2023年新高考数学大一轮复习专题15 三角形中的范围与最值问题(原卷版)
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
解三角形重点题型二:解三角形中的最值与范围问题- 高考数学一轮复习重点题型讲义
重点题型二:解三角形中的最值与范围问题【问题分析】解三角形中的最值与范围问题是常考题型,经常出现解三角形题中解答题的第(2)问,此题型属于中等偏上题,稍微有点难度,考察学生问题分析能力及转化能力。
解决此类题型经常利用数形结合的思想与方法,对动点进行分析,建立有关的不等式及函数很容易找到最值点. 【解题策略】【题型分析】我们知道已知三角形的三个元素(除三个角外),可以得到确定的解(无解、一解或两解),那么当已知三角形的两个元素(除两个角外,因为两个角与三个角情况是一样的)时,这个三角形将是不确定的,变化的.这就涉及到了三角形的某个角,某个边及三角形的面积在一定范围的变化,通过研究不同情况下的变化规律,我们可以得到角、边、面积的变化范围或最值. 类型一:已知三角形△ABC 两边,解三角形.假设已知边a ,b ,且a ≥b ,如图所示,以C 为圆心,b 为半径做圆,则点A 在圆⊙C 上且不与B 、C 共线.从图中,易知当BA 与圆⊙C 相切时,角B 取得最大值,此时sinB =ba ,可得sinB ∈(0,ba ].同时,由图可得出角C ∈(0,π), 角A ∈(0,π),边c ∈(a −b,a +b).当AC ⊥BC 时,三角形△ABC 面积最大,S max =12ab ,所以三角形△ABC 的面积S ∈(0,12ab]. 类型二:已知三角形△ABC 一边及其一边的对角,解三角形最值与范围代数几何函数基本不等式 (单边最值)动点轨迹曲线方程1一)几何图形分析法假设已知边a 及其对角A ,由正弦定理推论可以得出asinA=2R 所以点A 在以R 为半径的圆上,边a 是圆的一条弦,如右图所示,点A 在圆上运动时,我们可以得到角C ∈(0,π−A), B ∈(0,π−A),边c ∈(0,2R ],b ∈(0,2R ]. 当AB =AC 时,可得到三角形面积的最大值S max =a 24tan A 2,进而可得三角形面积范围为S ∈(0,a 24tan A2].以上是通过几何图形动态分析得出的结论,我们也可以通过代数的方法(构造函数或利用基本不等式)进行分析: 二)构造函数法: 由正弦定理a sinA =b sinB =csinC得b =asinB sinA ,c =asinCsinA所以三角形面积S =12bcsinA =12∙asinB sinA ∙asinC sinA ∙sinA =a 22sinA∙sinBsinC又有A +B +C =π,所以sinB =sin (A +C) 所以S =a 22sinA ∙sin (A +C )sinC =a 22sinA ∙cosA−cos (A+2C)2(注:此步骤利用了和差化积积化和差公式)=a 22sinA ∙(cosA 2−cos (A+2C )2)=a 24sinA ∙(−cos (A +2C )+cosA)所以当cos (A +2C )=−1,即A +2C =π时,三角形面积取得最大值,最大值为S max =a 24sinA ∙(1+cosA)=a 24tan A 2.又C ∈(0,π−A),所以三角形的面积S ∈(0,a 24tan A2]同时,我们也可以得出三角形的周长:l =a +b +c =2R (sinA +sinB +sinC )=a +2R(sinB +sinC)=a +2R (sin (A +C )+sinC ) =a +2R ∙2sin A+2C 2cos A2 (注:此步骤利用了和差化积,积化和差公式)所以当sinA+2C 2=1,即A +2C =π,即B =C 时,周长最大值为l max =a +4Rcos A 2=a(1+1sin A2).所以三角形周长l ∈(2a,a(1+1sin A2)]三)构造基本不等式法:由余弦定理得a 2=b 2+c 2−2bc ∙cosA ≥2bc(1−cosA) (当b =c 时等号成立)所以bc≤a22(1−cosA)所以,三角形的面积S=12bcsinA≤12∙a22(1−cosA)∙sinA=a2sinA4(1−cosA)=a24tanA2故当b=c,三角形△ABC的面积最大值为S max=a24tan A2. 同时三角形的周长:l=a+b+c由余弦定理得a2=b2+c2−2bc∙cosA=(b+c)2−2bc(1+cosA)≥(b+c)2−(b+c)22∙(1+cosA)(当b=c时等号成立) 所以2a2≥(b+c)2(1−cosA)所以b+c≤a sinA2所以l=a+b+c≤a(1+1 sinA2)三角形△ABC周长最大值为l max=a(1+1sin A2)综上所述,已知三角形△ABC一边a及其一边的对角A,可得:①三角形中角C∈(0,π−A), B∈(0,π−A)②边c∈(0,2R],b∈(0,2R].(其中2R=asinA)③三角形的面积S∈(0,a 24tan A2]④三角形周长l∈(2a,a(1+1sin A2)]当b=c或B=C时,三角形的面积与周长取得最大值,分别为S max=a24tan A2,l max=a(1+1sin A2).类型三:已知三角形△ABC一边及其一边的邻角,解三角形2假设已知三角形△ABC边c及其角A,如右图所示.我们这里只考虑角A为锐角的情况,若角A是钝角或者是直角时可以参照分析即可.由右图易知:①当点C在线段DE上(不含端点)时,△ABC为锐角三角形,此时易知:B∈(π2−A,π2),C∈(π2−A,π2), b∈(ccosA,ccosA),a∈(csinA,ctanA)所以△ABC的面积S=12bcsinA∈(c2sin2A4,c2tanA2).②当C在点D或点E时,△ABC为直角三角形.b=ccosA或ccosA ,a=csinA或ctanA,S=c2sin2A4或c2tanA2③当C在线段AD或射线EF上时,△ABC为钝角三角形.B∈(0,π2−A)∪(π2,π−A),C∈(π2,π−A)∪(0,π2),b∈(0,ccosA)∪(ccosA,+∞),a∈(csinA,c)∪(ctanA,+∞)所以△ABC的面积S=12bcsinA∈(0,c2sin2A4)∪(c2tanA2,+∞).类型四:已知三角形△ABC一边及另外两边之间的关系,解三角形.假设已知边c和a,b之间的关系,如右图所示:我们常见的两边之间的关系有:①a+b=定值>c ----------点C的轨迹为椭圆②b−a=定值<c ----------点C的轨迹为双曲线一支③a2+b2=定值=c2----------点C的轨迹为圆(除A,B两点)④ab=定值≠1或a=λb, λ为定值且λ≠1----------点C的轨迹为圆(阿波罗尼斯圆,简称阿氏圆).【典例赏析】例1:在△ABC中,∠BAC的平分线交BC于点D,BD=2DC,BC=6,求ΔABC的面积的最大值.试题分析:思路一:代数法,根据角平分定理可以得出AB与AC的比值是一个定值,BC也是一个定值,由三角形三边,可以求出三角形面积(可以利用海伦公式,也可以利用角的余弦表示)关于边的表达式,进而求出面积的最值.思路二:由AB与AC的比值是一个定值,BC是固定值,所以点A的轨迹是一个圆(阿氏圆,除去与直线BC的两个交点)34解析:方法一:构造函数(构造一个关于边函数) 如图,设设AC =x ,则由正弦定理可得 BDsin ∠BAD=ABsin ∠ADB ①,CDsin ∠CAD =ACsin ∠ADC ②,又∠ADB +∠ADC =π,所以sin ∠ADB =sin ∠ADC , ①②式联立可得ABAC =21(由角平分线定理可直接得出), 则AB =2x ,则S △ABC =12AB ⋅AC ⋅sin ∠BAC =x 2⋅sin ∠BAC , 对△ABC ,由余弦定理可得cos∠BAC =AB 2+AC 2−BC 22AB⋅AC=5x 2−364x 2,则S 2=x 4⋅sin 2∠BAC =x 4⋅(1−cos 2∠BAC )=x 4−25x 4−360x 2+36216=−116(9x 4−360x 2+362)=−916(x 4−40x 2+144)=−916[(x 2−20)2−256],当x 2=20时,S 2有最大值,(S 2)max =144,所以S max =12方法二:几何法(点A 的轨迹是一个圆)以点B 为原点,BC 所在直线为x 轴,BC 中垂线为y 轴建立直角 坐标系,如右图所示,则B (−3,0),C(3,0),设点A (x,y ),y ≠0 由题意得AB =2AC ,所以AB 2=4AC 2 所以(x +3)2+y 2=4[(x −3)2+y 2] 整理得3x 2+3y 2−30x +27=0即x 2+y 2−10x +9=0⇔(x −5)2+y 2=16 所以点A 在以(5,0)为圆心,半径为4得圆上. 所以三角形ABC 面积最大值为S max =12×6×4=12 思考:方法一与方法二那个方法更好呢?例2:在△ABC 中,∠BAC =60∘,BC =3,且有CD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,则线段AD 长的最大值为( ) A .√132B .2C .√3+1D .2√35试题分析:思路一:已知一边及其一边得对角,D 为底边BC 的三等分点,可以用AB ⃗⃗⃗⃗⃗ 、AC ⃗⃗⃗⃗⃗ 表示向量AD ⃗⃗⃗⃗⃗ ,再结合正余弦定理,容易建立CD ⃗⃗⃗⃗⃗ 关于某角的函数,进而求出线段AD 长的最大与最小.思路二: 已知一边及其一边得对角,所以点A 在一个半径为√3的圆上远动,BC 为圆上的一条弦,通过几何分析很容易找出AD 长的最大与最小. 解析:方法一:在△ABC 中,设角A 、B 、C 的对边分别为a 、b 、c , 由正弦定理可得b sin B =c sin C =3sin π3=2√3,则b =2√3sin B ,c =2√3sin C ,又AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13(2AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 所以,|AD ⃗⃗⃗⃗⃗ |2=19(2AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )2=19(AC ⃗⃗⃗⃗⃗ 2+4AB ⃗⃗⃗⃗⃗ 2+4AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ )=19(b 2+4c 2+4cb cos π3) 所以,|AD ⃗⃗⃗⃗⃗ |2=2√3sin 2B +4 ∵0<B <2π3,则0<2B <4π3,当2B =π2时,即当B =π4时,|AD ⃗⃗⃗⃗⃗ |取最大值, 即|AD⃗⃗⃗⃗⃗ |max=√4+2√3=√3+1.方法二:由正弦定理得asinA =3sin π3=2R =2√3所以点A 在一个半径为√3的圆上,BC 为圆上的一条弦,如右图所示 易得AO =√3,BD =1,DC =2, 又OD ⃗⃗⃗⃗⃗⃗ =23OB ⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ ,∠BOC =2π3,所以|OD⃗⃗⃗⃗⃗⃗ |=1 又|AO⃗⃗⃗⃗⃗ |+|OD ⃗⃗⃗⃗⃗⃗ |≥|AD ⃗⃗⃗⃗⃗ |(当A 、O 、D 三点共线是等号成立) 所以|AD ⃗⃗⃗⃗⃗ |≤√3+1,故|AD ⃗⃗⃗⃗⃗ |max=√3+1 例3:已知锐角三角形ABC 内接于单位圆,且BC =√2,求△ABC 面积的最大值. 试题分析:思路一:三角形内接于单位圆,BC =√2为定值,所以点A 到BC 距离最大时,△ABC 的面积最大,根据图形很容易找到A 到BC 距离最大值,△ABC 面积的最大值即单位圆半径于圆心到BC 的距离之和.6思路二:求单边最值,可以利用基本不等式.由题意边a 与角A 容易求出,求面积最值即是求b ∙c 最值即可,由余弦定理即可得到b 与c 的关系,进而求出b ∙c 最值. 解析:方法一:如图,设圆O 的半径为1,因为BC =√2,所以△BOC 是直角三角形,即∠BOC =90°,所以角∠BAC =45°,所以O 到BC 的距离为√22,所以A 到BC 距离最大值为√22+1所以△ABC 面积的最大值为12×√2×(√22+1)=√2+12方法二:由正弦定理得asinA =2,所以sinA =√22,所以A =π4由余弦定理可知BC 2=AB 2+AC 2−2AB ⋅AC cos π4由基本不等式可知2=AB 2+AC 2−2AB ⋅AC cos π4≥(2−√2)AB ⋅AC ,当且仅当AB =AC 时,取等号;所以AB ⋅AC ≤22−√2=2+√2,又S △ABC =12AB ⋅AC sin ∠BAC =√24AB ⋅AC ≤√24×(2+√2)=√2+12.所以△ABC 的面积的最大值为√2+12例3:在ΔABC 中,角A 、B 、C 所对的边分别为a,b,c ,且满足b =a cos C +√33c sin A .(1)求角A 的大小;(2)若边长a =2,求ΔABC 面积的最大值.试题分析:①由b =a cos C +√33c sin A ,根据正弦定理进行边角互化,再有sinB =sin (A +C ),化简即可求出角A .②由①知角A ,由已知边a ,所以是已知一边及其一边对角的情况,所以参考上面类型二进行解决.解析:①由b =acosC +√33csinA 及正弦定理得,sinB =sinAcosC +√33sinCsinA,即sin (A +C )=sinAcosC +cosAsinC =sinAcosC +√33sinCsinA ,整理得cosAsinC =√33sinCsinA ,∵sinC ≠0,∴cosA =√33sinA ,∴tanA =√3,又0<A <π,∴A =π3.②在△ABC中,由余弦定理得a2=b2+c2−2bccosA,即4=b2+c2−2bccosπ3=b2+c2−bc≥2bc−bc=bc,当且仅当b=c时等号成立,∴bc≤4.∴SΔABC=12bcsinAA=√34bc≤√3.∴△ABC面积的最大值为√3.例4:设△ABC中角A,B,C的对边分别为a,b,c,A=π3.①若c=2,a=2√3,求b;②求sin B+sin C的取值范围.试题分析:①已知两边及一角,求第三边,直接利用余弦定理即可解决.②已知角A=π3,所以B+C=2π3,由B+C的关系可以将sin B+sin C转换为只含有一个角B或角C,再根据三角函数性质即可解决. 解析:①∵a2=b2+c2−2bc cos A,∴12=b2+4−2×2×b×12.∴b2−2b−8=0,∴4b .②∵A=π3,∴B+C=2π3,C=2π3−B.∴sin B+sin C=sin B+sin(2π3−B)=32sin B+√32cos B=√3sin(B+π6),又∵0<B<2π3,12<sin(B+π6)≤1.∴sin B+sin C的取值范围是(√32,√3]例5:已知△ABC的内角A,B,C的对边分别为a,b,c,且满足(a−c)(ainA+sinC)−sinB(a−b)=0.①求C;②若S△ABC=2√3,D为边AB的中点,求CD的最小值.解析:①△ABC中,内角A,B,C的对边分别为a,b,c,且(a−c)(sin A+sin C)+(b−a)sin B=0.利用正弦定理得:(a−c)(a+c)+(b−a)b=0,78整理得:a 2−c 2+b 2−ab =0,即cos C =a 2+b 2−c 22ab=12,由于0<C <π,所以:C =π3.②因为△ABC 的面积为S △ABC =12ab sin C =√34ab =2√3,解得ab =8;在△ABC 中,CD ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ ,两边同平方得: |CD⃗⃗⃗⃗⃗ |2=14a 2+14b 2+14ab ⩾14×2ab +14ab =34ab =6, 当且仅当a =b =2√2时,等号成立, 所以CD ⩾√6,即CD 的最小值为√6.例6:已知ΔABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且b 2=c 2+ac , ①求证:B =2C ;②若ΔABC 是锐角三角形,求ac 的取值范围.解析:①由余弦定理可得:b 2=a 2+c 2−2accosB , ∵b 2=c 2+ac ,∴c 2+ac =a 2+c 2−2ac ⋅cos B , ∴a 2=ac +2ac ⋅cos B ,即a =c +2c ⋅cos B , ∴利用正弦定理可得:sin A =sin C +2sin C cos B ,即sin(B +C)=sin B cos C +sin C cos B =sin C +2sin C cos B , ∴sin B cos C =sin C +sin C cos B , 可得:sin(B −C)=sin C ,∴可得:B −C =C ,或B −C +C =π(舍去),∴B =2C . ②∵a c=sin A sin C =sin(B+C)sin C=sin(2C+C)sin C=2cos 2C +cos 2C =2cos 2C +1∵A +B +C =π,A 、B 、C 均为锐角,由于:3C +A =π, ∴0<2C <π2,0<C <π4. 再根据π2<3C ,可得π6<C ,∴π6<C <π4,∴a c∈(1,2)例7:在△ABC 中,2B =A +C .①当AC=12时,求S△ABC的最大值;②当S△ABC=4√3时,求△ABC周长的最小值.解析:①由题意,B=60°,b=12,∴由余弦定理可得122=a2+c2−2ac cos60°≥ac,∴ac≤144,∴S△ABC=12ac sin B≤36√3,∴S△ABC的最大值为36√3;②S△ABC=4√3=12ac×√32,∴ac=16,又b2=a2+c2−2ac cos60°=(a+c)2−48,b2=a2+c2−2ac cos60°≥ac,∴a+c=√b2+48,4b∴△ABC周长为a+b+c≥8+4=12当且仅当a=b=c时,△ABC周长的最小值为12.910。
2023届高考数学一轮复习+最值、范围问题+课件
(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN面 积的最小值. 解 设过点O的直线MN的方程为y=kx(k<0), 联立yy2==k4xx,,得(kx)2=4x,解得 Mk42,4k, 联立xy=2=k4xy,,得 N(4k,4k2), 从而|MN|= 1+k2k42-4k = 1+k2k42-4k.
(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方 程. 解 当l⊥x轴时不合题意; 设l:y=kx-2,P(x1,y1),Q(x2,y2), 将 y=kx-2 代入x42+y2=1,得(1+4k2)x2-16kx+12=0. 当Δ=16(4k2-3)>0,
即 k2>34时,x1+x2=1+164kk2, x1·x2=1+124k2.
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围. 解 当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面 积为12.
当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).
直线 AC 的方程为 y+2=y2x+2 2x, 令 y=-3,则 x=-y2x+2 2, 故点 N-y2x+2 2,-3. |PM|+|PN|=y1x+1 2+y2x+2 2 =x1((y2y+1+2)2)+(x2y(2+y12+)2)
=x1(yk1xy22-+12)(+y1+x2y(2)kx+1-4 1)
训练1 (2022·长沙模拟)已知抛物线C1:y2=4x和C2:x2=2py(p>0)的焦点分别 为F1,F2,点P(-1,-1)且F1F2⊥OP(O为坐标原点). (1)求抛物线C2的方程; 解 ∵F1(1,0),F20,p2, ∴F→1F2=-1,p2,F→1F2·O→P=-1,p2·(-1,-1)=1-2p=0,
2025年高考数学一轮复习-三角中的最值、范围问题-专项训练【含答案】
2025年高考数学一轮复习-三角中的最值、范围问题-专项训练一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且0,则ω的最小值为()A.2B.4C.6D.82.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为()A.π12 B.π6C.π3 D.5π63.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sin C =2b sin C cosA ,则角A 的最大值为()A.π6 B.π4C.π3 D.2π34.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b=cos Ccos B ,b =4,则△ABC 的面积的最大值为()A.43B.23C.2D.35.若函数f (x )=cos 2x +x (0,α)上恰有2个零点,则α的取值范围为() A.5π6,,4π3 C.5π3,,8π36.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f立,若函数y=f(x)在[0,a]上单调递减,则a的最大值是()A.π6B.π3C.2π3D.5π67.已知函数f(x)=2sinωx(ω>0)在区间-π3,π4上的最小值为-2,则ω的取值范围是________.8.已知函数f(x)=cosωx+ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________.9.在△ABC中,内角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC 的角平分线交AC于点D,且BD=1,则4a+c的最小值为________.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.12.已知向量a b=(-sin x,3sin x),f(x)=a·b.(1)求函数f(x)的最小正周期及f(x)的最大值;(2)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若1,a=23,求△ABC面积的最大值并说明此时△ABC的形状.二、创新拓展练13.设锐角△ABC的三个内角A,B,C所对边分别为a,b,c,且a=1,B=2A,则b的取值范围为()A.(2,3)B.(1,3)C.(2,2)D.(0,2)14.(多选)设函数f(x)=ω>0),已知f(x)在[0,2π]上有且仅有3个极小值点,则()A.f(x)在(0,2π)上有且仅有5个零点B.f(x)在(0,2π)上有且仅有2个极大值点C.f(x)D.ω的取值范围是7 3,15.(多选)在△ABC中,内角A,B,C的对边分别为a,b,c,且c=6,记S为△ABC的面积,则下列说法正确的是()A.若C=π3,则S有最大值93B.若A=π6,a=23,则S有最小值33C.若a=2b,则cos C有最小值0D.若a+b=10,则sin C有最大值242516.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2c=a(b2+c2-a2).(1)若A=π3,求B的大小;(2)若a≠c,求c-3ba的最小值.参考答案与解析一、基本技能练1.答案A解析函数f (x )的周期T ≤π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.答案B解析将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos 2φ=x -2π3+,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),则当k =-1时,|φ|取得最小值π6.3.答案A解析因为a sin A +2c sin C =2b sin C cos A ,由正弦定理可得,a 2+2c 2=2bc cos A ,①由余弦定理得,a 2=b 2+c 2-2bc cos A ,②①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.答案A解析∵在△ABC 中,2a -c b=cos Ccos B ,∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C ,整理得sin(B +C )=2sin A cos B ,∵A ∈(0,π),∴sin A ≠0.∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时取等号,∴△ABC 的面积S =12ac sin B =34ac ≤43.即△ABC 的面积的最大值为4 3.5.答案B解析由题意,函数f (x )=cos 2x +x =3sin x 因为0<x <α,所以π3<2x +π3<2α+π3,又由f (x )在(0,α)上恰有2个零点,所以2π<2α+π3≤3π,解得5π6<α≤4π3,所以α,4π3.故选B.6.答案B解析因为函数f (x )=cos(ωx +φ)的最小正周期为π,所以ω=2ππ=2,又对x ∈R ,都有f (x )≥所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z ,即φ=π3+2k π,k ∈Z ,所以f (x )=x令2kπ≤2x+π3≤π+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,则函数y=f(x)在0,π3上单调递减,故a的最大值是π,故选B.7.答案32,+∞解析x∈-π3,π4,因为ω>0,-π3ω≤ωx≤π4ω,由题意知-π3ω≤-π2,即ω≥3 2,故ω取值范围是3 2,+8.答案5 3,解析函数f(x)=cosωx+3sinω>0),由x∈[0,π],得ωx+π3∈π3,ωπ+π3.又f(x)在[0,π]上恰有一个最大值点和两个零点,则2π≤ωπ+π3<52π,解得53≤ω<136.9.答案9解析因为∠ABC=120°,∠ABC的平分线交AC于点D,所以∠ABD=∠CBD=60°,由三角形的面积公式可得12ac sin120°=12a×1·sin60°+12c·1·sin60°,化简得ac=a+c,又a>0,c>0,所以1a+1c=1,则4a +c =(4a +c 5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.10.答案22,π4解析由c +b cos A -a cos B =2a cos A 结合正弦定理得sin C +sin B cos A -sinA cosB =2sin A cos A ,即sin(A +B )+sin B cos A -sin A cos B =2sin A cos A ,化简得2sin B cos A =2sin A cos A .因为A ≠π2cos A ≠0,则2sin B =2sin A ,所以b a =sin B sin A =22,则由余弦定理得cos B =a 2+c 2-b 22ac =2b 2+c 2-b 222bc =b 2+c 222bc ≥2bc 22bc =22,当且仅当b =c 时等号成立,解得0<B ≤π411.(1)证明由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B,所以sin B =cos A ,即sin B =又B 为钝角,因此π2+A 故B =π2A ,即B -A =π2.(2)解由(1)知,C =π-(A +B )=πA =π2-2A >0,所以A于是sin A +sin C =sin A +2sin A +cos 2A =-2sin 2A +sin A +1=-A +98.因为0<A <π4,所以0<sin A <22,因此22<-A +98≤98.由此可知sin A +sin C ,98.12.解(1)由已知得a =(-sin x ,cos x ),又b =(-sin x ,3sin x ),则f (x )=a ·b =sin 2x +3sin x cos x =12(1-cos 2x )+32sin 2x=x +12,所以f (x )的最小正周期T =2π2=π,当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32.(2)在锐角△ABC 中,因为+12=1,所以=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A ,所以12=b 2+c 2-bc ,所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形,S △ABC =12bc sin A =34bc ≤33.所以当△ABC 为等边三角形时面积取最大值3 3.二、创新拓展练13.答案A解析∵B =2A ,∴sin B =sin 2A =2sin A cos A .∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,A <π2,A <π2,-3A <π2,∴π6<A <π4,∴22<cos A <32,即2<2cos A <3,故选A.14.答案CD解析因为x ∈[0,2π],所以ωx +π3∈π3,2πω+π3.设t =ωx +π3∈π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点,则5π≤2πω+π3<7π,解得73≤ω<103,故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误;当x ωx +π3,π6ω因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )C 正确.15.答案ABD解析对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab ,因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确;对于选项B ,对角A 用余弦定理得12=a 2=c 2+b 2-3bc =36+b 2-63b ,解得b =23或b =43,因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确.对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab=32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.解(1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc=b 2a .因为A =π3,所以b 2a =12a =b ,所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B 2sin A,即sin B =2sin A cos A =sin 2A ,所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去,所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A=sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A =cos 2A +2(cos A -3)·cos A=4cos 2A -6cos A -1=A -134.因为C =π-A -B =π-3A >0,即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。
2023年新高考数学大一轮复习专题15 单调性问题(原卷版)
专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。
三角函数中ω的范围与最值问题【七大题型】(举一反三)(原卷版)—2025年新高考数学一轮复习
三角函数中ω的范围与最值问题专练【七大题型】【题型1 与三角函数的单调性有关的ω的范围与最值问题】 (2)【题型2 与三角函数的对称性有关的ω的范围与最值问题】 (2)【题型3 与三角函数的最值有关的ω的范围与最值问题】 (3)【题型4 与三角函数的周期有关的ω的范围与最值问题】 (4)【题型5 与三角函数的零点有关的ω的范围与最值问题】 (4)【题型6 与三角函数的极值有关的ω的范围与最值问题】 (5)【题型7 ω的范围与最值问题:性质的综合问题】 (5)1、三角函数中ω的范围与最值问题三角函数的图象与性质是高考的重要内容,在三角函数的图象与性质中,ω的求解是近几年高考的一个重点、热点内容,试题主要以选择题、填空题的形式呈现,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点,学生在复习中要加强训练,灵活求解.【知识点1 三角函数中有关ω的范围与最值问题的类型】1.三角函数中ω的范围与最值的求解一般要利用其性质,此类问题主要有以下几个类型:(1)三角函数的单调性与ω的关系;(2)三角函数的对称性与ω的关系;(3)三角函数的最值与ω的关系;(4)三角函数的周期性与ω的关系;(5)三角函数的零点与ω的关系;(6)三角函数的极值与ω的关系.【知识点2 三角函数中ω的范围与最值问题的解题策略】1.利用三角函数的单调性求ω的解题思路对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.2.利用三角函数的对称性求ω的解题策略三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”间的“水平间隔”为,这就说明,我们可根据三角函数的对称性来研究其周期性,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,进而可以研究“ω”的取值范围.3.利用三角函数的最值求ω的解题策略若已知三角函数的最值,则利用三角函数的最值与对称轴或周期的关系,可以列出关于ω的不等式(组),进而求出ω的值或取值范围.4.利用三角函数的周期性求ω的解题策略若已知三角函数的周期性,则利用三角函数的周期与对称轴、最值的关系,列出关于ω的不等式(组),进而求出ω的值或取值范围.【题型1 与三角函数的单调性有关的ω的范围与最值问题】【例1】(2024·重庆·二模)若函数f(x)=sin(2x―φ)(0≤φ<π)在φ的最小值为()A.π12B.π6C.π4D.π3【变式1-1】(2024·湖北鄂州·一模)已知函数y=sin(ωx+φ)(ω>0,φ∈(0,2π))的一条对称轴为x=―π6,且f(x)在πω的最大值为()A.53B.2C.83D.103【变式1-2】(2024·全国·模拟预测)已知函数f(x)=sin(ωx+φ)(ω>0),若直线x=π4为函数f(x)图象的为函数f(x)图象的一个对称中心,且f(x)ω的最大值为()A.917B.1817C.1217D.2417【变式1-3】(2024·广东湛江·一模)已知函数f(x)=sinωxω>0)ω的取值范围是()A.[2,5]B.[1,14]C.[9,10]D.[10,11]【题型2 与三角函数的对称性有关的ω的范围与最值问题】【例2】(2023·广西·模拟预测)若函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)满足f (2x )=―2x ,且f (0)=―1,则ω的最小值为( )A .1B .2C .3D .4【变式2-1】(2024·内蒙古呼和浩特·一模)已知函数f (x )=sin ωx >0)在区间[0,π]上有且仅有两条对称轴,则ω的取值范围是( )A B C D【变式2-2】(2023·云南大理·一模)函数f (x )=sin (ωx +φ)(ω>0,0<φ<π),若不等式f (x )≤|对∀x ∈R 恒成立,且f (x )的图像关于x =π8对称,则ω的最小值为( )A .1B .2C .3D .4【变式2-3】(2024·全国·模拟预测)已知函数f(x)=sin (ωx +φ)(ω>0)其图象关于直线x =―π36对称,且f (x )的一个零点是x =772π,则ω的最小值为( )A .2B .12C .4D .8【题型3 与三角函数的最值有关的ω的范围与最值问题】【例3】(2023·四川泸州·一模)已知函数f (x )=2sin ωx >0)在π上单调,则ω的取值范围是( )A .B .1,C D【变式3-1】(2024·浙江温州·一模)若函数f (x )=2sin ωx ―(ω>0),x ∈0,[―,则ω的取值范围是( )A BC D【变式3-2】(2024·四川绵阳·模拟预测)已知函数f (x )=4cos ωx >0),f (x )在区间0,值恰为―ω,则所有满足条件的ω的积属于区间( )A .(1,4]B .[4,7]C .(7,13)D .[13,+∞)【变式3-3】(2023·新疆乌鲁木齐·一模)已知函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象过点(0,1),且在区间(π,2π)内不存在最值,则ω的取值范围是( )A .BC .∪D .∪【题型4 与三角函数的周期有关的ω的范围与最值问题】【例4】(2023·四川绵阳·模拟预测)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=x =π9为f (x )的一个零点,则ω的最小值为( )A .32B .3C .6D .152【变式4-1】(2024·全国·模拟预测)已知函数f (x )=sin (2πωx )(ω>0)在区间(0,2)上单调,且在区间[0,18]上有5个零点,则ω的取值范围为( )A BC D 【变式4-2】(2024·全国·模拟预测)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=―12,且x =π2为f (x )的一条对称轴,则ω的最小值为( )A .23B .43C .83D .103【变式4-3】(23-24高二下·江苏南京·期末)已知函数f (x )=sin (ωx +φ)ω>0,|φ|<=f (x )在区间[0,2]上恰有8个零点,则ω的取值范围是( )A πB .4πC .4π,D 【题型5 与三角函数的零点有关的ω的范围与最值问题】【例5】(2023·全国·一模)已知函数f (x )=sin ωx +>0)π上恰有3个零点,则ω的取值范围是( )A ∪4,B ∪C .[113,143)∪(5,173)D ,5∪【变式5-1】(2023·吉林长春·一模)将函数f(x)=cos x 图象上所有点的横坐标变为原来的1ω(ω>0),纵坐标不变,所得图象在区间―π12ω的取值范围为( )【变式5-2】(2024·全国·模拟预测)已知函数f(x)=sinωx+>0)π上至少有两个零点,则实数ω的取值范围是()A+∞B+∞C∪+∞D∪+∞【变式5-3】(2024·四川雅安·一模)已知函数f(x)=2cos(ωx+φ)(ω>0且―π2<φ<π2),设T为函数f(x)的最小正周期,=―1,若f(x)在区间[0,1]有且只有三个零点,则ω的取值范围是()A B236πC D【题型6 与三角函数的极值有关的ω的范围与最值问题】【例6】(2023·四川成都·二模)将函数f(x)=>0)的图象上所有点的横坐标缩短到原来的14,纵坐标不变,得到函数g(x)的图象.若g(x)在3个极值点,则ω的取值范围为()A B,4C.D,7【变式6-1】(2023·河南开封·模拟预测)已知将函数f(x)=ωx2―>0)的图象向右平移π2ω个单位长度,得到函数g(x)的图象,若g(x)在(0,π)上有3个极值点,则ω的取值范围为()A+∞B,4C D【变式6-2】(2024·陕西渭南·一模)已知函数f(x)=sinωx>0)在区间[0,π]上有且仅有4个极值点,给出下列四个结论:①f(x)在区间(0,π)上有且仅有3个不同的零点;②f(x)的最小正周期可能是π2;③ω④f(x).其中正确结论的个数为()A.1B.2C.3D.4【变式6-3】(2024·全国·模拟预测)将函数f(x)=sin x的图像向左平移5π6个单位长度后得到函数g(x)的图像,再将g(x)的图像上各点的纵坐标不变、横坐标变为原来的1ω(ω>0)倍,得到函数ℎ(x)的图像,且ℎ(x)在区间(0,π)上恰有两个极值点、两个零点,则ω的取值范围为()【题型7 ω的范围与最值问题:性质的综合问题】【例7】(2024·湖北武汉·模拟预测)若函数f (x )=3cos (ωx +φ)ω<0,―π2<φ<π,在区间―π6φ的取值范围是( )A B .―π2,―C D .【变式7-1】(2024·全国·模拟预测)已知函数f (x )=sin (2ωx ―φ)(ω>0)满足对任意的x ∈R ,均有f (x )≥f+x =x ,且f (x )ω的最大值为( )A .14B .12C .34D .45【变式7-2】(2024·天津·模拟预测)已知f (x )=sin ωx +π3+φω>0,|φ|<g (x )=sin(ωx +φ),则下列结论错误的个数为( )①φ=π6;②若g (x )的最小正周期为3π,则ω=23;③若g (x )在区间(0,π)上有且仅有3个最值点,则ω④若=ω的最小值为.A .1个B .2个C .3个D .4个【变式7-3】(2023·河南·模拟预测)已知函数f (x )=sin (ωx +φ)ω>0,0<φ<=f x且f ―π4―x +f ―π4+x =0,f (x )ω的最大值为( )A .1B .3C .5D .367一、单选题1.(2024·四川成都·模拟预测)若函数f(x)=sin (ωx)(ω>0)在0,ω的取值范围为( )A .B .(0,2)C .D .(0,2]2.(2024·重庆开州·模拟预测)已知函数f (x )=2sin ωx(ω>0),则“32<ω<3”是“f (x )的图象在区间―π6上只有一个极值点”的()A.充分条件B.必要条件C.充要条件D.非充分非必要条件3.(2024·湖北武汉·模拟预测)设ω>0,已知函数f(x)=sin3ωx2ωx(0,π)上恰有6个零点,则ω取值范围为()A B C D4.(2024·河北·模拟预测)已知函数f(x)=sin(ωx+φ)(ω>0),若f(0)=f=π,则ω的最小值为()A.3B.1C.67D.235.(2024·四川·模拟预测)已知函数f(x)=sinωx+ω>0)在区间1个零点,且当x∈―2π3f(x)单调递增,则ω的取值范围是()A B C,1D6.(2024·四川内江·三模)设函数f(x)=2sinωx>0),若存在x1,x2∈―π6x1≠x2,使得f(x1)=f(x2)=ω的取值范围是()A.(0,12]B.[10,+∞)C.[10,12]D.(6,10]7.(2024·河南南阳·模拟预测)若函数f(x)=cos(ωx+φ)ω>0,|φ|≤中心对称,且x=―π3是f(x)的极值点,f(x)在区间0,ω的最大值为()A.8B.7C.274D.2548.(2024·陕西安康·模拟预测)已知函数f(x)=cosωxω>0),π上单调递减,且f(x)在区间(0,π)上只有1个零点,则ω的取值范围是()A.B C D二、多选题9.(2024·浙江·模拟预测)已知函数f(x)=cosωx+ω>0),则()A.当ω=2时,f x x=π2对称B.当ω=2时,f(x)在C.当x=π6为f(x)的一个零点时,ω的最小值为1D.当f(x)在―π3ω的最大值为110.(2024·浙江温州·三模)已知函数f(x)=sin(ωx+φ)(ω>0),x∈,π的值域是[a,b],则下列命题正确的是()A.若b―a=2,φ=π6,则ω不存在最大值B.若b―a=2,φ=π6,则ω的最小值是73C.若b―a=ω的最小值是43D.若b―a=32,则ω的最小值是4311.(2023·浙江·三模)已知函数f(x)=cosωx>0),则下列判断正确的是()A.若f(x)=f(π―x),则ω的最小值为32B.若将f(x)的图象向右平移π2个单位得到奇函数,则ω的最小值为32C.若f(x)π单调递减,则0<ω≤34D.若f(x)π上只有1个零点,则0<ω<54三、填空题12.(2024·陕西安康·模拟预测)已知函数f(x)=cos2ωx>0)π上是单调的,则ω的最大值为.13.(2024·陕西西安·模拟预测)若函数f(x)=2cosωx―1(ω>0)在(0,π)上恰有两个零点,则ω的取值范围为.14.(2024·黑龙江哈尔滨·模拟预测)已知函数f(x)=2sinωxω>0),若∃x1,x2∈[0,π],使得f(x1) f(x2)=―4,则ω的最小值为.四、解答题15.(2023·河北承德·模拟预测)已知ω>1,函数f(x)=cosωx―(1)当ω=2时,求f(x)的单调递增区间;(2)若f(x)ω的取值范围.16.(23-24高一下·湖北恩施·期末)已知函数f(x)=2sinωx+>0).(1)若x+x=0,求ω的最小值;(2)若f(x)在区间0,[1,2],求ω的取值范围.17.(2024·全国·模拟预测)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|≤(1)若f(x)的图象经过点,0,,2,且点B恰好是f(x)的图象中距离点A最近的最高点,试求f(x)的解析式;(2)若f(0)=―1,且f(x)π上单调,在ω的取值范围.18.(2024·全国·模拟预测)已知函数f(x)=3sin(ωx+φ)ω>0,|φ|<(1)当φ=π时,函数f(x)ω的取值范围.6(2)若f(x)的图象关于直线x=π对称且f=0,是否存在实数ω,使得f(x)4求出ω的值;若不存在,说明理由.19.(2023·山西·模拟预测)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的图象是由y=2sinωx 个单位长度得到的.象向右平移π6(1)若f(x)的最小正周期为π,求f(x)y轴距离最近的对称轴方程;(2)若f(x)ω的取值范围.。
压轴题05 三角函数与解三角形范围与最值问题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .,14⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .1⎫⎪⎪⎣⎭5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .326.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .67.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则c a的取值范围是______.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.12.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B C c a C +=;②sin 1cos a CA=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC 中,设边,,a b c 所对的角分别为,,A B C ,且22a b bc -=.(1)求角B 的取值范围;(2)若4c =,求ABC 中AB 边上的高h 的取值范围.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-a =这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a cA CB C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a b A B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c +的最小值,并求此时ABC 的各个内角的大小.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.。
解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)
考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。
旧教材适用2023高考数学一轮总复习高考大题专题研究五一最值范围问题课件
设直线 PQ 的方程为 x=my+t(t≠-2),P(x1,y1),Q(x2,y2). x=my+t,
由x42+y22=1, 得(m2+2)y2+2mty+t2-4=0. Δ=4m2t2-4(m2+2)(t2-4)=8(2m2+4-t2)>0,(*) y1+y2=-m22m+t2,y1y2=mt22-+42.①
因为A→S=13S→P,A→T=13T→Q, 所以 ST∥PQ,且A→H=13H→G, 所以 xH+2=131114-xH,解得 xH=-1113, 即直线 ST 过定点 H-1113,0.
设直线 PQ 的方程为 x=ty+1114,
即 11x-11ty-14=0,
所以点 O 到直线 PQ 的距离为 d1=11
的平分线 PM 交椭圆 C 的长轴于点 M(m,0),求实数 m 的取值范围.
解 (2)解法一:因为点 P(x0,y0)(y0≠0),
F1(- 3,0),F2( 3,0),所以直线 PF1,PF2 的方程分别为 l1:y0x-(x0
+ 3)y+ 3y0=0,
l2:y0x-(x0- 3)y- 3y0=0.
1m·m3 +4=1+
3 2.
当 m= 3时,SS12取得最小值 1+ 23,此时 G(2,0).
题型二 范围问题 例 2 如图,椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2, 离心率为 23,过焦点 F2 且垂直于 x 轴的直线被椭圆 C 截得的线段长为 1.
(1)求椭圆 C 的方程;
所以直线 PQ 的方程为 y-2k421k+1 1=22kk11k+2-k21x+42kk2121- +21, 即 2y(k1+k2)(2k21+1)-8k1(k1+k2)=(2k1k2-1)(2k21+1)x+(2k1k2-1)(4k21- 2).① 将 k1k2=-19代入①,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题15 三角形中的范围与最值问题【方法技巧与总结】1.在解三角形专题中,求其“范围与最值”的问题,一直都是这部分内容的重点、难点。
解决这类问题,通常有下列五种解题技巧:(1)利用基本不等式求范围或最值;(2)利用三角函数求范围或最值;(3)利用三角形中的不等关系求范围或最值;(4)根据三角形解的个数求范围或最值;(5)利用二次函数求范围或最值.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.2.解三角形中的范围与最值问题常见题型:(1)求角的最值;(2)求边和周长的最值及范围;(3)求面积的最值和范围.【题型归纳目录】题型一:周长问题题型二:面积问题题型三:长度问题题型四:转化为角范围问题题型五:倍角问题题型六:角平分线问题题型七:中线问题题型八:四心问题题型九:坐标法题型十:隐圆问题题型十一:两边夹问题题型十二:与正切有关的最值问题题型十三:最大角问题题型十四:费马点、布洛卡点、拿破仑三角形问题题型十五:托勒密定理及旋转相似题型十六:三角形中的平方问题题型十七:等面积法、张角定理【典例例题】 题型一:周长问题例1.(2022·云南·昆明市第三中学高一期中)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设sin cos()6a C c A π=-.(1)求A ;(2)从三个条件:①ABCb =a =ABC 周长的取值范围.例2.(2022·重庆·高一阶段练习)已知向量(3sin ,cos )a x x =,(1,1)b =,函数()f x a b =⋅. (1)求函数()f x 在[]0,π上的值域;(2)若ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且()2f A =,1a =,求ABC 的周长的取值范围.例3.(2022·浙江·高三专题练习)锐角ABC 的内切圆的圆心为O ,内角A ,B ,C 所对的边分别为a ,b ,c .()222tan b c a A =+-,且ABC 的外接圆半径为1,则BOC 周长的取值范围为___________.例4.(2022·浙江省新昌中学模拟预测)已知函数21()cos sin 2f x x x x ωωω=-+,其中0>ω,若实数12,x x 满足()()122f x f x -=时,12x x -的最小值为2π. (1)求ω的值及()f x 的对称中心;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=ABC 周长的取值范围.题型二:面积问题例5.(2022·贵州黔东南·高一期中)在面积为S 的△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()22sin sin 2sin sin sin C A S a b A B C ⎛⎫+=+ ⎪⎝⎭. (1)求C 的值;(2)若ABC 为锐角三角形,记2Sm a =,求m 的取值范围.例6.(2022·浙江·高二阶段练习)在ABC 中,角,,A B C 的对边分别为,,,cos 2a b c A A =. (1)求角A ;(2)若点D 满足34AD AC =,且2BC =,求BCD △面积的取值范围.例7.(2022·浙江·杭师大附中模拟预测)在ABC 中,D 的边BC 的中点,32,2cos cos2()2AD C A B =-+=. (1)求角C ;(2)求ABC 面积的取值范围.例8.(2022·江苏省天一中学高一期中)在ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若2cos 24a cb C ==-,.ABC 是锐角三角形,则ABC 面积的取值范围是___________.题型三:长度问题例9.(2022·辽宁·模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin sin 3sin c a b C A B a B +--+=.(1)求角C 的大小;(2)设1m ,若ABC 的外接圆半径为4,且2a mb +有最大值,求m 的取值范围.例10.(2022·河南·模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .22cos 22C C =,4c =,a b +=.(1)求ABCS ;(2)求11a b-的取值范围.例11.(2022·江苏·高三专题练习)已知ABC 内角A ,B ,C 的对边分别为a ,b ,c ,2A+C =B ,ABC的面积S . (1)求边c ;(2)若ABC 为锐角三角形,求a 的取值范围.例12.(2022·陕西·宝鸡中学模拟预测(文))已知()()cos ,cos ,3sin ,cos a x x b x x ==-,()f x a b =⋅,(1)求()f x 的单调递增区间;(2)设ABC 的内角,,A B C 所对的边分别为,,a b c ,若()12f A =,且a =22b c +的取值范围.例13.(2022·江苏南京·模拟预测)请在①向量,sin c a x B b c -⎛⎫=⎪+⎝⎭,,sin b c y A c a -⎛⎫= ⎪+⎝⎭,且x y ;②π2sin 3c A ⎛⎫=+ ⎪⎝⎭这两个条件中任选一个填入横线上并解答.在锐角三角形ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,. (1)求角C ;(2)若ABC 的面积为2a b +的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分.例14.(2022·全国·模拟预测)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()sin sin 2sin sin sin a A c C B b C B =-++.(1)求角A ;(2)若ABC 为锐角三角形,求)2b c a-的取值范围.例15.(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin Bc a C b c a b-=+-,②23cos cos cos 24A C A C --=tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔ (2)求2a c -的范围.例16.(2022·浙江·模拟预测)在△ABC 中,角A B C ,,所对的边分别是a b c ,,,若2sin (2)tan c B a c C =+,sin sin b A C B =,则ac 的最小值为________.例17.(2022·安徽黄山·二模(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.例18.(2022·浙江·高三专题练习)已知ABC 的三边长分别为a ,b ,c ,角B 是钝角,则2()a c ab -的取值范围是________.例19.(2022·黑龙江·哈尔滨三中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若3sin c b A =,则2()a b ab+的取值范围是( )A .[3,5]B .[4,6]C .[4,2D .[4,2题型四:转化为角范围问题例20.(2022·河北秦皇岛·二模)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin a b A B c b C +-=-.(1)求A ;(2)求cos cos B C -的取值范围.例21.(2022·广东茂名·模拟预测)已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且()cos cos a b c B A -=-.(1)判断ABC 的形状并给出证明; (2)若a b ,求sin sin sin A B C ++的取值范围.例22.(2022·浙江温州·三模)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知1,a b ==. (1)若π4B ∠=,求角A 的大小; (2)求πcos cos 6A A ⎛⎫+ ⎪⎝⎭的取值范围.例23.(2021·河北·沧县中学高三阶段练习)已知函数()223sin 4sin cos cos f x x x x x =+-.(1)求函数()f x 的最大值;(2)已知在锐角△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且满足224B c af a π++⎛⎫=⎪⎝⎭,求sin sin sin A B C ⋅⋅的取值范围.例24.(2022·山西·模拟预测(理))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2(cos )c a b C =-. (1)求B ;(2)若ABC 为锐角三角形,求22sin sin A C +的取值范围.例25.(2022·安徽省舒城中学模拟预测(理))锐角ABC 的内角,,A B C 所对的边是,,a b c ,且1,cos cos 1a b A B =-=,若,A B 变化时,2sin 2sin B A λ-存在最大值,则正数λ的取值范围是______例26.(2022·江西·南昌十中模拟预测(理))锐角ABC 中,π3A =,角A 的角平分线交BC 于点M ,2AM = ,,则BM CM ⋅ 的取值范围为_________.例27.(2022·辽宁·高一期中)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知tan a b A =,且B 为钝角,则B A -=______,sin sin A C +的取值范围是______.例28.(2021·云南师大附中高三阶段练习(理))如图所示,有一块三角形的空地,已知7,12ABC BC π∠==千米,AB =4千米,则∠ACB =________;现要在空地中修建一个三角形的绿化区域,其三个顶点为B ,D ,E ,其中D ,E 为AC 边上的点,若使6DBE π∠=,则BD +BE 最小值为________平方千米.例29.(2021·浙江·舟山中学高三阶段练习)如图,在ABC 中,90ABC ∠=︒,2AC CB ==P 是ABC 内一动点,120BPC ∠=︒,则ABC 的外接圆半径r =______,AP 的最小值为____________.例30.(2022·湖北·武汉二中模拟预测)在锐角ABC 中,22a b bc -=,则角B 的范围是________,556sin tan tan A B A-+的取值范围为__________.例31.(2022·新疆喀什·一模)已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若2A B =,且A 为锐角,则1cos c b A+的最小值为( )A.1 B .3 C .2 D .4例32.(2021·北京·高三专题练习)在锐角ABC 中2A B =,B ,C 的对边长分别是b ,c ,则bb c+的取值范围是( ) A .11,43⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .23,34⎛⎫ ⎪⎝⎭例33.(2022•石家庄模拟)如图,平面四边形ABCD 的对角线的交点位于四边形的内部,1AB =,2BC =,AC CD =,AC CD ⊥,当ABC ∠变化时,对角线BD 的最大值为 .题型五: 倍角问题例34.(2021·安徽·芜湖一中高一期中)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2C B =,则c b的取值范围为______.例35.(2021·全国·高三专题练习(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2A B =,则82c bb a+的取值范围为______.例36.(2020·全国·高二单元测试)已知ABC ∆是锐角三角形,,,a b c 分别是,,A B C 的对边.若2A B =,则ab ba+的取值范围是_________.例37.(2020·陕西·无高一阶段练习)已知ABC ∆是锐角三角形,若2A B =,则ab的取值范围是_____.例38.(2019·四川·成都外国语学校高二开学考试(文))已知ABC ∆的内角、、A B C 的对边分别为a b c 、、,若2A B =,则22c b b a ⎛⎫+ ⎪⎝⎭的取值范围为______例39.(2021·江西鹰潭·一模(理))已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2A B =,则22ac b ab+的取值范围为__________.例40.(2022•芜湖模拟)已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2A B =,则2()b ac b+最小值是 .例41.(2022•道里区校级一模)已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2A B =,则82c bb a+的取值范围为 .题型六: 角平分线问题例42.(2022·河北保定·高一阶段练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求A 的大小;(2)若BC A 的角平分线交BC 于点D ,求AD 的最小值.例43.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .且满足(a +2b )cos C +c cos A =0. (1)求角C 的大小;(2)设AB 边上的角平分线CD 长为2,求△ABC 的面积的最小值.题型七: 中线问题例44.(2022·江苏省天一中学高一期中)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足22222sin 2sin sin 2sin sin cos cos2A B C B C C C ---=-.(1)求角A ;(2)若AD 是ABC 的中线,且2AD =,求b c +的最大值.例45.(2022·山西运城·高一阶段练习)已知ABC 的内角,,A B C 所对的边分别为,,cos sin a b c B a B =+.(1)若8,a ABC =的面积为D 为边BC 的中点,求中线AD 的长度; (2)若E 为边BC 上一点,且1,:2:AE BE EC c b ==,求2b c +的最小值.例46.(2022·湖南·长郡中学模拟预测)锐角ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且tan tan .cos aB C c B=+ (1)求角C 的大小;(2)若边2c =,边AB 的中点为D ,求中线CD 长的取值范围.例47.(2022·山东滨州·二模)锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2sin cos C a A B =.(1)求A ;(2)若2b =,D 为AB 的中点,求CD 的取值范围.例48.(2022·安徽·合肥一中模拟预测(文))在①3(cos )sin b c A C-,②1tan (1)2tan a Cb B =+,③πsin cos()6c B b C =-这三个条件中任选一个,补充在下面的问题中,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________. (1)求C ;(2)若ABC 的面积为D 为AC 的中点,求BD 的最小值.例49.(2022·山东师范大学附中模拟预测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________. (1)求角B ;(2)若a c +=D 是AC 的中点,求线段BD 的取值范围.例50.(多选题)(2022·甘肃定西·高一阶段练习)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2a =,BC 边上的中线2AD =,则下列说法正确的有:( ) A .3AB AC ⋅= B .2210b c +=C .3cos 15A ≤<D .∠BAD 的最大值为60°题型八: 四心问题例51.(2022·山东泰安·模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,点O 是ABC 的外心,cos 3||||AO AB AO AC a C AB AC π⋅⋅⎛⎫-=+ ⎪⎝⎭.(1)求角A ;(2)若ABC 外接圆的周长为,求ABC 周长的取值范围,例52.(2021·河南南阳·高三期末(理))在 ABC sin sin cos sin B CC C A++=.(1)求A ;(2)若 ABC 的内切圆半径2r =,求+AB AC 的最小值.例53.(2022·江西·高三阶段练习(理))已知O 是三角形ABC 的外心,若2||||2()||||AC AB AB AO AC AO m AO AB AC ⋅+⋅=,且2sin sin B C +=m 的最大值为( ) A .34B .35C .23D .12例54.(2022·全国·高三专题练习)已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=,则实数m 的最大值为( ) A .3 B .35C .75D .32例55.(2022·全国·高三专题练习)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a (B 4π+),c =5且O 为△ABC 的外心,G 为△ABC 的重心,则OG 的最小值为( )A 1BC 1D例56.(2022·全国·高三专题练习)已知ABC 的周长为9,若cos 2sin 22A B C-=,则ABC 的内切圆半径的最大值为( )A .12 B .1 C .2 D例57.(2022·全国·高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .⎛ ⎝⎭B .45⎡⎢⎣⎭C .⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例58.(2022·广东深圳·高三阶段练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36题型九: 坐标法例59.(2022·全国·模拟预测(文))在Rt ABC △中,2BAC π∠=,2AB AC ==,点M 在ABC 内部,3cos 5AMC ∠=-,则22MB MA -的最小值为______.例60.(2022•南通一模)在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(1,1)A ,且AB AC ⊥,则线段BC 的长的取值范围为 .例61.M 为等边ABC ∆内一动点,且120CMB ∠=︒,则AMMC的最小值为 .例62.(2022•江苏模拟)已知ABC ∆是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足2133AQ AP AC =+,则||BQ 的最小值是 .例63.(2022秋•新华区校级期末)“费马点”是指位于三角形内且到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,“费马点”与三个顶点的连线正好三等分“费马点”所在的周角,即该点所对的三角形三边的张角相等均为120︒,根据以上性质,函数222222()(1)(1)(2)f x x y x y x y=-++++++-的最小值为()A.2B.3C.23-D.23+例64.(2022•唐山二模)在等边ABC∆中,M为ABC∆内一动点,120BMC∠=︒,则MAMC的最小值是()A.1B.34C.32D.33例65.(2022春•仁寿县校级期末)锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若2225a b c +=,则cos C 的取值范围是( ) A .1(2,6)3B .1(2,1)C .4[5,6)3D .4[5,1)例66.(2022春•博望区校级月考)在等腰ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,其中B 为钝角,3sin cos2b a A b A -=.点D 与点B 在直线AC 的两侧,且33CD AD ==,则BCD ∆的面积的最大值为( ) A .334B .43C .534D .3例67.(2022•淮安模拟)拿破仑定理是法国著名的军事家拿破仑⋅波拿马最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三个角形的顶点”.在ABC ∆中,120A ∠=︒,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3O ,若△123O O O 的面积为3,则ABC ∆的周长的取值范围为 .题型十: 隐圆问题例68.(2022•盐城二模)若点G 为ABC ∆的重心,且AG BG ⊥,则sin C 的最大值为 .例69.(2022•江苏三模)在平面四边形ABCD 中,90BAD ∠=︒,2AB =,1AD =,若43AB AC BA BC CA CB ⋅+⋅=⋅,则12CB CD +的最小值为 .例70.(2022•涪城区校级开学)若ABC ∆满足条件4AB =,2AC BC =,则ABC ∆面积的最大值为 .例71.已知A ,B 是圆22:10O x y +=上的动点,42AB =,P 是圆22(6)(8)1C x y -+-=上的动点,则|3|PA PB +的取值范围是 .例72.(2022•合肥模拟)锐角ABC ∆中,a ,b ,c 为角A ,B ,C 所对的边,点G 为ABC ∆的重心,若AG BG ⊥,则cos C 的取值范围为( ) A .3[2,5]3B .4[5,6)3C .6[5,)+∞D .5[6,5]3例73.(2022•江汉区校级模拟)ABC ∆中3AB AC ==,ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积最大值为( )A .2233B .52316C .354D .33516例74.(2022•上城区校级模拟)设a ,b 为单位向量,向量c 满足|2|||c a a b +=,则||c b -的最大值为() A .2 B .1 C .3 D .2例75.(2022春•瑶海区月考)在平面四边形ABCD 中,连接对角线BD ,已知9CD =,16BD =,90BDC ∠=︒,4sin 5A =,则对角线AC 的最大值为( ) A .27 B .16 C .10 D .25例76.已知圆22:5O x y +=,A ,B 为圆O 上的两个动点,且||2AB =,M 为弦AB 的中点,(22C ,)a ,(22D ,2)a +.当A ,B 在圆O 上运动时,始终有CMD ∠为锐角,则实数a 的取值范围为( ) A .(,2)-∞- B .(-∞,2)(0-⋃,)+∞ C .(2,)-+∞ D .(-∞,0)(2⋃,)+∞题型十一:两边夹问题例77.(2022•合肥一模)设ABC ∆的内角A ,B ,C 的对边长a ,b ,c 成等比数列,1cos()cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为 .例78.(2022•静安区二模)设ABC ∆的内角A ,B ,C 的对边为a ,b ,c .已知a ,b ,c 依次成等比数列,且1cos()cos 2A CB --=,延长边BC 到D ,若4BD =,则ACD ∆面积的最大值为 .例79.(2022•常德一模)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2c ab =,且3cos()cos 2A B C -+=. (Ⅰ)求角C ;(Ⅰ)延长BC 至D ,使得4BD =,求ACD ∆面积的最大值.例80.在ABC ∆中,若cos cos 2sin sin A B B A +=,且ABC ∆的周长为12. (1)求证:ABC ∆为直角三角形;(2)求ABC ∆面积的最大值.题型十二:与正切有关的最值问题例81.(2022·湖南·长郡中学模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin 2B C b a B +=.求: (1)A ;(2)a c b-的取值范围.例82.(2022·全国·模拟预测)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若220c bc a +-=,则()2114sin cos tan tan C C C A ++-的取值范围为( )A .()B .()8,9C .4,9⎫⎪⎪⎝⎭D .()4,9 例83.(2022·山西吕梁·二模(文))锐角ABC 是单位圆的内接三角形,角A ,B ,C 的对边分别为a ,b ,c ,且22224cos 2cos +-=-a b c a A ac B ,则ac b 的取值范围是( )A .B .C .⎝D .⎝例84.(2022·全国·高三专题练习)在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________.例85.(2022·全国·高三专题练习)在锐角ABC 中,角、、A B C 所对的边分别为,,a b c ,若22a c bc -=,则113sin tan tan A C A-+的取值范围为( )A .)+∞B .C .D . 例86.(2022·全国·高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则bc 的取值范围为( ) A .1,22⎛⎫ ⎪⎝⎭B .23,32⎛⎫ ⎪⎝⎭C .34,43⎛⎫ ⎪⎝⎭D .35,53⎛⎫ ⎪⎝⎭题型十三:最大角问题例87.(2022春•海淀区校级期中)几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大”.如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点(1,2)M -,(1,4)N ,点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是( )A.7-B.1或7-C.2或7-D.1例88.(2022秋•青羊区校级期中)(理科)E、F是椭圆22142x y+=的左、右焦点,l是椭圆的一条准线,点P在l上,EPF∠的最大值是()A.60︒B.30︒C.90︒D.45︒例89.(2022春•辽宁期末)设ABC∆的内角A,B,C所对的边长分别为a,b,c,且3 cos cos5a Bb A c-=,则tan()A B-的最大值为()A.35B.13C.38D.34例90.(2022•滨州二模)最大视角问题是1471年德国数学家米勒提出的几何极值问题,故最大视角问题一般称为“米勒问题”.如图,树顶A离地面a米,树上另一点B离地面b米,在离地面()c c b<米的C处看此树,离此树的水平距离为米时看A,B的视角最大.例91.如图,足球门框的长AB 为2(1 3.66)dw dw m =,设足球为一点P ,足球与A ,B 连线所成的角为(090)αα︒<<︒.(1)若队员射门训练时,射门角度30α=︒,求足球所在弧线的方程;(2)已知点D 到直线AB 的距离为3dw ,到直线AB 的垂直平分线的距离为2dw ,若教练员要求队员,当足球运至距离点D 为2dw 处的一点时射门,问射门角度α最大可为多少?题型十四:费马点、布洛卡点、拿破仑三角形问题 例92.(2022秋•安徽月考)17世纪法国数学家费马曾提出这样一个问题:怎样在一个三角形中求一点,使它到每个顶点的距离之和最小?现已证明:在ABC ∆中,若三个内角均小于120︒,当点P 满足120APB APC BPC ∠=∠=∠=︒时,则点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上性质,已知a 为平面内任意一个向量,b 和c 是平面内两个互相垂直的单位向量,则||||||a b a b a c -+++-的最小值是( )A .23-B .23+C .31-D .31+例93.(2022•深圳模拟)著名的费马问题是法国数学家皮埃尔⋅德费马(16011665)-于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC ∆的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC ∆的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为 .例94.(2022秋•全国月考)费马点是指到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,费马点在三角形内,且费马点与三个顶点连线正好三等分费马点所在的周角,即该点对三角形三边的张角相等,均为120︒.已知ABC ∆的三个内角均小于120︒,P 为ABC ∆的费马点,且3PA PB PC ++=,则ABC ∆面积的最大值为 .例95.(2022春•湖北期末)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内接于半径为6的圆,以BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若30ACB ∠=︒,则△A B C '''的面积最大值为 .例96.(2022春•润州区校级期中)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内接于单位圆,以BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若90ACB ∠=︒,则△A B C '''的面积最大值为 .题型十五:托勒密定理及旋转相似例97.(2022春•五华区月考)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形.已知点B ,C 在以线段AC 为直径的圆上,D 为弧BC 的中点,点E 在线段AC 上且AE AB =,点F 为EC 的中点.设2AC r =,DAC α∠=,那么下列结论:①2cos DC r α=,②2cos2AB r α=,③(1cos2)FC r α=-,④2(2)DC r r AB =-其中正确的是( )A.②③B.②④C.①③④D.②③④例98.(2022春•扬州期中)托勒密是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.其意思为:圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积.从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.已知四边形ABCD的四个顶点在同一个圆的圆周上,AC、BD是其两条对角线,42BD=,且ACD∆为正三角形,则四边形ABCD的面积为()A.8B.16C.83D.163例99.(2021秋•宝山区校级月考)凸四边形就是没有角度数大于180︒的四边形,把四边形任何一边向两方延长,其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形,如图,在凸四边形ABCD中,AB=,31BC=,AC CD∠变化时,对角线BD的最大值为()⊥,AC CD=,当ABCA .3B .4C .61+D .723+例100.(2022•冀州市校级模拟)在ABC ∆中,2BC =,1AC =,以AB 为边作等腰直角三角形(ABD B 为直角顶点,C 、D 两点在直线AB 的两侧).当C ∠变化时,线段CD 长的最大值为( )A .1B .2C .3D .4例101.(2022•日照一模)如图所示,在平面四边形ABCD 中,1AB =,2BC =,ACD ∆为正三角形,则BCD∆面积的最大值为( )A.232+B.312+C.322+D.31+题型十六:三角形中的平方问题例102.(2021秋•河南期末)在ABC∆中,角A,B,C所对的边分别为a,b,c,23Bπ=,23b=,2223b c a bc+-=.若BAC∠的平分线与BC交于点E,则(AE=) A.6B.7C.22D.3例103.(2022•洛阳二模)已知ABC ∆的三边分别为a ,b ,c ,若满足22228a b c ++=,则ABC ∆面积的最大值为( )A .55B .255C .355D .53例104.(2022春•张家界期末)秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”如果把以上这段文字写成公式就是2222221[()]42a b c S a b +-=-,其中a ,b ,c 是ABC ∆的内角A ,B ,C 的对边,若sin 2sin cos B A C =且2b ,2,2c 成等差数列,则ABC ∆面积S 的最大值为( )A .55 B .235 C .1 D .255例105.(2022•晋城一模)在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S ,若222sin()S A C b c +=-,则1tan 2tan()C B C +-的最小值为( ) A .2B .2C .1D .22例106.(2022•秦淮区模拟)在锐角三角形ABC 中,已知2224sin sin 4sin A B C +=,则111tan tan tan A B C ++的最小值为 .例107.(2022•浙江三模)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若已知224sin()6b c bc A π+=+,则tan tan tan A B C ++的最小值是 .例108.(2022春•鼓楼区校级期中)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若2233cos 0a b ab C -+=,则cos cos ()A B c a b +的最小值为 .例109.(2022·全国·高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则22224121741213b bc c b bc c -+-+的取值范围为( ). A .973,537⎡⎫⎪⎢⎣⎭ B .2819,1815⎛⎤ ⎥⎝⎦ C .732,37⎡⎫⎪⎢⎣⎭ D .281,2181⎛⎤ ⎥⎝⎦例110.(2022·安徽·南陵中学模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足222533a b c +=,则sin A 的取值范围是___________.题型十七:等面积法、张角定理例111.(2022秋•厦门校级期中)给定平面上四点A ,B ,C ,D ,满足2AB =,4AC =,6AD =,4AB AC =,则DBC ∆面积的最大值为 .例112.(2022春•奎屯市校级期末)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为( )A .8B .9C .10D .7例113.(2022•云南一模)在ABC ∆中,内角A ,B ,C 对的边分别为a ,b ,c ,23ABC π∠=,BD 平分ABC ∠交AC 于点D ,2BD =,则ABC ∆的面积的最小值为( ) A .33B .43C .53D .63例114.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则23a c +的最小值为( )A .25B .526+C .5D .342+。