物理动能定理
必修2 动能定理

平抛运动
第二步:抓好关键点,找出突破口
小物块能通过“8”字轨道最高点 D 点的临界速度为 vD=0,A 到 D,由动能定理求初速度的最小值;A
至 J 由动能定理求出小物块通过 J 点的速度,再由平抛运动的规律求落地点到 J 点正下方的水平距离; 分析两种情况:①小物块恰过“0”字最高点 G,由重力提供向心力。小物块 A 至 G 由动能定理列式, 求出“0”字轨道半径 R′。 ②小物块恰到达“0”字轨道半径高度时速度为零,运用动能定理求出“0”字轨道半径 R′,再得到“0”字 轨道半径 R′的范围。
A.W1>W2,F=2Ff C.P1<P2,F>2Ff
B.W1=W2,F>2Ff D.P1=P2,F=2Ff
2.如图 9 甲所示,一质量为 4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力 F 作用下开始运动,推力 F 随位移 x 变化的关系如图乙所示,已知物体与地面间的动摩擦因数μ=0.5, (取 g=10 m/s2),则下列说法正确的是( )
应用动能定理解题的基本思路
1.如图 5 所示,质量为 m 的小球,从离地面 H 高处从静止开始释放,落到地面后继续陷入泥中 h 深 度而停止,设小球受到空气阻力为 f,重力加速度为 g,则下列说法正确的是( ) A.小球落地时动能等于 mgH B.小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能 C.整个过程中小球克服阻力做的功等于 mg(H+h) D.小球在泥土中受到的平均阻力为 mg(1+H)
科学思维——动能定理的综合应用 物理计算题历来是高考拉分题,试题综合性强,涉及物理过程较多,所给物理情境较复杂,物理模型 较模糊甚至很隐蔽,运用的物理规律也较多,对考生的各项能力要求很高,为了在物理计算题上得到 理想的分值,应做到细心审题、用心析题、规范答题。 【例】 (2018·3 月浙江温州选考适应性考试)如图 11 所示,某玩具厂设计出一个“2018”字型的竖直 模型玩具,固定在足够长的水平地面上,四个数字等高,“2”字和“8”字用内壁光滑的薄壁细圆管弯成, 过“2”字出口 H 点的竖直虚线与“2”字上半圆相切,“0”字是半径为 R 的单层光滑圆轨道,“1”字是高度 为 2R 的具有左右两条通道的光滑竖直细管道,所有轨道转角及连接处均平滑,H、F、B、C 间的距 离分别为 3R、3R、2R。一小物块(可视为质点)分别从“1”字轨道 A 端的左、右两侧通道进入模型开始 运动,小物块与 FB、BC 段轨道的动摩擦因数μ1=0.4,与 HF 段轨道的动摩擦因数μ2=0.15,已知 R =1 m。
动能定理原理

动能定理原理
动能定理是物理学中的一个重要定理,它描述了物体的动能与其速度的关系。
根据动能定理,一个物体的动能等于其质量与速度平方的乘积的一半。
动能定理可以表示为以下公式:
动能 = 1/2 ×质量 ×速度²
其中,动能用K表示,质量用m表示,速度用v表示。
根据动能定理,当一个物体的速度增加时,它的动能也会增加。
同样地,当一个物体的质量增加时,它的动能也会增加。
这说明物体的动能与其速度和质量直接相关。
动能定理的应用广泛。
在机械工程中,我们可以根据物体的动能来计算其所需的能量或者进行能量转化的分析。
在运动学中,我们可以利用动能定理来计算物体的速度或者质量。
在碰撞分析中,动能定理也起到了重要的作用。
需要注意的是,动能定理只适用于质点的分析,即只考虑物体的整体运动而忽略其形状和内部结构的影响。
在实际应用中,我们需要结合具体情况来确定使用动能定理的合理性与准确性。
总之,动能定理是一个重要的物理定律,在物体的运动分析和能量转化的研究中具有广泛的应用价值。
它为我们理解物体运动和能量转化的过程提供了重要的理论基础。
高中物理中的动能定理解析

高中物理中的动能定理解析动能定理是物理学中的一个重要定律,它描述了物体的动能与力学工作的关系。
在高中物理学中,学生们通常会学习到这个定理,并通过实验和计算来验证它。
本文将对动能定理进行解析,探讨它的含义、应用以及相关的概念。
一、动能定理的含义动能定理是指物体的动能与作用在物体上的力之间的关系。
简单来说,它表明了物体的动能的增加量等于作用在物体上的力所做的功。
具体而言,动能定理可以用以下公式表示:动能的增加量 = 力所做的功其中,动能的增加量可以用物体的动能的变化量来表示,即动能的最终值减去动能的初始值。
力所做的功可以通过力的大小、物体的位移和力与位移之间的夹角来计算。
二、动能定理的应用动能定理在物理学中有着广泛的应用。
首先,它可以用来解释和计算物体的加速度。
根据牛顿第二定律,物体的加速度与作用在物体上的力成正比,而根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的加速度。
其次,动能定理还可以用来解释和计算物体的速度。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与速度的增加量成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的速度。
此外,动能定理还可以用来解释和计算物体的位移。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与位移的平方成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的位移。
三、相关概念的解析在理解和应用动能定理时,还需要了解一些相关的概念。
首先是动能,它是物体由于运动而具有的能量。
动能可以用以下公式表示:动能 = 1/2 ×质量 ×速度的平方其中,质量是物体的质量,速度是物体的速度。
动能与物体的质量和速度的平方成正比,当物体的质量或速度增加时,动能也会增加。
高考物理课程复习:动能定理及其应用

【对点演练】
4.(2021湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。
总质量为m的动车组在平直的轨道上行驶。该动车组有四节动力车厢,每节
车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k
为常量),动车组能达到的最大速度为vm。下列说法正确的是(
答案 C
解析 本题考查机车启动问题,考查分析综合能力。动车组匀加速启动过程
中,根据牛顿第二定律,有F-kv=ma,因为加速度a不变,速度v改变,所以牵引
力F改变,选项A错误。由四节动力车厢输出功率均为额定值,可得
4
4P=Fv,F-kv=ma',联立解得 a'=
− ,因为 v 改变,所以 a'改变,选项 B 错误。
量损失,sin 37°=0.6,cos 37°=0.8,重力加速度大小为g)。则(
6
A.动摩擦因数 μ=7
2ℎ
B.载人滑沙板最大速度为 7
C.载人滑沙板克服摩擦力做功为 mgh
3
D.载人滑沙板在下段滑道上的加速度大小为5g
)
答案 AB
解析 对整个过程,由动能定理得 2mgh-μmgcos
ℎ
45°·
载人滑沙板在下段滑道上的加速度大小为
错误。
cos37 °- sin37 °
3
a=
= 35 g,故
D
考点三
应用动能定理求解多过程问题[名师破题]
应用动能定理求解多过程问题的解题步骤
(1)首先需要建立运动模型,选择合适的研究过程能使问题得以简化。当物体
的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部
物理知识:动能定理

以下是整理的《物理知识:动能定理》,希望⼤家喜欢!
⼀、动能
如果⼀个物体能对外做功,我们就说这个物体具有能量.物体由于运动⽽具有的能. Ek=½mv2,
其⼤⼩与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
⼆、动能定理
做功可以改变物体的能量.所有外⼒对物体做的总功等于物体动能的增量. W1+W2+W3+……=½mvt2-½mv02
1.反映了物体动能的变化与引起变化的原因——⼒对物体所做功之间的因果关系.可以理解为外⼒对物体做功等于物体动能增加,物体克服外⼒做功等于物体动能的减⼩.所以正功是加号,负功是减号。
2.“增量”是末动能减初动能.ΔEK>0表⽰动能增加,ΔEK<0表⽰动能减⼩.
3、动能定理适⽤单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲⽬的应⽤动能定理.由于此时内⼒的功也可引起物体动能向其他形式能(⽐如内能)的转化.在动能定理中.总功指各外⼒对物体做功的代数和.这⾥我们所说的外⼒包括重⼒、弹⼒、摩擦⼒、电场⼒等.
4.各⼒位移相同时,可求合外⼒做的功,各⼒位移不同时,分别求⼒做功,然后求代数和.
5.⼒的独⽴作⽤原理使我们有了⽜顿第⼆定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利⽤⽮量法则分解.故动能定理⽆分量式.在处理⼀些问题时,可在某⼀⽅向应⽤动能定理.
6.动能定理的表达式是在物体受恒⼒作⽤且做直线运动的情况下得出的.但它也适⽤于变为及物体作曲线运动的情况.即动能定理对恒⼒、变⼒做功都适⽤;直线运动与曲线运动也均适⽤.
7.对动能定理中的位移与速度必须相对同⼀参照物.。
第2讲动能定理及其应用

第2讲动能定理及其应用思维诊断(1)动能是机械能的一种表现形式,凡是运动的物体都具有动能.()(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(3)动能不变的物体所受合外力一定为零.()(4)做自由落体运动的物体,动能与下落距离的平方成正比.()(5)物体做变速运动时动能一定变化.()考点突破2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少;合外力对物体不做功,物体的动能不变.4.高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.5.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.mv2变式训练1如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A.不变B.变小C.变大D.变大变小均可能=Mv+.显然考点二动能定理的应用1.应用动能定理解题的步骤:2.注意事项:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简便.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理没有任何依据.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.[例2]如图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W f;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.2m1-④点时绳的拉力大小为F,绳与水平方向夹角为+1--2m1-+1--f m考点三用动能定理处理多过程问题优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.[例3]如图是翻滚过山车的模型,光滑的竖直圆轨道半径R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数为μ=0.5,加速阶段AB的长度l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,取g=10 m/s2.试问:(1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车能沿着出口平直轨道CD滑行多远的距离?(3)要使小车不脱离轨道,求平直轨道BC段的长度范围.[解析](1)设小车恰好通过最高点的速度为mg=mv20R①变式训练3如图所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8 m,质量为m=2 kg的小物块M从斜面顶端A处由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g=10 m/s2,下滑时逆着毛的生长方向.求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零).(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程.示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.A.2 m/sB.8 m/s类题拓展质量均为m的两物块A、B以一定的初速度在水平面上只受摩擦力而滑动,如图所示是它们滑动的最大位移x与初速度的平方v20的关系图象,已知v202=2v201,下列描述中正确的是()A.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是对B做功的2倍B.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是v2H H⎛⎫11质点在轨道最低点时受重力和支持力,根据牛顿第三定律可知,支持力2R,得v=gR.对质点的下滑过程应用动能定理,,C正确..甲车的刹车距离随刹车前的车速v变化快,甲车的刹车性能好乙车与地面间的动摩擦因数较大,乙车的刹车性能好.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好。
高三物理动能定理

程中克服摩擦力做的功.
解:(1)由B到C平抛运动的时间为t 竖直方向:hBc=s sin37o=1/2gt2 (1) 水平方向:s cos370=vBt 代入数据,解(1)(2)得 (2) A到B过程,由动能定理有 ( 2) vB=20m/s (3)
1 2 mghAB W f mvB 2
代入数据,解(3)(4)得 Wf =-3000J
2 1 1 2 WF mgS mv83 0.1 4 10 167 4 2 2 676J 2 2
028.上海普陀区08年1月期末调研试卷23
23、如图所示,一个质量为m的圆环套在一根固
定的水平直杆上,环与杆间的动摩擦因数为 µ 。
现给环一个向右的初速度v0,如果环在运动过程
F1 mg ma1 F2 mg ma2
12 0 -4
F/N
2 4 6 8 10 12 14 16 t/s
加速度为a2=-2m/s2
画出v-t 图像如图示, 在一个4秒时间内的位移为8m, 84s内的位移等于21×8=168m 由图像和比例关系知:在3s末物体的速度大小为2m/s, 在3—4秒时间内的位移为1m, 83s末物体的速度大小为v83=2m/s , 83内物体的位移大小为S=167m, v/ ms-1 4 t/s 0 2 4 6 8 10 12 80 82 84 1 2 WF mgS mv83 由动能定理 力F对物体所做的功为
6、 应用动能定理解题的注意事项: ①要明确物体在全过程初、末两个状态时的动能;
②要正确分析全过程中各段受力情况和相应位移, 并正确求出各力的功;
③动能定理表达式是标量式,不能在某方向用速度 分量来列动能定理方程式:
④动能定理中的位移及速度,一般都是相对地球而 言的.
高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
高中物理必修二 专题四 动能定理 功能关系

动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
高中物理动能定理机械能守恒定律公式

高中物理动能定理机械能守恒定律公式高中物理动能定理机械能守恒定律公式1、功的计算:力和位移同(反)方向:W=Fl, 功的单位:焦尔(J)2、功率:3、重力的功:重力做功:为重力和竖直方向位移乘积W=mglcos&alpha;=mgh重力势能:为重力和高度的乘积。
Ep=mgh位置高低与重力势能的变化: W=mglcos&theta;=mgh=mg(h2—h1)4、动能定理:物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。
注意: a、假如物体受多个力的作用,则W为合力做功。
b、适用于变力做功、曲线运动等,广泛应用于实际问题。
=EK2-EK15、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能能够相互转化,而总的机械能保持不变。
EP1+EK1=EK2+EP26、能量守恒定律:能量既可不能消灭,也可不能创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变、高中物理动能定理知识点做功能够改变物体的能量、所有外力对物体做的总功等于物体动能的增量。
W1+W2+W3+……=&frac12;mvt2—&frac12;mv021、反映了物体动能的变化与引起变化的原因—-力对物体所做功之间的因果关系、能够理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小、因此正功是加号,负功是减号。
2。
“增量”是末动能减初动能。
&Delta;EK&gt;0表示动能增加,&Delta;EK&lt;0表示动能减小。
3、动能定理适用单个物体,关于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理、由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化、在动能定理中、总功指各外力对物体做功的代数和、这个地方我们所说的外力包括重力、弹力、摩擦力、电场力等、4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。
物理动能定理

物理动能定理
物理动能定理是经典力学中的一个基本定理,它描述了物体的动能与物体所受的外力之间的关系。
该定理表明,物体的动能等于物体所受的外力所做的功。
具体来说,设一个物体的质量为m,速度为v,它所受的外力为F,物体在时间t内所移动的距离为s,则物体的动能E_k可以表示为:
E_k = 1/2mv^2
而物体所受的外力F所做的功W可以表示为:
W = Fs
根据功的定义,功等于力与物体位移的乘积。
因此,物体的动能定理可以表示为:
E_k = W = Fs
这个定理表明,物体的动能与物体所受的外力之间存在着直接的关系。
当物体所受的外力增加时,物体的动能也会增加;当物体所受的外力减小时,物体的动能也会减小。
这个定理在许多物理问题中都有着广泛的应用,例如在机械能守恒定律、动量定理等方面都有着重要的作用。
需要注意的是,物理动能定理只适用于质点的运动,而对于复杂的物体运动,需要考虑物体的旋转、形变等因素。
此外,在实际应用中,还需要考虑物体所受的摩擦力、空气阻力等因素对物体动能的影响。
2025《高中物理总复习》6.2动能定理及其应用

第2讲动能定理及其应用课程标准素养目标1.理解动能和动能定理.2.能用动能定理解释生产生活中的现象.物理观念:了解动能的概念和动能定理的内容.科学思维:会用动能定理分析曲线运动、多过程运动问题.返回导航考点一动能、动能定理的理解【必备知识•自主落实】1.动能动能是标量(1)定义:物体由于运动而具有的能.(2)公式:E k=^mv2v是瞬时速度(3)单位:焦耳,1J=1N m=l kg m2/s2.(气)动能]的变化:物体末动能与初动能之差,即AEk=答案返回导航2.动能定理“力”指的是物体受到的合力(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.合力所做的总功1719(2)表达式:W=(3)物理意义:合外力的功是物体动能变化的量度.答案返回导航【关键能力.思维进阶]1.甲、乙两物体的质量分别用m甲、m乙表示,甲、乙两物体的速度大小分别用v甲、v乙表示,则下列说法正确的是()A.如果m乙=2m甲,v甲=2v乙,则甲、乙两物体的动能相等B.如果m甲=2m乙,v乙=2v甲,则甲、乙两物体的动能相等C.如果m乙=2m甲,v乙=2v甲,则甲、乙两物体的动能相等D.如果111甲=111乙,v¥=v^,两物体的速度方向相反,此时两物体的动能相等答案:D解析:由动能的表达式氏=fl"”?可知,A、B、C错误;动能是标量,只与物体的质量和速度的大小有关,与速度方向无关,D正确.解析■答案返回导航2.(多选)如图所示,电梯质量为M,在它的水平底板上放置一质量为m 的物体.电梯在钢索的拉力作用下做竖直向上的加速运动,当电梯的速度由V|增大到V2时,上升高度为H.则在这个过程中,下列说法正确的是(重力加速度为g)()A.对物体,动能定理的表达式为W=:mv专-:mv,,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W—mgH=:mv芸一?mv,,其中W为支持力做的功|D.对电梯,其所受合力做功为!Mv专一I—―I答案:CD解析■答案胃返回导航思维提升有能与动能变化的区别(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.(2)动能没苔负值,而动能变化量有正负之分.JE,>0表示物体的动能增加,/E r VO表示物体的动能减少.返回导航2.对动能定理的理解做功的过程就是能量转化的过程,动能定理表达式中的意义是一种因果关系在数值上相等的符号.因果关系一合力做功是物体动能变化的原因数量关系一合力做的功与动能变化可以等量代换单位关系一国际单位都是焦耳返回导航返回导航考点二动能定理的基本应用【关键能力•思维进阶】应用动能定理的注意事项(1)方法的选择:动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)过程的选择:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段应用动能定理,也可以对全过程应用动能定理.如果对整个过程应用动能定理,往往能使问题简化.(3)规律的应用:动能定理表达式是一个标量式,不能在某个方向上应用动能定理.返回导航考向1应用动能定理求变力的功例1承德的转盘滑雪机为我国自主原创、世界首例的专利产品.一名运 动员的某次训练过程中,转盘滑雪机绕垂直于盘面的固定转轴以角速度3 = 0.5,以〃s 顺时针匀速转动,质量为60 kg 的运动员在盘面上离转轴10 m 半 径上滑行,滑行方向与转盘转动方向相反,在最低点的速度大小为10 m/s, 滑行半周到最高点的速度大小为8 m/s,该过程中,运动员所做的功为6 500 J,巳知盘面与水平面夹角为18° , g 取10 mis 1, sin 18° =0.31, cos 18° =0.95,则该过程中运动员克服阻力做的功为( )A. 4 240 J C. 3 860JB. 3740 JD. 2 300 J 答案:c解析■答案返回导航考向2应用动能定理求解直线运动问题例2如图所示,一斜面体ABC 固定在水平地面上,斜面AD 段粗糙、DC 段光 滑,在斜面底端C 点固定一轻弹簧,弹簧原长等于CD 段长度.一质量m = 0.1 蚀的小物块(可视为质点)从斜面顶端A 以初速度v 0=2力/s 沿斜面下滑,当弹簧 第一次被压缩至最短时,其长度恰好为原长的一半,物块沿斜面下滑后又沿 斜面向上返回,第一次恰能返回到最高点A.己知弹簧的原长L o = O.2 m,物块 与斜面AD 段间的动摩擦因数p=g 斜面倾角0=30° ,重力加速度g=10 tn/s 2,6弹簧始终处于弹性旭度范围内.下列说法中正确的是()A. A 、D 间的足巨鬲X n )=0.2 m%B. 物块第一次运动到D 点时的速度大小为匝m/sC. 弹簧第一次被压缩到最短时的弹性势能为0.3 Jn D. 物块在斜面AD 段能滑行的总路程为1.6 mCB 答案:D 解析■答案返回导航考向3应用动能定理求解曲线运动问题例3[2023-湖北卷]如图为某游戏装置原理示意图.水平桌面上固定一半圆形竖直挡板,其半径为2R、内表面光滑,挡板的两端A、B在桌面边缘,B与半径为R的固定光滑圆弧轨道COE在同一竖直平面内,过C点的轨道半径与竖直方向的夹角为60°.小物块以某一水平初速度由A点切入挡板内侧,从B点飞出桌面后,在C点沿圆弧切线方向进入轨道CDE内侧,并恰好能到达轨道的最高点D.小物块与桌面之间的动摩擦因数为重力加速度大小21T为g,忽略空气阻力,小物块可视为质点.求:a A(1)小物块到达D点的速度大小;(2)B和D两点的高度差;(寻f(3)小物块在A点的初速度大小.芯夕次答案返回导航思维提升求解多过程问题抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.返回导航考向4动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可使解题过程简化.返回导航例4(多选)[2024-山东模拟预测]如图,左侧光滑曲面轨道与右侧倾角a= 37°的斜面在底部平滑连接且均固定在水平地面上,质量为m的小滑块从斜面上离斜面底边高为H处由静止释放,滑到斜面底端然后滑上左侧曲面轨道,再从曲面轨道滑上斜面,滑块第一次沿斜面上滑的最大高度为&H,多次往复运动.不计空气阻力,重力加速度为g,sin37°=0.6.返回导航下列说法正确的是()A.滑块第一次下滑过程,克服摩擦力做的功为土mgHB.滑块第1次下滑的时间与第1次上滑的时间之比为:4C.滑块与斜面间的动摩擦因数为寿D.滑块从静止释放到第n次上滑到斜面最高点的过程中,系统产生的热量为(l—*)mgH答案:BCD解析■答案返回导航返回导航考点三动能定理与图像结合问题【关键能力•思维进阶】考向1E r x(W-x)图像问题例5(多选)一滑块从某固定粗糙斜面底端在沿斜面向上的恒力作用下由静止开始沿斜面向上运动,某时刻撤去恒力,上升过程中滑块的动能和重力势能随位移变化的图像如图所示,图中E和、So为已知量,滑块与斜面间的动摩擦因数为0.5,重力加速度为g,下列说法正确的是()A.恒力的大小为譬酮三B.斜面倾角的正饥值为0.75C.滑块下滑到斜面底端时的速度大小为玄笋D.滑块的质量可表示为竺剪\gs。
动能定理与机械能守恒

动能定理与机械能守恒动能定理和机械能守恒是物理学中两个重要的概念,它们描述了物体在不同情况下的能量转化和守恒规律。
本文将从理论和实际应用两个方面,探讨动能定理和机械能守恒的含义和重要性。
一、动能定理动能定理是描述物体动能变化的物理定律。
它表明,物体的动能变化等于物体所受的净作用力沿着物体运动方向所做的功。
动能定理的数学表达式如下:ΔK = W其中,ΔK表示物体动能的变化,W表示所受作用力所做的功。
动能定理说明了作用力对物体的动能变化有直接影响,作用力做的功越大,物体的动能变化越大。
动能定理的应用非常广泛。
例如,在汽车撞击中,撞击力会对汽车产生作用,根据动能定理可以计算出汽车的动能变化,从而评估汽车安全性能。
此外,在机械工程中,动能定理也被用于设计机械装置,优化能量利用效率。
二、机械能守恒机械能守恒是指在没有外力做功的情况下,一个封闭系统的机械能总是保持不变。
机械能包括物体的动能和势能两个部分。
动能是物体由于运动而具有的能量,势能是物体由于位置而具有的能量。
根据机械能守恒定律,一个系统的总机械能在运动过程中保持不变。
这意味着,当一个物体从一位置移动到另一位置时,动能的变化和势能的变化之间存在一个平衡。
如果物体失去一部分动能,则会相应地获得相同数量的势能。
机械能守恒在日常生活中也有许多应用。
例如,弹簧秤是通过利用机械能守恒原理测量物体质量的一种常用装置。
通过测量物体在秤的弹簧下的伸缩量,可以计算出物体的重力势能和动能,从而确定物体的质量。
总结:动能定理和机械能守恒是物理学中研究能量转化和守恒的重要定律。
动能定理描述了作用力与物体动能变化之间的关系,而机械能守恒则说明了封闭系统中的机械能总是保持不变。
这两个概念在物理学研究和实际应用中具有重要价值,可以帮助我们理解和解释物体的运动行为以及优化能源利用。
因此,深入了解和应用动能定理和机械能守恒对于物理学的学习和应用具有重要意义。
【高中物理】动能定理

湛江市二中物理
组
、3
一、动能EK 1.定义:物体由于运动而具有的能叫动能, 2.公式:Ek=1/2mv2,单位:J. 3.动能是标量,是状态量,V 4.动能的变化△Ek=1/2mVt2-1/2mV02. △Ek>0, 表示物体的动能增加; △Ek<0,表示物体的 动能减少.
二、动能定理
我们在处理问题时可以从能量变化来求功,也可以从物体做功的多少来求能量的变化.
P初
P末,
力做功等于重力势能的增加量W =ΔE =E -E 动能是标量,是状态量,V是瞬时速度。
(2)动能定理适用于单个物体,也适用于系统; 外力对物体做的总功为正功,则物体的动能增加;
克
P增 P末 P
初应用:利用动能定理求变力的功
(3)应用动能定理解题,一般比牛顿第二定律解题要简便. 一般牵扯到力与位移关系的题目中,优先考虑使用动能 定理
3.应用动能定理解题的基本步骤: (1) (2)分析研究对象的受力情况和各个力的做功情 况:受哪些力?每个力是否做功,做正功还ห้องสมุดไป่ตู้做 负功?做多少功?然后求各个力做功的代数和. (3)明确物体在过程的始未状态的动能EK0和EKt (4)列出动能的方程W合=EKt-EK0,及其他必要辅 助方程,进行求解.
P91 题型二
4、使用动能定理应注意的问题:
①物体动能的变化是由于外力对物体做功 引起的.外力对物体做的总功为正功,则 物体的动能增加;反之将减小.外力对物 体所做的总功,应为所有外力做功的代数 和,包含重力.
②有些力在物体运动全过程中不是始终存在的, 若物体运动过程中包含几个物理过程,物体运动 状态、受力等情况均发生变化,因而在考虑外力 做功时,必须根据不同情况分别对待.
动能定理与功的计算与应用

动能定理与功的计算与应用动能定理是物理学中的重要定律之一,它描述了物体的动能和物体所受到的外力之间的关系。
在本文中,我们将探讨动能定理的概念以及它在计算功与应用中的使用。
一、动能定理的概念动能定理指出,物体的动能变化等于物体所受外力所做的功。
动能是物体由于其运动速度而具有的能量,通常用K表示。
外力对物体所做的功是指该力在物体运动方向上的分量与物体位移的乘积。
二、功的计算公式根据动能定理,我们可以计算物体所受的功。
如果物体的质量为m,初速度为v1,末速度为v2,则动能的变化为:ΔK = (1/2)mv2^2 - (1/2)mv1^2三、功的应用功的计算与应用在物理学和工程学中具有重要意义。
下面,我们将介绍一些关于功的计算和实际应用的例子。
1. 功率计算功率是指单位时间内所做的功,通常用P表示。
功率的计算公式为:P = W/t其中,W为物体所做的功,t为所用的时间。
功率的单位为瓦特(W)。
2. 汽车制动距离的计算当汽车制动时,制动力会减小车辆的速度。
根据动能定理和功的计算公式,我们可以计算汽车制动距离。
假设汽车质量为m,初始速度为v1,末速度为v2,制动力的大小为F,则制动距离的计算公式为:s = (v1^2 - v2^2) / (2F)3. 弹簧势能的计算弹簧势能是弹性势能的一种形式,它是由于弹簧的形变而产生的能量。
根据动能定理,我们可以计算弹簧势能。
若弹簧的劲度系数为k,形变量为x,则弹簧势能的计算公式为:PE = (1/2)kx^2四、总结动能定理在物理学和工程学中具有广泛的应用。
通过理解动能定理的概念,我们可以计算物体所受的功,进一步应用于相关问题的解决。
同时,掌握功的计算公式和应用方法,能够帮助我们更好地理解物体运动以及与之相关的能量转化和能量守恒的原理。
总之,动能定理与功的计算与应用是物理学中重要的概念和工具,它们可以帮助我们理解和分析物体的运动以及与之相关的能量转化过程。
通过合理地运用动能定理和功的计算公式,我们能够更好地解决实际问题,提高我们对物理学的理解。
物理-动能定理及其应用

动能定理及其应用物理考点 1.理解动能定理,会用动能定理解决一些基本问题.2.掌握解决动能定理与图象结合的问题的方法.考点一 动能定理的理解和基本应用基础回扣1.动能(1)定义:物体由于运动而具有的能量叫作动能.(2)公式:E k =m v 2,单位:焦耳(J).1 J =1 N·m =1 kg·m 2/s 2.12(3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W =ΔE k =E k2-E k1=m v 22-m v 12.1212(3)物理意义:合力做的功是物体动能变化的量度.技巧点拨1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.2.解题步骤3.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1 (2019·辽宁大连市高三月考)如图1所示,一名滑雪爱好者从离地h =40 m 高的山坡上A 点由静止沿两段坡度不同的直雪道AD 、DC 滑下,滑到坡底C 时的速度大小v =20 m/s.已知滑雪爱好者的质量m =60 kg ,滑雪板与雪道间的动摩擦因数μ=0.25,BC 间的距离L =100 m ,重力加速度g =10 m/s 2,忽略在D 点损失的机械能,则下滑过程中滑雪爱好者做的功为( )图1A .3 000 JB .4 000 JC .5 000 JD .6 000 J答案 A解析 根据动能定理有W -μmgL AD cosα-μmgL CD cosβ+mgh =m v 2,即:12W -μmgL +mgh =m v 2,求得W =3 000 J ,故选A.12例2 (2017·上海卷·19)如图2,与水平面夹角θ=37°的斜面和半径R =0.4 m 的光滑圆轨道相切于B 点,且固定于竖直平面内.滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图2(1)滑块在C 点的速度大小v C ;(2)滑块在B 点的速度大小v B ;(3)A 、B 两点间的高度差h .答案 (1)2 m/s (2)4.29 m/s (3)1.38 m解析 (1)在C 点,滑块竖直方向所受合力提供向心力,mg =m v C 2R 解得v C ==2 m/s.gR (2)B →C 过程,由动能定理得-mgR (1+cos 37°)=m v C 2-m v B 21212解得v B =≈4.29 m/s.v C 2+2gR (1+cos 37°)(3)滑块从A →B 的过程,利用动能定理:mgh -μmg cos 37°·=m v B 2-0hsin 37°12代入数据,解得h =1.38 m.1.(动能定理的理解)(2018·天津卷·2)滑雪运动深受人民群众喜爱.如图3所示,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )图3A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变答案 C解析 运动员从A 点滑到B 点的过程中速率不变,则运动员做匀速圆周运动,其所受合外力指向圆心,A 错误;如图所示,运动员受到的沿圆弧切线方向的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,B 错误;由动能定理知,运动员匀速率下滑动能不变,合外力做功为零,C 正确;运动员下滑过程中动能不变,重力势能减小,机械能减小,D 错误.2.(动能定理的应用)(多选)(2019·宁夏银川市质检)如图4所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,载人滑草车与草地之间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则( )图4A .动摩擦因数μ=67B .载人滑草车最大速度为2gh7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为g 35答案 AB解析 对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·-μmg cos 37°·=0,解得μ=,选项A 正确; 对经过上段hsin 45°hsin 37°67滑道的过程分析,根据动能定理有mgh -μmg cos 45°·=m v m 2,解得:v m =,选hsin 45°122gh 7项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a ==-g ,故大小为g ,选项D 错误.mg sin 37°-μmg cos 37°m335335考点二 应用动能定理求变力做功在一个有变力做功的过程中,由动能定理,W 变+W 恒=m v 22-m v 12,物体初、末速度已1212知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=m v 22-m v 12-W 恒,就可1212以求变力做的功了.例3 (2020·四川雅安市期末)如图5所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )图5A.mgRB.mgR 1413C.mgRD.mgR12π4答案 C解析 在Q 点质点受到的竖直向下的重力和竖直向上的支持力的合力充当向心力,所以有F N -mg =m ,F N =F N ′=2mg ,联立解得v =,下滑过程中,根据动能定理可得v 2R gR mgR -W f =m v 2,解得W f =mgR ,所以克服摩擦力做功mgR ,选项C 正确.1212123.(应用动能定理求变力做功)(2019·河南郑州市高一月考)质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图6所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(重力加速度大小为g )( )图6A.m v 02-μmg (s +x )B.m v 02-μmgx 1212C .μmgs D .μmg (s +x )答案 A解析 根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由动能定理可得-W 弹-W f =0-m v 02,则W 弹=m v 02-μmg (s +x ),故选项A 正确.1212考点三 动能定理与图象结合的问题1.解决图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积等所表示的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.2.图象所围“面积”和图象斜率的含义 动能定理与E k-x图象结合例4 (2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图7所示.重力加速度取10 m/s2.该物体的质量为( )图7A.2 kg B.1.5 kg C.1 kg D.0.5 kg答案 C解析 法一:特殊值法画出运动示意图.设该外力的大小为F,据动能定理知A →B (上升过程):-(mg +F )h =E k B -E k A B →A (下落过程):(mg -F )h =E k A ′-E k B ′整理以上两式并代入数据得mgh =30 J ,解得物体的质量m =1 kg ,选项C 正确.法二:写表达式根据斜率求解上升过程:-(mg +F )h =E k -E k0,则E k =-(mg +F )h +E k0下降过程:(mg -F )h =E k ′-E k0′,则E k ′=(mg -F )h +E k0′,结合题图可知mg +F = N =12 N ,72-363-0mg -F = N =8 N48-243-0联立可得m =1 kg ,选项C 正确. 动能定理与F -x 图象结合例5 如图8甲所示,在倾角为30°的足够长的光滑斜面AB 的A 处连接一粗糙水平面OA ,OA 长为4m .有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10 m/s 2,试求:图8(1)滑块运动到A 处的速度大小;(2)不计滑块在A 处的速率变化,滑块沿斜面AB 向上运动的最远距离是多少.答案 (1)5 m/s (2)5 m2解析 (1)由题图乙知,在OA 段拉力做功为W =(2mg ×2-0.5mg ×1) J =3.5mg (J)滑动摩擦力F f =-μmg =-0.25mg ,W f =F f ·x OA =-mg (J),滑块在OA 上运动的全过程,由动能定理得W +W f =m v A 2-012代入数据解得v A =5 m/s.2(2)对于滑块冲上斜面的过程,由动能定理得-mgL sin 30°=0-m v A 212解得L =5 m所以滑块沿斜面AB 向上运动的最远距离为L =5 m.4.(动能定理与a -t 图象结合)(2020·山西太原市模拟)用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图9所示.下列说法正确的是( )图9A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内的速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力对物体做的功答案 D解析 物体6 s 末的速度v 6=×(2+5)×2 m/s -×1×2 m/s =6 m/s ,结合题图可知0~6 s1212内物体一直向正方向运动,A 项错误;由题图可知物体在5 s 末速度最大,v m =×(2+5)×122 m/s =7 m/s ,B 项错误;由题图可知物体在2~4 s 内加速度不变,做匀加速直线运动,速度变大,C 项错误;在0~4s 内由动能定理可知,W 合4=m v 42-0,又v 4=×(2+4)×21212m/s =6 m/s ,得W 合4=36 J,0~6 s 内合力对物体做的功:W 合6=m v 62-0,又v 6=6 m/s ,12得W 合6=36 J ,则W 合4=W 合6,D 项正确.5.(动能定理与E k -x 图象结合)(2020·湖北高三月考)质量为2 kg 的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块的动能E k 与其发生的位移x 之间的关系如图10所示.已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2,则下列说法正确的是( )图10A .x =1 m 时速度大小为2 m/sB .x =3 m 时物块的加速度大小为2.5 m/s 2C .在前4 m 位移过程中拉力对物块做的功为9 JD .在前4 m 位移过程中物块所经历的时间为2.8 s 答案 D解析 根据动能定理ΔE k =F 合x 可知,物体在两段运动中分别所受合外力恒定,则物体做加速度不同的匀加速运动;由题图图象可知x =1 m 时动能为2 J ,v 1== m/s ,故A 2E km 2错误.同理,当x =2 m 时动能为4 J ,v 2=2 m/s ;当x =4 m 时动能为9 J ,v 4=3 m/s ,则2~4 m 内有2a 2x 2=v 42-v 22,解得2~4 m 内物块的加速度为a 2=1.25 m/s 2,故B 错误.对物体运动全过程,由动能定理得:W F +(-μmgx 4)=E k 末-0,解得W F =25J ,故C 错误.0~2 m 过程,t 1==2 s ;2~4 m 过程,t 2==0.8 s ,故总时间为2 s +0.8 s =2.82x 1v 2x 2v2+v 42s ,D正确.课时精练1.(2018·全国卷Ⅱ·14)如图1,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )图1A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功答案 A解析 由题意知,W 拉-W 克摩=ΔE k ,则W 拉>ΔE k ,A 项正确,B 项错误;W 克摩与ΔE k 的大小关系不确定,C 、D 项错误.2.如图2所示,小物体从A 处由静止开始沿光滑斜面AO 下滑,又在粗糙水平面上滑动,最终停在B 处,已知A 距水平面OB 的高度为h ,物体的质量为m ,现用力将物体从B 点静止沿原路拉回至距水平面高为h 的C 点处,已知重力加速度为g ,需外力做的功至少应为( )23图2A.mghB.mgh1323C.mgh D .2mgh 53答案 C解析 物体从A 到B 全程应用动能定理可得mgh -W f =0,由B 返回C 处过程,由动能定理得W F -W f -mgh =0,联立可得W F =mgh ,故选C.23533.(2018·江苏卷·4)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图像是( )答案 A解析 小球做竖直上抛运动,设初速度为v 0,则v =v 0-gt小球的动能E k =m v 2,把速度v 代入得12E k =mg 2t 2-mg v 0t +m v 02,1212E k 与t 为二次函数关系,故A 正确.4.(2021·广东茂名市第一中学期中)如图3所示,运动员把质量为m 的足球从水平地面踢出,足球在空中达到的最高点高度为h ,在最高点时的速度为v ,不计空气阻力,重力加速度为g ,下列说法正确的是( )图3A .运动员踢球时对足球做功m v 212B .足球上升过程重力做功mghC .运动员踢球时对足球做功mgh +m v 212D .足球上升过程克服重力做功mgh +m v 212答案 C解析 足球被踢起后在运动过程中,只受到重力作用,只有重力做功,重力做功为-mgh ,即克服重力做功mgh ,B 、D 错误;由动能定理有W 人-mgh =m v 2,因此运动员对足球做12功W 人=mgh +m v 2,故A 错误,C 正确.125.(2021·湖南怀化市模拟)如图4所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零)( )图4A .等于v 0B .大于v 0C .小于v 0D .取决于斜面答案 A解析 物体从D 点滑动到顶点A 过程中-mg ·x AO -μmg ·x DB -μmg cos α·x AB =0-m v 02,由几12何关系有x AB cos α=x OB ,因而上式可以简化为-mg ·x AO -μmg ·x OD =0-m v 02,从上式可以12看出,物体的初速度与路径无关.故选A.6.(2021·福建宁德市高三期中)如图5所示,质量为m 的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F 作用下,物体由静止开始运动到绳与水平方向的夹角α=45°时绳以速度v 0竖直向下运动,此过程中,绳的拉力对物体做的功为( )图5A.m v 02B.m v 021412C .m v 02D.m v 0222答案 C解析 将物体的运动分解为沿绳子方向的运动以及垂直绳子方向的运动,则当物体运动到绳与水平方向的夹角α=45°时物体的速度为v ,则v cos 45°=v 0,可得v =v 0,物体由静止2开始运动到绳与水平方向的夹角α=45°过程中,只有绳子拉力对物体做功,由动能定理得绳的拉力对物体做的功:W =m v 2-0=m v 02,故C 正确,A 、B 、D 错误.127.(多选)在某一粗糙的水平面上,一质量为2 kg 的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图6中给出了拉力随位移变化的关系图象.已知重力加速度g 取10 m/s 2.根据以上信息能精确得出或估算得出的物理量有( )图6A .物体与水平面间的动摩擦因数B .合外力对物体所做的功C .物体做匀速运动时的速度D .物体运动的时间答案 ABC解析 物体做匀速直线运动时,拉力F 0与滑动摩擦力F f 相等,物体与水平面间的动摩擦因数为μ==0.35,A 正确;减速过程由动能定理得W F +W f =0-m v 2,根据F -x 图象中F 0mg 12图线与坐标轴围成的面积可以估算力F 做的功W F ,而W f =-μmgx =-F 0x ,由此可求得合外力对物体所做的功,及物体做匀速运动时的速度v ,B 、C 正确;因为物体做变加速运动,所以运动时间无法求出,D 错误.8.质量m =1 kg 的物体,在水平恒定拉力F (拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过的位移为4 m 时,拉力F 停止作用,运动到位移为8 m 时物体停止运动,运动过程中E k -x 图象如图7所示.取g =10 m/s 2,求:图7(1)物体的初速度大小;(2)物体和水平面间的动摩擦因数;(3)拉力F 的大小.答案 (1)2 m/s (2)0.25 (3)4.5 N解析 (1)从题图可知物体初动能为2 J ,则E k0=m v 2=2 J ,12得v =2 m/s.(2)在位移为4 m 处物体的动能为E k =10 J ,在位移为8 m 处物体的动能为零,这段过程中物体克服摩擦力做功.设摩擦力为F f ,则由动能定理得-F f x 2=0-E k代入数据,解得F f =2.5 N.因F f =μmg ,故μ=0.25.(3)物体从开始运动到位移为4 m 的过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f ,根据动能定理有(F -F f )x 1=E k -E k0,故得F =4.5 N.9.(多选)(2020·贵州安顺市网上调研)如图8所示,半圆形光滑轨道BC 与水平光滑轨道AB 平滑连接.小物体在水平恒力F 作用下,从水平轨道上的P 点,由静止开始运动,运动到B点撤去外力F ,小物体由C 点离开半圆轨道后落在P 点右侧区域.已知PB =3R ,重力加速度为g ,F 的大小可能为( )图8A.mgB.125mg 6C .mgD.7mg 6答案 BC解析 小球能通过C 点应满足m ≥mg ,v C 2R 且由C 点离开半圆轨道后落在P 点右侧区域,则有2R =gt 2,v C t <3R ,对小球从P 点到C 12点由动能定理得F ·3R -2mgR =m v ,12C 2联立解得≤F <5mg 625mg 24故B 、C 正确,A 、D 错误.10.如图9所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则( )图9A .W =mgR ,小球恰好可以到达Q 点12B .W >mgR ,小球不能到达Q 点12C .W =mgR ,小球到达Q 点后,继续上升一段距离12D .W <mgR ,小球到达Q 点后,继续上升一段距离12答案 C解析 在N 点,根据牛顿第二定律有F N -mg =m ,解得v N =,对小球从开始下落v N 2R 3gR 至到达N 点的过程,由动能定理得mg ·2R -W =m v N 2-0,解得W =mgR .由于小球在PN 1212段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=m v Q 2-m v N 2,因为W ′<mgR ,则小球在N 处的动能大于小球从N 到Q 121212克服重力做的功和克服摩擦力做的功之和,可知v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.11.如图10甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化的关系如图乙所示,滑块与AB 间的动摩擦因数为μ=0.25,与BC间的动摩擦因数未知,g 取10 m/s 2.求:图10(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2 m 过程所用的时间;(3)若到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?答案 (1)2 m/s (2) s (3)5 J10835解析 (1)对滑块从A 到B 的过程,由动能定理得F 1x 1+F 3x 3-μmgx =m v B 2,12得v B =2 m/s.10(2)在前2 m 内,有F 1-μmg =ma ,且x 1=at 12,解得t 1= s.12835(3)当滑块恰好能到达最高点C 时,应有mg =m ,v C 2R 对滑块从B 到C 的过程,由动能定理得W -mg ×2R =m v C 2-m v B 2,1212代入数值得W =-5 J ,即滑块在半圆弧轨道上克服摩擦力做的功为5 J.12.(2020·山西运城市月考)如图11,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sinα=.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;35在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图11(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达B 点时对圆弧轨道的压力大小.答案 (1)mg (2)mg345gR 2152解析 (1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则=tan α,F =,F 0mg mgcos α由牛顿第二定律得F =m ,v C 2R 联立并代入数据解得F 0=mg ,v C =.345gR2(2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =m v C 2-m v B 2,1212代入数据解得v B =52gR小球在B 点时有F N -F =m ,v B 2R 解得F N =mg152由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=mg .152。
初中物理知识点总结之动能

初中物理知识点总结之动能动能是物体的运动能力和做功的能力,是一种能量形式。
动能与物体的质量和速度有关。
动能的定义及计算公式:动能K的定义是物体由于运动所具有的能力。
动能的计算公式是K=1/2mv²,其中m是物体的质量,v是物体的速度。
动能的单位及量纲:动能的单位是焦耳(J)。
动能的量纲是ML²T⁻²。
动能的转化:动能可以通过做功转化为其他形式的能量,如势能、热能等。
动能转化的原理是做功,即物体受力作用发生位移时,力对物体做功,将动能转化为其他形式的能量。
动能定理:动能定理是指当物体受到外力做功时,物体的动能发生变化。
动能定理可以用公式W=ΔK表示,其中W是外力对物体做的功,ΔK是物体动能的增量。
动能定理的证明:根据牛顿第二定律F=ma,将力F表示为F=m(dv/dt),代入功的定义W=∫Fdx,可以推导出功的表达式W=∫(m(dv/dt))dx,整理后得到W=∫mvdv,再对两边从初速度v₁到末速度v₂进行积分,得到W=1/2mv₂²-1/2mv₁²,即物体动能的增量ΔK。
动能与质量的关系:动能与物体的质量成正比。
当两个物体的速度相同时,质量越大的物体具有更大的动能。
动能与速度的关系:动能与物体的速度的平方成正比。
当两个物体的质量相同时,速度越大的物体具有更大的动能。
动能与运动方向的关系:动能与物体的运动方向无关。
只要物体具有速度,即使速度方向改变,动能仍然存在。
应用实例:1.将物体从高处放下,物体下落时具有动能,可以用动能定理计算物体下落的速度。
2.骑自行车时,骑手给自行车提供动力,使自行车具有动能,可以通过动能计算自行车的速度和动力的大小。
注意事项:1.动能是宏观物体的属性,不适用于微观粒子。
2.动能只有在物体具有速度时才能存在,物体静止时动能为零。
3.动能是标量,没有方向性。
动能定理与能量守恒

动能定理与能量守恒在物理学中,动能定理和能量守恒是两个基本而重要的概念。
它们揭示了能量的转化和守恒规律,对于我们理解和应用物理规律具有重要意义。
一、动能定理动能定理是描述物体运动的能量变化规律的重要定理。
它表达了物体的动能与物体所受的力有着直接关系。
根据动能定理,当一个物体受到外力作用时,它所获得的动能等于外力对该物体所做的功。
动能定理的数学表达式为:动能的变化等于物体所受力的功。
可以用公式表示为:ΔKE = W其中,ΔKE表示动能的变化量,W表示外力对物体所做的功。
动能定理告诉了我们,在物体运动过程中,如果它的动能增加,那么表明物体所受到的外力对物体做正功;反之,若动能减小,说明外力对物体做负功。
二、能量守恒能量守恒是物理学中的一条重要定律,它表明在一个孤立系统中,能量总量不会发生改变,只会从一种形式转化为另一种形式。
也就是说,能量既不会消失,也不会从空气中凭空产生,而只是在不同形式之间转换。
能量守恒的基本原理是,能量既不能被创造,也不能被毁灭,只能转化。
在一个封闭的系统中,系统的总能量保持恒定,不会改变。
能量守恒原理对于我们理解和研究物理现象非常重要。
例如,当一个物体从高处自由落下时,机械能的转化就是一个很好的例子。
开始时,物体具有重力势能,随着下落,它的重力势能逐渐减少,而动能逐渐增加。
在最低点,动能达到最大,重力势能减小到零。
整个过程中,机械能的总量保持不变。
在实际应用中,能量守恒原理有着广泛的应用。
例如,利用能量守恒我们可以计算物体的速度和位移,推导出许多重要的物理公式。
能量守恒也被应用于工程和科技领域,用于设计和改进各种设备和系统的效率。
总结:动能定理与能量守恒是物理学中的两个基本概念,它们揭示了能量的转化和守恒规律。
动能定理告诉我们物体动能的变化与所受力的功有关,能量守恒原理说明了能量的总量在封闭系统中是不变的。
这两个概念对于我们理解和应用物理规律具有重要的意义,为我们解决问题提供了有力的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.动能定理及其应用张长春教学目标:(1)理解动能定理,知道动能定理的适用范围(2)知道动能定理的两种表达式及其意义教学重点:动能定理的应用教学难点:动能定理的理解教学方法:讲授法,电教法教学用具:CAI课件教学过程:一:导入新课:二:新课:1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
2.应用动能定理解题的步骤⑴确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
⑵对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
⑶写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
⑷写出物体的初、末动能。
⑸按照动能定理列式求解。
例1、关于物体的动能,下列说法中正确的是()A、一个物体的动能总是大于或等于零B、一个物体的动能的大小对不同的参考系是相同的C、动能相等的两个物体动量必相同D、质量相同的两个物体,若动能相同则它们的动量必相同E、高速飞行的子弹一定比缓慢行驶的汽车的动能大(二)、六点助你理解动能定理:(多媒体展示)◆等式的左边为各个力做功的代数和即总功,总功的求解方法:①先求各个力的合力,再求合力的功. ②先求各个力的功,再把各个力的功进行代数相加,求出总功◆等式的右边为△EK :若△EK>0,动能增加,合外力做正功,是其他形式的能转化为动能;△EK<0,动能减小,物体克服外力做功,是动能转化为其他形式的能◆做功过程是能量转化的过程,动能定理 表达式中“=”的意义是一种因果关系,是一个在数值上相等的的符号,不意味着“功就是动能的增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”◆动能定理中的 S 和 V 必须是相对于同一个参考系.中学物理一般以地面为参考系.◆动能定理公式两边的每一项都是标量,因此动能定理是一个标量方程◆动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理不论物体做什么形式的运动、受力如何,动能定理总是适用(四)动能定理应用典例例2、如图所示,物体从高为h 的斜面体的顶端A 由静止开始滑下,滑到水平面上的B 点停止,A 到B 的水平距离为S ,已知:斜面体和水平面都由同种材料制成。
求:物体与接触面间的动摩擦因数解:(法一,过程分段法)设物体质量为m ,斜面长为l ,物体与接触面间的动摩擦因数为μ ,斜面与水平面间的夹角为θ,滑到C 点的速度为V ,根据动能定理有:物体从C 滑到B,根据动能定理得: 联立上式解得:法二:过程整体法联立解得:21cos 2cos DCmgh mgl mv l S μθθ-==212CB mgS mv μ-=-h S μ=cos 0cos CB CB mgh mgl mgS l S Sμθμθ--=+=h μ=点评:若物体运动过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以以全过程为一整体来处理。
往往全过程考虑比较简单◆用动能定理解答曲线运动例3、如下图所示,一个质量为m 的小球从A 点由静止开始滑到B 点,并从B 点抛出,若在从A 到B 的过程中,机械能损失为E ,小球自B 点抛出的水平分速度为v ,则小球抛出后到达最高点时与A 点的竖直距离是 。
解: 小球自B 点抛出后做斜上抛运动,水平方向做匀速直线运动,到最高点C 的速度仍为v ,设AC 的高度差为h 由动能定理, A →B →C∴h=v2/2g+E/mg◆用动能定理处理变力作用过程例4.如图示,光滑水平桌面上开一个光滑小孔,从孔中穿一根细绳,绳一端系一个小球,另一端用力 F1向下拉,以维持小球在光滑水平面上做半径为R1的匀速圆周运动,如图所示,今改变拉力,当大小变为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动半径由R1变为R2过程中拉力对小球做的功多大?解:设半径为R1和R2时小球的圆周运动的线 速度大小分别为υ1和υ2有向心力公式得:同理:由动能定理得:联立得: ()221112W F R F R =- 点评:绳的拉力作为小球做圆周运动的向心力,是变力,变力做功不能应用公式W=FS 直接运算,但可通过动能定理等方法求解较为方便◆运用动能定理求运动路程例5:如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离d=0.50米,盆边缘的高21mgh mv 2E -=2111mv F R =2222mv F R =22211122W mv mv =-度h=0.30米,在A 处放一个质量为m 的的小物块并让其从静止出发下滑,已知盆内侧壁是光滑的,而BC 面与小物块间的动摩擦因数为μ=0.10,小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( )A 、0.5米B 、0.25米C 、0.10米D 、0解析:分析小物体的运动过程,可知由于克服摩擦力做功,物块的机械能不断减小。
设物体运动的路程为X.根据动能定理得:mgh -μmgx =0所以物块在BC 之间滑行的总路程为:小物块正好停在B 点,所以D 选项正确。
◆动能定理的综合运用动能定理常同牛顿第二定律及平抛运动、圆周运动等知识结合在一起,考查同学的综合运用能力。
对此类问题要特别注意认真审题,弄清题中所述的运动过程及受力情况,挖掘出题中的隐含条件。
这也是提高解决综合问题能力的根本。
例6、如图,AB 是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道, AB 恰好在B 点与圆弧相切,圆弧的半径为R 。
一个质量为m 的物体(可以看作质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动。
已知P 点与圆弧的圆心o 等高,物体与轨道AB 间的动摩擦因数为μ。
求(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力解析:物体从P 点出发,在AB 轨道上运动时要克服摩擦力做功,在圆弧轨道上运动时机械能守恒,所以物体每运动一次,在左右两侧上升的最大高度都要减小一些,最终到达B 点速度减为零,随后在圆弧轨道底部做往复运动。
1)物体从P 点出发至最终到达B 点速度为零的全过程,由动能定理得mgRcos θ—μmgcos θ=0所以:2)最终物体以B (还有B 关于OE 的对称点)为最高点,在 圆弧底部做往复运动,物体从B 运动到E 的过程,由动能定理得:()h 0.303m =6d 0.10X μ===h S μ=总21在E 点,由牛顿第二定律得:联立解得:则物体对圆弧轨道的压力: 三:小结: 1、对于既可用牛顿定律,又可用动能定理解的力学问题,若不涉及到加速度和时间,则用动能定理求解较简便2、若物体运动过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以全过程为一整体来处理3、变力做功不能应用公式W=FL 直接运算,但可通过动能定理等方法求解.总之,无论物体做何种运动,受力如何,只要不涉及到加速度和时间,都可考虑应用动能定理解决动力学问题。
《动能定理》课后同步练练练1、钢球从高处向下落,最后陷入泥中,如果空气阻力可忽略不计,陷入泥中的阻力为重力的n 倍,求:钢珠在空中下落的高度H 与陷入泥中的深度h 的比值 H ∶h =?练练2、一辆汽车通过下图中的细绳提起井中质量为m 的物体,开始时,车在A 点,绳子已经拉紧且是竖直,左侧绳长为H 。
提升时,车加速向左运动,沿水平方向从A 经过B 驶向C 。
设A 到B 的距离为H ,车过B 点时的速度为V 0,求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功。
设绳和滑轮的质量及摩擦不计,滑轮尺寸不计。
练练3、质量为m 的跳水运动员从高为H 的跳台上以速率v 1 起跳,落水时的速率为v 2 ,运动中遇有空气阻力,那么运动员起跳后在空中运动克服空气阻力所做的功是多少?练练4、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A.mgR/4B. mgR/3C. mgR/2D.mgR练练5、如图所示,AB 与CD 为两个对称斜面,其上部足够长,下部分别与一2F E N v mg m R -=(32cos )N F mgθ=-'(32cos )N N F F mgθ==-个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R为2.0米,一个物体在离弧底E高度为h=3.0米处,以初速4.0米/秒沿斜面向上运动,若物体与两斜面的动摩擦因数为0.02,则物体在两斜面上(不包括圆弧部分)一共能走多长路程?(取g=10米/秒2)练练6、如右图所示,水平传送带保持 1m/s 的速度运动。
一质量为1kg的物体与传送带间的动摩擦因数为0.2。
现将该物体无初速地放到传送带上的A点,然后运动到了距A点1m 的B点,则皮带对该物体做的功为()(要求写出过程)A. 0.5JB. 2JC. 2.5JD. 5J。