把单片机和微型步进电机安装好,将单片机模块安装到开发板上,然后将电机连接到单片机的IO口,最后用线将单片机模块和电源模块连接起来。
b. 编写控制程序
接下来,我们使用编程软件编写控制程序,用来控制微型步进电机的运行,根据温湿度传感器模块发出信号来控制电机转速,进而调节环境温度。
最终使用烧写工具把程序烧写到单片机中,把整个控制系统运行起来。
四、实验结果
实验结束后,我们用数字仪检测系统的实际输出,发现系统对温度变化有很好的响应,可以非常准确地控制风扇的转速,调节所测温度。
五、总结
本实验通过单片机控制风扇的电机,实现了温控功能,达到了调节环境温度、恒定室温的目的。
实验中使用的材料均为成熟可信的,同时编程程序也非常完善,实现了温控的目的。
另外,数字仪的检测结果也反映出系统的高精度,是一次很成功的实验。
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计1. 引言1.1 研究背景基于51单片机的温控风扇设计能够满足消费者的需求,具有成本低、易操作、高性能等优点。
通过研究51单片机的应用,设计一个简单实用的温控风扇系统,不仅可以降低消费者的购买成本,提高普及率,还可以为温控风扇行业的发展带来新的技术突破。
本研究旨在基于51单片机设计一个具有良好性能和稳定运行的温控风扇系统,通过硬件设计、软件设计、系统测试等方面的研究,探索出一套有效的温控算法和风扇控制方案,为温控风扇的普及和应用提供技术支持和参考。
1.2 研究意义温控风扇设计在现代生活中有着重要的意义。
随着科技的不断发展,人们对于生活质量的要求也越来越高。
在夏季高温天气中,使用温控风扇可以有效调节室内温度,提供舒适的环境。
而基于51单片机的温控风扇设计可以实现智能化的控制,提高风扇的效率和稳定性。
温控风扇设计还可以节约能源,减少能源消耗,符合节能减排的现代社会发展需求。
通过研究和设计温控风扇系统,可以提高人们对于科技产品的认识和理解,促进科技和生活的融合。
基于51单片机的温控风扇设计具有重要的研究意义,对于提升生活质量、节约能源、促进科技发展等方面都具有积极的作用。
深入研究和探讨温控风扇设计,将有助于提升技术水平,推动相关领域的发展。
1.3 研究目的本次研究的目的是设计基于51单片机的温控风扇系统,通过该系统实现对环境温度的监测和控制,从而实现自动调节风扇转速。
通过该研究,我们旨在提高家用电器的智能化水平,提升用户体验,减少能源消耗,降低碳排放。
具体目的包括:1. 研究51单片机在温控领域的应用,深入了解其功能和特点;2. 设计一个可靠稳定的温控风扇系统,确保其能够准确监测环境温度并实现有效的风扇调节;3. 测试系统的性能和稳定性,验证其在实际使用中的可靠性和可行性;4. 探讨温控算法和风扇控制策略,优化系统性能,提高能效和响应速度。
通过这些目的,我们希望能够为家用电器领域的智能化发展做出贡献,为用户提供更加舒适和便捷的生活体验。
单片机课程设计报告直流风扇电机转速测量与PWM控制
一.设计思路程序应用模块化进行设计,主要有初始化模块、显示模块、读键模块、数制转换模块、双字节除法模块、中断模块和控制调节模块。
编程次序可按此先后进行。
初始化模块:8155工作方式、T0和T1工作方式、标志位状态、所用单元初值、中断设置以及初始显示等。
显示模块:设定值和实测值的数值与字符动态显示。
读键模块:从I/O口依据某位数码管亮时读入小按键是否有效,然后根据四个小键盘的不同功能进行相应的处理,只要设定值一改变立刻显示。
加1键和减1键要有连加连减功能。
数制转换模块:将二进制转换为十进制。
外部中断模块:将转1圈的时间通过双字节除法程序求出即时转速。
定时中断模块:PWM输出波形形成。
控制调节模块:通过设定值和实测值的比较来改变脉冲波的占空比,该数据的调节分为简单比例调节PP和比例积分调节PI。
调节公式分别为:YK=YK1+KP*EKYK=YK1+KP*EK+KI*EK2YK:要输出的数据YK1:上次输出的数据EK:设定值和实测值的差值EK1:上次的EK值EK2:EK-EK1的差值KP:比例系数(设KP=1~2)KI:积分系数(设KI=1~2)一.带注释软件清单;==========使用单元设定==========//..................................使用单元设定DIS0 EQU 30HDIS1 EQU 31HDIS2 EQU 32HDIS3 EQU 33HLED EQU 34HTM1 EQU 35H;TM2 EQU 36H;INTV BIT 37H;中断标志THX EQU 38H;定时脉宽高电平CISHU EQU 39HFIRST BIT 41H; 检测加减是否第一次按下SET1 BIT 42HSETZ0 EQU 43H;设定当前设定值SETZ0~SETZ3SETZ1 EQU 44HSETZ2 EQU 45HSETZ3 EQU 46HTM3 EQU 47H; 循环次数单元JIA1 BIT 48H; 单步加标志LIANJIA BIT 49H; 连加标志JIAN1 BIT 50H; 单步减标志LIANJIAN BIT 51H; 连减标志SETDATA EQU 52H; 设定速度暂存单元REALDATA EQU 53H; 实测速度暂存单元YK1 EQU 54H; 上次输出数据暂存单元KP EQU 56H;比例系数KI EQU 57H;积分系数EK EQU 58H;设定值和实测值的差值EK1 EQU 59H;上次的EK值OUTPUT EQU 60H;EK2 EQU 61H;EK-EK1的值ONPRESS BIT 62H;判定ENTER键是否弹起标志TMS EQU 63H;闪烁时长SHAN BIT 64H; 闪烁标志;==========主程序==========ORG 0000HSJMP MAINORG 0013H;外部中断1入口地址AJMP INX1ORG 001BH;定时器T1中断入口地址AJMP ITX1ORG 0070HMAIN: MOV SP,#70H;设定堆栈指针入口地址ACALL INIT;调用初始化程序M1: JB SET1,FLASH;当前为设置状态则跳到闪烁显示模块ACALL DISP; 否则为一般显示SJMP NEXTTFLASH: ACALL DISP1NEXTT: ACALL DELAY;调用按键延时程序ACALL M2;调用按键程序DJNZ CISHU,M1;第隔100MS刷新一下实测值MOV CISHU,#20ACALL CONTROL;调用控制调速模块SJMP M1//==========初始化模块==========INIT:MOV DPTR,#0FD00H ;设置PA、PB为输出口,PC为输入口MOV A,#03HMOVX @DPTR,AMOV TMOD,#21H ;定时器/计数器T1为方式2,定时器/计数器T0为方式1 MOV TL0,#00H ; 定时器/计数器T0赋初值#00HMOV TH0,#00HMOV THX,#0BBH ;输出单元赋初值#0BBH,即脉冲高电平宽度MOV TH1,THXMOV TL1,THXSETB TR1 ;启动定时器/计数器T1SETB TR0 ; 启动定时器/计数器T0SETB ET1 ;允许定时器/计数器T1溢出中断SETB EX1 ;允许外部中断1中断SETB IT1 ;选择边沿触发SETB EA ;CPU开中断SETB 07H;SETB SHANCLR 11H;检测是否成功MOV LED,#7FHMOV R0,#DIS0MOV DIS0,#14MOV DIS1,#15MOV DIS2,#15MOV DIS3,#15MOV SETZ2,#15MOV SETZ3,#15CLR ONPRESSSETB SET1SETB FIRSTCLR JIA1。
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计【摘要】本文基于51单片机设计了一款温控风扇系统,通过温度传感器监测环境温度,根据温度控制算法调整风扇的转速,实现温度的精确控制。
文章首先介绍了研究的背景和目的,然后详细阐述了51单片机的概述、风扇控制电路设计、温度传感器的选择与应用、温度控制算法以及系统整合与调试过程。
实验结果表明该系统能够有效地实现温控风扇的功能,并具有稳定性和可靠性。
设计优点包括成本低、性能稳定等,但仍存在一些问题需要改进,如精度不高、响应速度较慢等。
未来的展望包括优化算法、提高系统的稳定性和精确度。
该温控风扇设计具有一定的实用价值和发展潜力。
【关键词】51单片机、温控风扇设计、温控算法、温度传感器、风扇控制、系统整合、实验结果、设计优点、存在问题、展望。
1. 引言1.1 研究背景随着科技的不断发展,电子产品在人们日常生活中扮演着越来越重要的角色。
随之而来的问题之一就是设备在运行过程中会产生热量,而如果热量无法有效散发,可能会导致设备过热,甚至损坏。
对于一些需要长时间运行的电子设备,如电脑,电视机等,就需要设计一种能够实时监测温度并调节风扇转速的系统,以确保设备稳定运行。
目前市面上已经有一些温控风扇产品,但是它们通常使用的是普通的温度控制芯片,功能比较单一,而且价格较高。
开发一种基于51单片机的温控风扇设计方案,能够降低成本,提高灵活性,适用范围更广。
本研究旨在通过对51单片机温控风扇设计的研究,探讨其原理和实践操作,为深入了解电子设备温控系统的设计和实现提供参考。
1.2 研究目的研究目的是设计并实现一种基于51单片机的温控风扇系统,旨在实现对风扇转速的智能控制,使其能够根据环境温度自动调节,提高风扇的效能和节能性。
通过本研究,我们希望能够深入了解51单片机的工作原理和应用领域,掌握风扇控制电路设计的关键技术,选择合适的温度传感器并实现其准确的温度测量和调节功能,研究并优化温度控制算法,最终实现系统的整合与调试,验证设计的可行性和稳定性。
基于51单片机的风速测量仪设计
电子产品世界基于51单片机的风速测量仪设计*Design of wind speed measuring instrument based on 51 single chip microcomputer刘熙明1,路世扬2 (1.毕节市工业和信息化局,贵州 毕节 5517002;毕节市纳雍县能源局,贵州 毕节 553300)摘 要:风速的测量对于社会生活和工业生产有重要的作用。
本文利用三杯式风速传感器和51单片机设计了一种风速测量仪,利用单片机控制ADC0832对风速传感器输出的模拟信号进行转换,计算出实时风速并显示在LCD1602上面。
经过实际测试表明,所设计的风速测量仪基本能够满足测量要求。
关键词:风速测量;三杯风速传感器;单片机*基金项目:国家自然科学基金项目(61462015)风速是农业及工业生产中重要的气象观测数据,传统的依靠人为手段去观测和采集风速的方法并不十分准确,数据采集实时性不高,尤其是在恶劣条件下,很难实现依靠人为手段去观测和获取风力数据,利用自动化技术制作自动测量风速的测量仪器不仅仅是科技进步的要求,同时也是工农业发展和生产过程中的内在需要。
风速的测量对于预测与农业生产、工业生产息息相关的天气变化至关重要。
在台风、地震、海啸等发生的时候,人们无法实地观测到风速数据,只能通过自动气象站实现对风速的观测和采集,预测和规避自然灾害,尽可能降低自然灾害对人类生产活动的影响。
目前对于风速的观测手段有人工观察和自动气象站测量两类,人工观察有很多缺点和不足,例如实时性差,精度低等,而且无法克服恶劣的气候条件。
自动气象站则是通过热式风速传感器、三杯式风速传感器、光耦感应三杯式传感器等传感器来实现风速测量[1]。
1 系统方案及硬件电路设计1.1 整体系统方案整个系统要能实时测量(0.2~30) m/s范围内的风速,并把所测量到的风速实时显示出来。
通过分析,选用了FS系列三杯风速传感器作为风速传感器。
基于单片机的智能温控风扇设计
设计目的和任务
设计目的
本设计旨在利用单片机实现智能温控风扇的控制,通过温度 传感器检测环境温度,并将温度信息传递给单片机进行处理 ,单片机根据温度信息控制风扇的转速,以达到节能、便捷 的目的。
负载测试
在模拟实际负载的情况下,测试系统的响应时间、吞吐量等性能指 标。
瓶颈分析
通过性能分析工具,找出系统的瓶颈所在,如CPU、内存、IO等资 源的使用情况。
优化建议
根据瓶颈分析结果,提出针对性的优化建议,如优化算法、减少内存 占用等措施。
01
结论与展望
设计成果总结
硬件设计
设计了一个以单片机为核心,搭配温度传感器和风扇控制 电路的智能温控风扇硬件系统。实现了温度监测、风扇转 速调节、自动关机等功能。
风扇控制策略
风速调节
01
根据环境温度和设定阈值,调节风扇转速,以实现风速的平滑
变化。
多种工作模式
02
设计多种工作模式,如高速、中速、低速等,以满足不同场景
和需求。
异常处理
03
当出现异常情况时,如风扇卡死、温度传感器故障等,触发应
急处理机制,如报警、停机等,以保障系统安全。
01
系统测试与性能分析
硬件测试
控制程序
根据温度数据,通过单片机控制风扇的转速,实现温度的调节。
01
单片机选择与硬件设计
单片机选择
8051单片机
8051单片机是一种经典的8位 单片机,具有丰富的指令集和 多种外设接口,适用于多种应
用场景。
STM32单片机
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计
温控风扇是一种能根据环境温度自动调节风速的设备,在很多应用场合中都能发挥重要的作用。
本文将介绍基于51单片机的温控风扇设计。
设计方案中需要使用的器件主要包括温度传感器、显示屏、51单片机、电机驱动器和风扇等。
温度传感器用于检测环境温度,显示屏用于显示当前温度和风速,51单片机用于控制整个系统的运行,电机驱动器用于控制风扇的转速。
需要将温度传感器与51单片机连接。
温度传感器通常使用DS18B20型号,它是一种数字温度传感器,可以通过单线总线方式与51单片机进行通信。
通过读取传感器的数据,可以得到当前的温度值。
然后,需要将电机驱动器与51单片机连接。
电机驱动器通常使用L298N型号,它可以通过PWM信号控制电机的转速。
通过调整PWM信号的占空比,可以实现不同的风速调节。
需要将风扇与电机驱动器连接。
通过电机驱动器对风扇进行控制,可以根据温度变化来调节风扇的转速。
当温度升高时,51单片机会发送PWM信号给电机驱动器,通过增加占空比来增加风扇转速。
当温度降低时,51单片机会发送PWM信号给电机驱动器,通过减小占空比来减小风扇转速。
通过以上的设计,可以实现基于51单片机的温控风扇。
当环境温度升高时,风扇会自动加快转速来散热,当环境温度降低时,风扇会自动减慢转速以节省能源。
这种设计不仅可以提高系统的智能化程度,还能够降低能源消耗,提高系统的效率。
基于51单片机的温控风扇设计
基于51单片机的温控风扇设计温控风扇是一种能够根据环境温度自动调节风扇转速的设备,能够有效地保持环境温度在一个舒适的范围内。
在本文中,我们将基于51单片机设计一款温控风扇系统,以实现对温度的自动控制。
一、系统功能需求1. 实时监测环境温度:使用温度传感器对环境温度进行实时监测,并将温度值传输给单片机。
2. 根据环境温度控制风扇转速:单片机根据接收到的温度值,通过PWM控制风扇转速,以维持环境温度在设定范围内。
3. 显示环境温度:在数码管上显示当前的环境温度,以方便用户实时监测环境温度。
二、系统设计1. 温度传感器:采用DS18B20温度传感器,该传感器具有数字化的输出接口,能够直接与单片机通信,并具有较高的测量精度。
2. 51单片机:使用STC89C52单片机,其具有多路数字输入/输出口和PWM输出功能,能够满足本系统的需求。
3. 驱动模块:通过PWM输出控制风扇转速,需要设计一个风扇驱动模块。
4. 显示模块:采用四位共阴极数码管,用于显示环境温度值。
三、系统硬件设计1. 温度传感器连接:将DS18B20的数据引脚连接到单片机的GPIO口,将VCC和GND引脚连接到电源供电。
2. 风扇驱动模块设计:设计一个风扇驱动电路,通过单片机的PWM输出来控制风扇的转速。
可以使用MOS管或者三极管来设计一个简单的风扇驱动电路。
3. 数码管显示模块连接:将四位数码管的各段引脚连接到单片机的GPIO口,同时连接到电源供电。
五、系统测试1. 温度传感器测试:通过单片机读取温度传感器的值,并进行实时显示,检查是否能够准确读取环境温度。
2. 风扇控制测试:通过改变环境温度,观察风扇的转速是否能够相应地进行调节。
3. 显示模块测试:验证数码管显示功能是否正常,能否准确显示环境温度。
六、系统优化1. 系统稳定性优化:通过软件设计来优化系统稳定性,对于温度传感器读取的值进行滤波处理,对于风扇控制进行PID算法优化。
2. 功耗优化:通过硬件设计和软件设计相结合,优化系统的功耗,延长系统的使用寿命。
基于单片机的电风扇温控调速系统设计
基于单片机的电风扇温控调速系统设计摘要:本设计为一种温控电风扇调速系统,具有灵敏的温度测试和显示功能,系统以STC89C52 单片机作为控制平台对风扇转速进行控制,可选择由用户选择手动调速或自动调速。
在手动调速时自动调速系统不工作,在自动调速时由系统自动检测外界温度值并对电风扇转速做出相应调整,当温度低于温度设定的最低值时,控制电风扇自动关闭,当温度升到超过所设定的最大值时自动调速到最高挡,控制风速大小随外界温度而定。
关键词:自动控制单片机 DS18B20 电风扇引言:随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。
过去的电器不断的显露出其不足之处。
电风扇作为家用电器的一种,同样存在类似的问题。
现在电风扇的现状:大部分只有手动调速,再加上一个定时器,功能单一。
夏秋交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。
虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,而且可能多次定时后最后一次定时时间太长,在温度降低以后风扇依旧继续吹风,使人感冒;第三方面是只有简单的到了定时时间就关闭风扇电源的单一功能,不能满足气温变化对风扇风速大小的不同要求。
之所以会产生这些隐患的根本原因是:缺乏对环境温度的检测。
为解决上述问题,我们设计了这套电风扇温控调速系统。
本系统采用高精度集成温度传感器DS18B20,用单片机控制,能做到实时温度显示,根据外界环境的温度自动作出小风、大风、关闭动作,灵敏度度高,动作准确。
1.系统总体功能描述及系统结构介绍本设计是以STC89C52单片机为控制中心,主要通过温度传感器DS18B20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。
单片机课程设计---直流风扇电机转速测量与PWM控制
检测与控制实训(论文)说明书题目:直流风扇电机转速测量与PWM控制系别:机电工程系专业:机械电子工程学生姓名:覃诚学号: 0953200210指导教师:莫荣廖晓梅职称:高级讲师✓题目类型:工程设计工程技术研究软件开发2011年7 月6 日摘要本课题是对直流电机PWM调速器设计的研究,主要实现对电动机的控制。
因此在设计中,对直流调速的原理,直流调速控制方式以及调速特性,PWM基本原理及实现方式进行了全面的阐述。
为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。
设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大的简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。
关键词:直流电机;转速测量;PWM控制目录1 直流电机 (1)1.1 直流电机的结构 (1)1.2 直流电机的工作原理 (1)1.3 直流电机的主要的技术参数 (1)1.4 直流电机的调速的技术指标 (2)1.4.1 调速范围 (2)1.4.2 调速的相对稳定性和静差度 (2)1.4.3 调速的平滑性 (2)1.4.4 调速时的容许输出 (2)2 单片机的相关知识 (3)2.1 单片机的简介 (3)2.2 单片机的发展史 (3)2.2.1 4位单片机 (3)2.2.2 8位单片机 (3)2.2.3 16位单片机 (3)2.2.4 32位单片机 (3)2.2.5 64位单片机 (4)2.3 单片机的特点 (4)2.4 AT89C51单片机的简介 (5)3 直流风扇电机转速测量与PWM控制的基本原理 (7)4 硬件设计 (8)4.1 控制电路的设计 (8)4.2 隔离电路的设计 (8)4.3 驱动电路的设计 (9)4.4 续流电路的设计 (11)5 软件设计 (11)6 技术小结 (15)7 结论 (16)谢辞 (17)参考文献 (18)1 直流电机1.1直流电机的结构直流电机的结构应由定子和转子两大部分组成。
基于单片机温控风扇的设计
基于单片机温控风扇的设计
本文介绍的是基于单片机控制的温控风扇的设计。
该设计通过测量环境温度,实现根据温度变化自动控制风扇转速的功能。
该系统由单片机控制模块、温度传感器、风扇和电源组成。
单片机控制模块通过读取温度传感器的信号,判断当前环境温度,并根据预设的温度范围来控制风扇转速。
在设计中,温度传感器选用了常用的NTC热敏电阻,通过改变电阻值来反映温度变化。
风扇则采用了PWM控制电路,实现精确控制风扇转速的功能。
在实际使用中,用户可以根据需求设置风扇转速与温度之间的关系。
当环境温度超过设定的上限值时,风扇将自动启动,并以适当的转速来降低环境温度。
在温度恢复到预设范围内时,风扇将自动停止运转,以达到节能的目的。
总的来说,基于单片机温控风扇的设计具有可靠性高、精度高、使用方便等优点,可广泛应用于各种需要自动温控的场合。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
封面基于单片机的风扇转速测量系统设计报告摘要:在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。
模拟式采用测试发电机为检测元件,得到的信号是模拟量。
数字式通常采用光电传感器为检测元件,得到的信号是脉冲信号。
随着微型计算机的广泛应用,特别是高性能性价比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法。
本文便是运用51单片机控制的转速测量仪。
风扇在运行过程中,需要对其进行监控,转速是一个必不可少的一个参数。
本系统就是对风扇转速进行测量,显示风扇的转动的圈数,从而计算出转速。
并介绍了光电传感器测速的原理,设计了基于51单片机的电扇测量系统。
完成了风扇转速测量系统的硬件电路设计、光电传感器测量电路的设计、显示电路的设计。
测量转速的光电传感器和风扇同轴连接,风扇每转动一周,产生一定量的脉冲个数,由光电传感器电路部分输出幅度为12v的脉冲。
经光电隔离器后成为输出幅度为5v的转数计数器的计数脉冲。
控制定时器计数时间,即可实现对电扇转速的测量。
在显示电路设计中,通过1602实现在LCD上直观地显示电机的转速值。
并对电机转速测量系统的硬件电路、显示电路进行调试。
仿真实验表明所设计的硬件电路及软件程序是正确的,满足设计要求。
关键字:风扇转速测量;光电传感器;单片机;LCDAbstract:In engineering practice, often meet various needs of occasions measuring the rotation speed, speed measurement method for analog and digital two. Analog tachometer generator for the detection element, the signal is analog quantity. Digital usually adopts the photoelectric encoder, photo electricity and other components for detecting element, the signal is a pulse signal. With the wide application of computer, especially the high performance price compared to the appearance of single chip microcomputer, measuring speed is generally used to MCU as the core of digital measuring method.This paper is to use AT89C51 SCM intelligent rotational speed measuring instrument. The motor in the operation process, needs to carry on the control, speed is an essential one parameter. This system is the simulation of motor for fan speed measurement, display fan speed. And introduced the photo electricity sensor measuring principle, design based on single chip computer AT89C51fan speed measurement system. Completion of the fan speed measurement system hardware circuit design, the photo electricity sensor measuring circuit design, circuit design. Measurement of rotational speed sensor and coaxingly connected photo electricity fan, fan one week per revolution, resulting in a certain amount of pulse number, by photo electricity device circuit portion of the output amplitude of 12V pulse. The photoelectric insulator after becoming an output amplitude of5V revolution counter for counting pulses. Control timer counting time, can realize the fan rotation speed measurement. In the design of display circuit, by1602the realization of the LCD to visually display the motor speed value. And the motor speed measurement system hardware circuit, the display circuit debugging. Simulation experiments show that the designed hardware circuit and software program are correct, and meet the design requirements.Key words: fan speed measurement; photo electricity sensor; SCM;LCD目录摘要 (1)Abstract (2)一、概述 (4)1.1 转速测量系统的发展背景.......................... (4)1.2 本设计课题的目的和意义 (4)二、系统方案提出与论证 (5)三、系统工作原理及方案 (7)3.1 系统框图 (7)3.2.光电传感器的原理 (7)3.3 转速测量系统原理 (8)四、系统设计 (11)五、硬件设计 (12)5.1信号采集及其处理单元 (12)5.1.1检测装置安装 (12)5.1.2 信号处理电路 (12)5.1.3光电开关有以下几种类型 (13)5.2主控单元...............................................,,,15 5.2.1时钟电路 .. (15)5.2.2复位电路 (16)5.2.3 1AT89C52基本性能 (17)5.2.4定时与计数设计 (19)5.3 显示单元 (23)5.3.1LCD原理 (23)六、软件设计.....................................................,266.1语音的选用...............................................,266.2程序设计流程图...........................................,26七、电路仿真和调试..............................................,29八、参考文献....................................................,30九、附录 ..............................,,,,,,,,,,,,,,,,,,,,,,,,,,31一、概述1.1转速测量系统的发展背景目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。
计数测速法又可分为机械式定时计数法和电子式定时计数法。
传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。
而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。
1.2本设计课题的目的和意义在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。
要测速,首先要解决是采样问题。
在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。
因此转速的测试具有重要的意义。
这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。
全面了解单片机和信号放大的具体内容。
进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。
二、系统方案提出与论证转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。
本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。
下面就看一下我们对两套设计方案的简要说明。
方案一:霍尔传感器测量方案霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。
本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。
霍尔转速传感器的结构原理图如图1所示。
霍尔转速传感器的接线图如图2所示。