2021年辽宁省沈阳市中考数学真题及答案

合集下载

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线的顶点坐标是.对称轴是直线,注意事项21.答题前,考生须用0. 5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2021年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为()A. B. C. D.2.右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱锥 C.球体 D.圆锥体3.下面计算一定正确的是()A.B.C. D.4.如果,那么m的取值范围是()A. B. C. D.5.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数 B.射击运动员射击一次,命中9环.C.明天会下雨 D.度量三角形的内角和,结果是360°6.计算的结果是( )A. B. C. D.7、在同一平面直角坐标系中,函数与函数的图象可能是()8.如图,中,AE交BC于点D,,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A. B. C. D.二、题(每小题4分,共32分)9.分解因式: _________.10.一组数据2,4,x,-1的平均数为3,则x的值是 =_________.11.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是 _________.12.若关于x的一元二次方程有两个不相等的实数根,则a的取值方位是_________.13.如果x=1时,代数式的值是5,那么x= -1时,代数式的值 _________.14.如图,点A、B、C、D都在⊙O上,=90°,AD=3,CD=2,则⊙O 的直径的长是_________.15.有一组等式:请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是_________三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。

2021辽宁省沈阳市中考数学试卷

2021辽宁省沈阳市中考数学试卷

辽宁省沈阳市中考数学试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2B.1C.2D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105 3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO =AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=B,对角线AC,BD相交于点O,点P为边AD 上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.2020年辽宁省沈阳市中考数学试卷参考答案一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.A;2.CD;3.D;4.C;5.B;6.A;7.A;8.B;9.D;10.C;二、填空题(每小题3分,共18分)11.x(2x+1);12.;13.乙;14.6;15.8;16.或1;三、解答题(第17小题6分,第18、19小题各8分,共22分)17.;18.;19.;四、(每小题8分,共16分).20.;;;21.;五、(本题10分)22.;六、(本题10分)23.;;;;七、(本题12分)24.;八、(本题12分)25.;;。

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×1063.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.610.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是.13.〔分〕〔2021•沈阳〕化简:﹣=.14.〔分〕〔2021•沈阳〕不等式组的解集是.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.2021年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.【考点】27:实数.【专题】511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;应选:B.【点评】此题考察了有理数,有限小数或无限循环小数是有理数.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×106【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将81000用科学记数法表示为:×104.应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形断定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考察了几何体的三种视图和学生的空间想象才能,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1 :常规题型.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考察了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m2〕3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;应选:D.【点评】此题主要考察了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°【考点】IL:余角和补角;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考察平行线的性质、补角和余角等知识,解题的关键是纯熟掌握根本知识,属于中考常考题型.7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】X1:随机事件.【专题】543:概率及其应用.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误;B、“13个人中至少有两个人生肖一样〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考察了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【专题】53:函数及其图象.【分析】根据一次函数的图象与系数的关系进展解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考察的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.6【考点】G6:反比例函数图象上点的坐标特征.【专题】33 :函数思想.【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考察了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π【考点】LE:正方形的性质;MN:弧长的计算.【专题】1 :常规题型.【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=〔2〕2,解得:AO=2,∴的长为=π,应选:A.【点评】此题考察了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=3x〔x+2〕〔x﹣2〕.【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x〔x2﹣4〕=3x〔x+2〕〔x﹣2〕故答案是:3x〔x+2〕〔x﹣2〕.【点评】此题考察了提公因式法与公式法分解因式,要求灵敏使用各种方法对多项式进展因式分解,一般来说,假如可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是4.【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.【点评】此题主要考察众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,假设几个数据频数都是最多且一样,此时众数就是这多个数据.13.〔分〕〔2021•沈阳〕化简:﹣=.【考点】6B:分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法那么计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考察了分式的加减法,纯熟掌握运算法那么是解此题的关键.14.〔分〕〔2021•沈阳〕不等式组的解集是﹣2≤x<2.【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,那么不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】此题考察理解一元一次不等式组,遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= 150m时,矩形土地ABCD的面积最大.【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答此题.【解答】解:〔1〕设AB=xm,那么BC=〔900﹣3x〕,由题意可得,S=AB×BC=x×〔900﹣3x〕=﹣〔x2﹣300x〕=﹣〔x﹣150〕2+33750∴当x=150时,S获得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【考点】KD:全等三角形的断定与性质;KK:等边三角形的性质;S9:相似三角形的断定与性质.【专题】11 :计算题.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,那么可根据“AAS〞证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,那么CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+〔AH〕2=AC2=〔〕2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】此题考察了相似三角形的断定与性质:在断定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥根本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考察了全等三角形的断定与性质和等边三角形的性质.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣〔3﹣〕+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考察了实数运算,正确化简各数是解题关键.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是4.【考点】L8:菱形的性质;LD:矩形的断定与性质.【专题】556:矩形菱形正方形.【分析】〔1〕欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;〔2〕由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】〔1〕证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;〔2〕由〔1〕知,平行四边形OCED是矩形,那么CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.故答案是:4.【点评】考察了矩形的断定与性质,菱形的性质.此题中,矩形的断定,首先要断定四边形是平行四边形,然后证明有一内角为直角.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行〞的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】此题考察了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了50名学生,m的值是18.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是108度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率.【分析】〔1〕根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;〔2〕根据〔1〕中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完好;〔3〕根据统计图中的数据可以求得“数学〞所对应的圆心角度数;〔4〕根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:〔1〕在这次调查中一共抽取了:10÷20%=50〔名〕学生,m%=9÷50×100%=18%,故答案为:50,18;〔2〕选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15〔名〕,补全的条形统计图如右图所示;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是:360°×=108°,故答案为:108;〔4〕1000×=300〔名〕,答:该校九年级学生中有300名学生对数学感兴趣.【点评】此题考察条形统计图、扇形统计图、用样本估计总体,解答此题的关键是明确题意,利用数形结合的思想解答.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.【考点】AD:一元二次方程的应用.【专题】34 :方程思想;523:一元二次方程及应用.【分析】〔1〕设每个月消费本钱的下降率为x,根据2月份、3月份的消费本钱,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;〔2〕由4月份该公司的消费本钱=3月份该公司的消费本钱×〔1﹣下降率〕,即可得出结论.【解答】解:〔1〕设每个月消费本钱的下降率为x,根据题意得:400〔1﹣x〕2=361,解得:x1=0.05=5%,x2〔不合题意,舍去〕.答:每个月消费本钱的下降率为5%.〔2〕361×〔1﹣5%〕〔万元〕.答:预测4月份该公司的消费本钱为万元.【点评】此题考察了一元二次方程的应用,解题的关键是:〔1〕找准等量关系,正确列出一元二次方程;〔2〕根据数量关系,列式计算.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.【考点】KQ:勾股定理;M5:圆周角定理;MC:切线的性质.【专题】55:几何图形.【分析】〔1〕连接OA,利用切线的性质和角之间的关系解答即可;〔2〕根据直角三角形的性质解答即可.【解答】解:〔1〕连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;〔2〕∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.【点评】此题考察切线的性质,关键是根据切线的性质进展解答.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【考点】FI:一次函数综合题.【专题】153:代数几何综合题;31 :数形结合;32 :分类讨论;533:一次函数及其应用.【分析】〔1〕利用待定系数法求解析式,函数关系式联立方程求交点;〔2〕①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF间隔;②设点A坐标,表示△PMN即可.【解答】解:〔1〕设直线l1的表达式为y=kx+b∵直线l1过点F〔0,10〕,E〔20,0〕∴解得直线l1的表达式为y=﹣x+10求直线l1与直线l2交点,得x=﹣x+10解得x=8y=×8=6∴点P坐标为〔8,6〕〔2〕①如图,当点D在直线上l2时∵AD=9∴点D与点A的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x=y∴y﹣〔20﹣2y〕=9解得y=那么点A的坐标为:〔,〕那么AF=∵点A速度为每秒个单位∴t=如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣x+10﹣x=6解得x=那么点A坐标为〔,〕那么AF=∵点A速度为每秒个单位∴t=故t值为或②如图,设直线AB交l2 于点H设点A横坐标为a,那么点D横坐标为a+9由①中方法可知:MN=此时点P到MN间隔为:a+9﹣8=a+1∵△PMN的面积等于18∴解得a1=,a2=﹣〔舍去〕∴AF=6﹣那么此时t为当t=时,△PMN的面积等于18【点评】此题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.【考点】KY:三角形综合题.【专题】152:几何综合题.【分析】〔1〕①根据SAS证明即可;②想方法证明∠ADE+∠ADB=90°即可;〔2〕分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,〔3〕分两种情形求解即可,①如图4中,当BN=BC=时,作AK⊥BC于K.解直角三角形即可.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.【解答】〔1〕①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.〔2〕解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.故答案为α或180°﹣α.〔3〕解:如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=,AC=3,易证△ADC是直角三角形,那么四边形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=6,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.【点评】此题考察三角形综合题、全等三角形的断定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想考虑问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16 :压轴题;537:函数的综合应用;558:平移、旋转与对称.【分析】〔1〕应用待定系数法;〔2〕把x=t带入函数关系式相减;〔3〕根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.〔4〕根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进展计算.【解答】解:〔1〕∵抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕。

2021年辽宁省沈阳市中考数学试卷及答案

2021年辽宁省沈阳市中考数学试卷及答案

辽宁省沈阳市2021年中考数学试卷一、选择题〔以下各题的备选答案中,只有一个答案是正确的,每题3分,共24分〕A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.解答:解:196亿=19 600 000 000=1.96×1010.应选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.A.圆柱体B.三棱锥C.球体D.圆锥体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.应选A.点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力.A.b3+b3=2b6B.〔﹣3pq〕2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项的法那么判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法那么判断C;根据同底数幂的除法判断D.解答:解:A、b3+b3=2b3,故本选项错误;B、〔﹣3pq〕2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.应选C.点评:此题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法那么是解题的关键.A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4 考点:估算无理数的大小分先估算出在2与3之间,再根据m=,即可得出m的取值范围.析:解答:解:∵2<3,m=,∴m的取值范围是1<m<2;应选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数局部,是一到根底题.A.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°考点:随机事件分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:A、买一张电影票,座位号是奇数,是随机事件;B、射击运发动射击一次,命中9环,是随机事件;C、明天会下雨,是随机事件;D、度量一个三角形的内角和,结果是360°,是不可能事件.应选D.点评:此题考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A.B.C.D.考点:分式的加减法专题:计算题.分析:先通分,再根据同分母的分式相加减的法那么进行计算即可.解答:解:原式=﹣==.应选B.点评:此题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.解答:解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,应选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.A.B.C.D.考点:相似三角形的判定与性质分析:由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.解答:解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.应选B.点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解答:解:3a2+6a+3,=3〔a2+2a+1〕,=3〔a+1〕2.故答案为:3〔a+1〕2.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.考点:算术平均数.分析:根据求平均数的公式:,列出算式,即可求出x的值.解答:解:∵数据2,4,x,﹣1的平均数为3,∴〔2+4+x﹣1〕÷4=3,解得:x=7;故答案为:7.点评:此题考查了平均数的求法,属于根底题,熟记求算术平均数的公式是解决此题的关键.考点:关于原点对称的点的坐标.专题:数形结合.分析:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.解答:解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点〔﹣3,2〕关于原点对称的点的坐标是〔3,﹣2〕,故答案为〔3,﹣2〕.点评:此题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.考点:根的判别式.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:根据题意得:△=〔4a〕2﹣4a>0,即4a〔4a﹣1〕>0,解得:a>或a<0,那么a的范围是a>或a<0.故答案为:a>或a<0点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解此题的关键.考点:代数式求值分析:将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.解答:解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣〔2a+3b〕+4=﹣1+4=3.故答案为:3点评:此题考查了代数式求值,利用了整体代入的思想,是一道基此题型.考点:圆周角定理;勾股定理分析:首先连接AC,由圆的内接四边形的性质,可求得∠ADC=90°,根据直角所对的弦是直径,可证得AC是直径,然后由勾股定理求得答案.解答:解:连接AC,∵点A、B、C、D都在⊙O上,∠ABC=90°,∴∠ADC=180°﹣∠ABC=90°,∴AC是直径,∵AD=3,CD=2,∴AC==.故答案为:.点评:此题考查了圆周角定理、圆的内接四边形的性质以及勾股定理.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.考点:规律型:数字的变化类专题:规律型.分观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的析:数的平方,然后写出即可.解答:解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+〔8×9〕2=〔8×9+1〕2,即82+92+722=732.故答案为:82+92+722=732.点评:此题是对数字变化规律的考查,仔细观察底数的关系是解题的关键,也是此题的难点.考点:等边三角形的性质;平行线之间的距离.专题:计算题.分析:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG 与CE的长,进而由DB+BC+CE求出DE的长,由BC﹣BF﹣CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.解答:解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG 与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,∴DB=FB==,CE=CQ==,∴DE=DB+BC+CE=++=,FG=BC﹣BF﹣CG=,∴NH=FG=1,MQ=DE=7,那么点P到BC的最小距离和最大距离分别是1,7.故答案为:1,7点评:此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解此题的关键.考实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值点:专题:计算题.分析:此题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.解答:解:原式=﹣6×+1+2﹣2=2.点评:此题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.考点:条形统计图;扇形统计图.分析:〔1〕用A的人数与所占的百分比列式计算即可得解;〔2〕先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;〔3〕根据计算补全统计图即可.解答:解:〔1〕20÷10%=200人;〔2〕C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:〔1〕200;〔2〕35,126.〔3〕补全统计图如下图.点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.考点:全等三角形的判定与性质;勾股定理.专题:证明题.分析:〔1〕先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角〞证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证;〔2〕根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解答:〔1〕证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF〔ASA〕,∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AF,∴BF=2AE;〔2〕解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.点评:此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.考点:列表法与树状图法;概率公式分析:〔1〕由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,,直接利用概率公式求解即可求得答案;〔2〕首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.解答:解:〔1〕∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.∴从盒子中随机抽取一张卡片,卡片上的实数是3的概率是:;〔2〕画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次好抽取的卡片上的实数之差为有理数的概率为:=.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:解直角三角形的应用分析:〔1〕过A作AP⊥GF于点P.在直角△PAG中利用三角函数求得GP的长,进而求得GF的长;〔2〕在直角△MNF中,利用勾股定理求得NF的长度,NF的长加上身高再加上竹竿长,与GF比拟大小即可.解答:解:〔1〕过A作AP⊥GF于点P.那么AP=BF=12,AB=PF=1.4,∠GAP=37°,在直角△PAG中,tan∠PAG=,∴GP=AP•tan37°≈12×0.75=9〔米〕,∴GF=9+1.4≈10.4〔米〕;〔2〕由题意可知MN=5,MF=3,∴在直角△MNF中,NF==4,∵10.4﹣5﹣1.65=3.75<4,∴能触到挂在树上的风筝.点评:此题考查了勾股定理,以及三角函数、正确求得GF的长度是关键.考点:切线的判定;扇形面积的计算.分析:〔1〕首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;〔2〕由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF﹣S扇形ADF,即可求得答案.解答:〔1〕证明:过点A作AF⊥ON于点F,∵⊙A与OM相切与点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;〔2〕解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE=,∴AF=AF•tan60°=2,∴S阴影=S△AEF﹣S扇形ADF=AF•EF﹣×π×AF2=2﹣π.点评:此题考查了切线的判定与性质、扇形的面积以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.考点:二次函数的应用;一次函数的应用分析:〔1〕设函数的解析式为y=ax2,然后把点〔1,60〕代入解析式求得a的值,即可得出抛物线的表达式,根据图象可得自变量x的取值范围;〔2〕设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可;〔3〕先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可.解答:解:〔1〕设函数的解析式为y=ax2,把点〔1,60〕代入解析式得:a=60,那么函数解析式为:y=60x2〔0≤x≤〕;〔2〕设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数,∴x=15,即至少需要开放15个普通售票窗口;〔3〕设普通售票的函数解析式为y=kx,把点〔1,80〕代入得:k=80,那么y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由〔1〕得,当x=时,y=135,∴图②中的一次函数过点〔,135〕,〔2,160〕,设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,那么一次函数的解析式为y=50x+60.点评:此题考查了二次函数及一次函数的应用,解答此题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.考点:四边形综合题分析:〔1〕利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;〔2〕△AOE和△DOE是“友好三角形〞,即可得到E是AD的中点,那么可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC 的面积.即可求出△ABC的面积.②解答:〔1〕证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.〔2〕解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE.∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′DCB是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:此题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据题意和所学的定理进行推理.题目比拟好,但是有一定的难度.考点:二次函数综合题.分析:〔1〕利用待定系数法求出抛物线的函数表达式;〔2〕由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D的坐标;〔3〕①由BE与OA平行且相等,可判定四边形OAEB为平行四边形;②点M在点B的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角形的性质和勾股定理,求出线段BM的长度.解答:解:〔1〕将A〔,0〕、B〔1,〕代入抛物线解析式y=x2+bx+c,得:,解得:.∴y=x2x+.〔2〕当∠BDA=∠DAC时,BD∥x轴.∵B〔1,〕,当y=时,=x2x+,解得:x=1或x=4,∴D〔4,〕.〔3〕①四边形OAEB是平行四边形.理由如下:抛物线的对称轴是x=,∴BE=﹣1=.∵A〔,0〕,∴OA=BE=.又∵BE∥OA,∴四边形OAEB是平行四边形.②∵O〔0,0〕,B〔1,〕,F为OB的中点,∴F〔,〕.过点F作FN⊥直线BD于点N,那么FN=﹣=,BN=1﹣=.在Rt△BNF中,由勾股定理得:BF==.∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF.〔I〕当点M位于点B右侧时.在直线BD上点B左侧取一点G,使BG=BF=,连接FG,那么GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.∵BG=BF,∴∠BGF=∠BFG.又∵∠FBM=∠BGF+∠BFG=2∠BMF,∴∠BFG=∠BMF,又∵∠MGF=∠MGF,∴△GFB∽△GMF,∴,即,∴BM=;〔II〕当点M位于点B左侧时.设BD与y轴交于点K,连接FK,那么FK为Rt△KOB斜边上的中线,∴KF=OB=FB=,∴∠FKB=∠FBM=2∠BMF,又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK,∴MK=KF=,∴BM=MK+BK=+1=.综上所述,线段BM的长为或.点评:此题是中考压轴题,考查了二次函数的图象与性质、待定系数法、解方程、相似三角形、等腰三角形、平行四边形、勾股定理等知识点.难点在于第〔3〕②问,满足条件的点M可能有两种情形,需要分类讨论,分别计算,防止漏解.。

2021年辽宁省中考数学试卷及答案解析

2021年辽宁省中考数学试卷及答案解析

2021年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−5的相反数是()A. −15B. 15C. −5D. 52.下列漂亮的图案中似乎包含了一些曲线,其实它们这种神韵是由多条线段呈现出来的,这些图案中既是中心对称图形又是轴对称图形的是()A. B.C. D.3.下列运算正确的是()A. x2⋅x=2x2B. (xy3)2=x2y6C. x6÷x3=x2D. x2+x=x34.如图,该几何体的左视图是()A.B.C.D.5.下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是()疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A. 79%B. 92%C. 95%D. 76%6.反比例函数y=k的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是x()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图为本溪、辽阳6月1日至5日最低气温的折线统计图,由此可知本溪,辽阳两地这5天最低气温波动情况是()A. 本溪波动大B. 辽阳波动大C. 本溪、辽阳波动一样D. 无法比较8.一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()A. 80°B. 95°C. 100°D. 110°9.如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A. √3+1B. √5+3C. √5+1D. 410.如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)11.若√2−x在实数范围内有意义,则x的取值范围是______.12.分解因式:2x2−4x+2=______.13.有5张看上去无差别的卡片,上面分别写着−√7,−1,0,√3,2.从中随机抽取一张,则抽出卡片上写的数是√3的概率为______ .14.若关于x的一元二次方程3x2−2x−k=0有两个相等的实数根,则k的值为______ .15.为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为______ .16.如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=______ .(x>0) 17.如图,AB是半圆的直径,C为半圆的中点,A(2,0),B(0,1),反比例函数y=kx 的图象经过点C,则k的值为______ .18.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE~△QFG;②S△CEG=S△CBE+S四边形CDQH;③EC平分∠BEG;④EG2−CH2=GQ⋅GD,正确的是______ (填序号即可).三、解答题(本大题共8小题,共96.0分)19.先化简,再求值:6aa2−9÷(1+2a−3a+3),其中a=2sin30°+3.20.为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次被调查的学生共有______ 名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为______ ,并把条形统计图补充完整;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.21.某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?22.如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无机从点A的正上方点C,沿正东方向以8m/s的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)23.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y 个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?24.如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长.25.在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点α得线段EP.E,将线段EB绕点E顺时针旋转12(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;AB,请直接写出△APE与△CDG面积的比值.(3)当α=120°时,连接AP,若BE=12x2+bx+c与x轴交于点A和点C(−1,0),与y轴交于点B(0,3),26.如图,抛物线y=−34连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;OA,以PE,PF为邻边作矩形PEGF.当矩(2)如图1,作PF⊥PD于点P,使PF=12形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了相反数的定义,就属于基础题.由−(−5)=5,可得答案.【解答】解:由−(−5)=5,可得−5的相反数是5.故选:D.2.【答案】A【解析】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】B【解析】解:A.x2⋅x=x3,故此选项不符合题意;B.(xy3)2=x2y6,计算正确,故此选项符合题意;C.x6÷x3=x3,故此选项不符合题意;D.x2,x不是同类项,不能合并计算,故此选项不符合题意;故选:B.根据同底数幂的乘法,积的乘方,同底数幂的除法,合并同类项法则进行计算,从而作出判断.本题考查同底数幂的乘法,积的乘方,同底数幂的除法,掌握运算法则准确计算是解题关键.4.【答案】D【解析】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.根据左视图的意义,从左面看该几何体所得到的图形即可,注意能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示.本题考查简单几何体的三视图,理解视图的意义是画三视图的前提,理解能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示是得出正确答案的关键.5.【答案】B【解析】解:从小到大排列此数据为:76%、79%、92%、95%、95%,92%处在第3位为中位数.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.本题考查了中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6.【答案】A的图象分别位于第二、四象限,【解析】解:∵反比例函数y=kx∴k<0,∴一次函数y=kx+k的图象经过第二、三、四象限,即不经过第一象限.故选:A.根据反比例函数y=k的图象经过第二、四象限可判断出k的符号,进而可得出结论.x本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.7.【答案】C=12.8(℃),【解析】解:本溪6月1日至5日最低气温的平均数为15+13+12+12+125=13.8(℃);辽阳6月1日至5日最低气温的平均数为16+14+13+13+135×[(12−12.8)2×3+(15−12.8)2+(13−本溪6月1日至5日最低气温的方差S12=1512.8)2]=1.36,×[(13−13.8)2×3+(16−13.8)2+(14−辽阳6月1日至5日最低气温的方差S22=1513.8)2]=1.36,∵S12=S22,∴本溪、辽阳波动一样.故选:C.利用方差的定义列式计算,再比较大小,从而根据方差的意义得出答案.本题主要考查折线统计图,方差和算术平均数,解题的关键是掌握算术平均数和方差的定义.8.【答案】B【解析】解:如图,∠5=90°−30°=60°,∠3=∠1−45°=35°,∴∠4=∠3=35°,∴∠2=∠4+∠5=95°,故选:B.根据直角三角形的性质求出∠5,根据三角形的外角性质求出∠3,根据对顶角相等求出∠4,再根据三角形的外角性质计算,得到答案.本题考查的是三角形的外角性质、直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.【答案】C【解析】解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=12AC=1,∴∠AEC=90°,∴BC=√BE2+CE2=√22+12=√5,∵点F为BC的中点,∴EF=12BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=√5+1,故选:C.由题意得BE是∠ABC的平分线,再由等腰三角形的性质得BE⊥AC,AE=CE=12AC=1,由勾股定理得BC=√5,然后由直角三角形斜边上的中线性质得EF=12BC=BF= CF,求解即可.本题考查了等腰三角形的性质、直角三角形斜边上的中线性质、勾股定理、尺规作图等知识;熟练掌握尺规作图和等腰三角形的性质,证出EF=12BC=BF=CF是解题的关键.10.【答案】D【解析】解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=∠C=90°,AD//BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=2,当点P在AD上时,S=12⋅(2−2t)⋅(1−t)⋅sin60°=√32(1−t)2(0<t<1),当点P在线段BD上时,S=12(4−2t)⋅√32(t−1)=−√32t2+3√32t−√3(1<t≤2),观察图象可知,选项D满足条件,故选:D.分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.【答案】x≤2【解析】解:由题意得,2−x≥0,解得,x≤2,故答案为:x≤2.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.12.【答案】2(x−1)2【解析】解:2x2−4x+2,=2(x2−2x+1),=2(x−1)2.先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.【答案】15【解析】解:∵有5张看上去无差别的卡片,上面分别写着−√7,−1,0,√3,2,∴从中随机抽取一张,抽出卡片上写的数是√3的概率为1÷5=1.5.故答案为:15根据概率公式即可求解.本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可.能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn14.【答案】13【解析】解:∵一元二次方程3x2−2x−k=0有两个相等的实数根,∴△=b2−4ac=(−2)2−4×3×(−k)=0,.解得k=13故答案为1.3利用判别式的意义得到△=(−2)2−4×3×(−k)=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】300x+10=240x【解析】解:设B种奖品的单价是x元,则A种奖品的单价是(x+10)元,依题意得:300x+10=240x.故答案为:300x+10=240x.设B种奖品的单价是x元,则A种奖品的单价是(x+10)元,根据数量=总价÷单价,结合用300元购买A种奖品的数量与用240元购买B种奖品的数量相同,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.16.【答案】【解析】解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,tan∠ABC=ACBC =32,∵∠ADC=∠ABC,∴tan∠ADC=32.故答案为32.先利用圆周角定理得到∠ACB=90°,∠ADC=∠ABC,再利用正切的定义得到tan∠ABC=32,从而得到tan∠ADC的值.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.17.【答案】94【解析】解:设半圆圆心为D ,连接DC ,过C 作CG ⊥OA 于G ,交AB 于E ,如图:∵A(2,0),B(0,1), ∴AB =√5,DA =DC =√52, ∴tan∠BAO =OBOA =12,cos∠BAO =OA AB=2√55,sin∠BAO =OB AB=√55, ∵C 为半圆的中点, ∴∠CDE =∠EGA =90°, 又∠CED =∠AEG , ∴∠C =∠BAO ,Rt △CDE 中,tanC =DE CD ,cosC =CDCE , ∴12=√52,2√55=√52CE ,∴DE =√54,CE =54,∴AE =AD −DE =√54, Rt △AGE 中,sin∠BAO =GEAE ,cos∠BAO =AGAE , ∴√54=√55,√54=2√55,∴GE =14,AG =12,∴OG =OA −AG =32,CG =CE +GE =32, ∴C(32,32),把C(32,32)代入y =kx 得k =94, 故答案为:94.设半圆圆心为D ,连接DC ,过C 作CG ⊥OA 于G ,交AB 于E ,先求出tan∠BAO =OBOA =12,cos∠BAO =OAAB =2√55,sin∠BAO =OBAB =√55,Rt △CDE 中,tanC =DE CD ,cosC =CDCE ,求出DE=√54,CE=54,AE=√54,Rt△AGE中,sin∠BAO=GEAE,cos∠BAO=AGAE,可得GE=14,AG=12,即得C(32,32),把C(32,32)代入y=kx得k=94.本题考查反比例函数图象上点的坐标特征,涉及解直角三角形,勾股定理等,解题的关键是适当构造辅助线,求出C的坐标.18.【答案】①③④【解析】解:①∵四边形ABCD是正方形,∴∠A=∠B=∠BCD=∠D=90°.由折叠可知:∠GEP=∠BCD=90°,∠F=∠D=90°.∴∠BEP+∠AEG=90°,∵∠A=90°,∴∠AEG+∠AGE=90°,∴∠BEP=∠AGE.∵∠FGQ=∠AGE,∴∠BEP=∠FGQ.∵∠B=∠F=90°,∴△PBE~△QFG.故①正确;②过点C作CM⊥EG于M,由折叠可得:∠GEC=∠DCE,∵AB//CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,在△BEC和△MEC中,{∠B=∠EMC=90°∠BEC=∠GECCE=CE,∴△BEC≌△MEC(AAS).∴CB=CM,S△BEC=S△MEC.∵CG=CG,∴Rt△CMG≌Rt△CDG(HL),∴S△CMG=S△CDG,∴S△CEG=S△BEC+S△CDG>S△BEC+S,四边形CDQH ∴②不正确;③由折叠可得:∠GEC=∠DCE,∵AB//CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,即EC平分∠BEG.∴③正确;④连接DH,MH,HE,如图,∵△BEC≌△MEC,△CMG≌△CDG,∴∠BCE=∠MCE,∠MCG=∠DCG,∠BCD=45°,∴∠ECG=∠ECM+∠GCM=12∵EC⊥HP,∴∠CHP=45°.∴∠GHQ=∠CHP=45°.由折叠可得:∠EHP=∠CHP=45°,∴EH⊥CG.∴EG2−EH2=GH2.由折叠可知:EH=CH.∴EG2−CH2=GH2.∵CM⊥EG,EH⊥CG,∴∠EMC=∠EHC=90°,∴E,M,H,C四点共圆,∴∠HMC=∠HEC=45°.在△CMH和△CDH中,{CM=CD∠MCG=∠DCG CH=CH,∴△CMH≌△CDH(SAS).∴∠CDH=∠CMH=45°,∵∠CDA=90°,∴∠GDH=45°,∵∠GHQ=∠CHP=45°,∴∠GHQ=∠GDH=45°.∵∠HGQ=∠DGH,∴△GHQ∽△GDH,∴GQGH =GHGD.∴GH2=GQ⋅GD.∴GE2−CH2=GQ⋅GD.∴④正确;综上可得,正确的结论有:①③④.故答案为:①③④.①利用有两个角对应相等的两个三角形相似进行判定即可;②过点C作CM⊥EG于M,通过证明△BEC≌△MEC,进而说明△CMG≌△CDG,可得S△CEG=S△BEC+S△CDG>S△BEC+S四边形CDQH,可得②不正确;③由折叠可得:∠GEC=∠DCE,由AB//CD可得∠BEC=∠DCE,结论③成立;④连接DH,MH,HE,由△BEC≌△MEC,△CMG≌△CDG可知:∠BCE=∠MCE,∠MCG=∠DCG,所以∠ECG=∠ECM+∠GCM=12∠BCD=45°,由于EC⊥HP,则∠CHP=45°,由折叠可得:∠EHP=∠CHP=45°,则EH⊥CG;利用勾股定理可得EG2−EH2=GH2;由CM⊥EG,EH⊥CG,得到∠EMC=∠EHC=90°,所以E,M,H,C四点共圆,所以∠HMC=∠HEC=45°,通过△CMH≌△CDH,可得∠CDH=∠CMH=45°,这样,∠GDH=45°,因为∠GHQ=∠CHP=45°,易证△GHQ∽△GDH,则得GH2=GQ⋅GD,从而说明④成立.本题主要考查了正方形的性质,翻折问题,勾股定理,三角形全等的判定与性质,三角形的相似的判定与性质,翻折问题是全等变换,由翻折得到对应角相等,对应边相等是解题的关键.19.【答案】解:6aa2−9÷(1+2a−3a+3)=6a(a+3)(a−3)÷a+3+2a−3a+3=6a(a+3)(a−3)⋅a+33a=2a−3,当a=2sin30°+3=2×12+3=1+3=4时,原式=24−3=2.【解析】根据分式的加法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60 90°【解析】解:(1)本次被调查的学生共有:9÷15%=60(名);(2)B项目的人数有:60−9−12−24=15(人),图中“B项目”所对应的扇形圆心角的度数为:360°×1560=90°;补全统计图如下:(3)根据题意列表如下:由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好小华和小艳被抽中的情况有2种. 则恰好小华和小艳被抽中的概率是212=16. (1)根据A 项目的人数和所占的百分比求出总人数;(2)用总人数减去其它项目的人数,求出B 项目的人数,再用360°乘以“B 项目”所占的百分比即可得出“B 项目”所对应的扇形圆心角的度数,最后补全统计图即可; (3)根据题意列出图表得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.熟练掌握概率=所求情况数与总情况数之比是解题的关键.21.【答案】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:{x +4y =1355x +2y =225,解得:{x =35y =25.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元. (2)设可以购买手绘纪念册m 本,则购买图片纪念册(40−m)本, 依题意得:35m +25(40−m)≤1100, 解得:m ≤10.答:最多能购买手绘纪念册10本.【解析】(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,根据“购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论; (2)设可以购买手绘纪念册m 本,则购买图片纪念册(40−m)本,根据总价=单价×数量,结合总价不超过1100元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次不等式.22.【答案】解:(1)由题意,CD=8×15=120(m),在Rt△ACD中,tan∠ADC=ACCD,∴AC=CD⋅tan∠ADC=CD⋅tan60°=120×√3=120√3(m),答:无人机的高度AC是120√3米;(2)过点B作BF⊥CD于点F,则四边形ABFC是矩形,∴BF=AC=120√3,AB=CF,在Rt△BEF中,tan∠BEF=BFEF,∴EF=BFtan37∘=120√30.75≈276.8(m),∵CE=8×(15+50)=520(m),∴AB=CF=CE−EF=520−276.8=243(米),答:随道AB的长度约为243米.【解析】(1)利用正切函数即可求出AC的长;(2)过点B作BF⊥CD于点F,则四边形ABFC是矩形,得到BF=AC=120√3,AB=CF,在△BEF中利用正切函数即可求得EF,进而即可求得AB=CF=CE−EF=243米.本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.【答案】解:(1)由题意,得:y=(x−40)[100−2(x−60)]=−2x2+300x−8800,∴y=−2x2+300x−8800(60≤x≤110);(2)令y=2400得:−2x2+300x−8800=2400,解得:x=70或x=80,答:当销售价为70元或80元时,每星期的销售利润恰为2400元;(3)y=−2x2+300x−8800=−2(x−75)2+2450,∵−2<0,∴当x=75时,y有最大值,最大值为245元,答:每件定价为75元时利润最大,最大利润为2450元.【解析】(1)依据每个星期的销售利润=每件的利润×销售的件数列方程求解即可;(2)根据销售利润为2400元列出关于x的一元二次方程,从而可求得售价;(3)利用配方法可求得抛物线的最大值以及此时自变量的取值.本题主要考查的是二次函数的应用,根据题意列出y与x的函数关系式是解题的关键.24.【答案】证明(1)连接OE,∵OA=OE,∴∠OEA=∠OAE,在Rt△ABC中,∠ACB=90°,∴∠BAC+∠B=90°,∵BF=EF,∴∠B=∠BEF,∵∠OAE=∠BAC,∴∠OEA=∠BAC,∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:连接DE,∵OC=9,AC=4,∴OA=OC−AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE=√AD2−AE2=√102−82=6,∴cos∠DAE=AEAD =810=45,在Rt△ABC中,cos∠BAC=ACAB =4AB,∵∠BAC =∠DAE , ∴4AB =45, ∴AB =5,∴BE =AB +AE =5+8=13, ∵OD =OE , ∴∠ODE =∠OED , ∵EF 是⊙O 的切线, ∴∠FEO =90°,∵∠OED +∠OEA =90°,∠FEB +∠OEA =90°, ∴∠FEB =∠OED ,∴∠B =∠FEB =∠OED =∠ODE , ∴△FBE∽△ODE , ∴BFDO =BEDE , ∴BF 5=136, ∴BF =656.【解析】(1)连接OE ,求出OE//BF 推出∠AEO =90°,根据切线的判定推出即可; (2)连接DE ,根据已知条件求出⊙O 的直径AD =10,在Rt △ADE 中,求出DE =6,cos∠DAE =45,在Rt △ABC 中,求出cos∠BAC =4AB ,根据∠BAC =∠DAE ,求出AB =5,进而得到BE =13,根据相似三角形的判定证得△FBE∽△ODE ,根据相似三角形的性质即可求出BF .本题考查了切线的判定,等腰三角形的性质,平行线的性质和判定,相似三角形的性质和判定的应用,解此题的关键是正确作出辅助线,把化为直角三角形,灵活应用三角函数的定义解决问题.25.【答案】解:(1)如图1,延长PE 交CD 于点Q ,连接AQ ,∵四边形ABCD 是平行四边形, ∴AD//BC ,AB//CD , ∵α=120°,即∠BAD =120°, ∴∠B =∠ADC =60°,∴∠BEP=60°=∠B,∴PE//BC//AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在▱ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AD=AE,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=12α=12∠BAD=12×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°−∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=AFAC,∴AC=AFsin∠ACF =AFsin45∘=AF√22=√2AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)由(1)知,BC=AD=AE=AB−BE,∵BE=12AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=12AD⋅CK=12a⋅2a⋅sin60°=√32a2,S△CDG S△ADG =12CD⋅GN12AD⋅GM=CDAD=2aa=2,∴S△CDG=2S△ADG,∴S△CDG=23S△ACD=√33a2,由(1)知PE//BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE⋅sin60°=√32a,∴S △APE =12PE ⋅AH =12a ⋅√32a =√34a 2, ∴S △APES△CDG=√34a 2√33a =34.②如图4,当点E 在AB 延长线上时,由①同理可得:S △CDG =25⋅S △ACD =25×12×2a ×√32×3a =3√35a 2, S △APE =12PH ⋅AE =12×√32a ×3a =3√34a 2, ∴S △APES△CDG=3√34a 23√35a =54,综上所述,△APE 与△CDG 面积的比值为34或54.【解析】(1)如图1,延长PE 交CD 于点F ,连接AF ,根据平行四边形性质可证得四边形ADFE 是菱形,进而得出△AEF 是等边三角形,再证明△AEP≌△AFC(SAS),即可得出答案;(2)如图2,连接CF ,证明△BCF≌△EAF(SAS),进而得出∠AFC =90°,利用三角函数可得AC =AFsin∠ACF =√2AF ,再运用勾股定理即可;(3)设BE =a ,则PE =AD =AE =a ,AB =CD =2a ,分两种情况:①当点E 在AB 上时,如图3,过点G 作GM ⊥AD 于点M ,作GN ⊥CD 于点N ,过点C 作CK ⊥AD 于点K ,过点A 作AH ⊥PE 的延长线于点H ,利用角平分线性质得出S △ACD =12AD ⋅CK =12a ⋅2a ⋅sin60°=√32a 2,S △CDG =23S △ACD =√33a 2,即可得出答案; ②如图4,当点E 在AB 延长线上时,同理可得出S △CDG =25⋅S △ACD =3√35a 2,S △APE =12PH ⋅AE =3√34a 2,即可求出答案. 本题是四边形综合题,考查了平行四边形的判定与性质,菱形判定和性质,角平分线性质,勾股定理,全等三角形判定和性质,三角形面积,三角函数定义等,添加辅助线构造直角三角形和全等三角形是解题关键.26.【答案】解:(1)由题意得:{−34−b +c =0c =3,解得{b =94c =3,故抛物线的表达式为y =−34x 2+94x +3;(2)对于y =−34x 2+94x +3,令y =−34x 2+94x +3=0,解得x =4或−1, 故点A 的坐标为(4,0),则PF =2,由点A 、B 的坐标得,直线AB 的表达式为y =−34x +3, 设点P 的坐标为(x,−34x 2+94x +3),则点E(x,−34x +3),则矩形PEGF 的面积=PF ⋅PE =2×(−34x 2+94x +3+34x −3)=3S △BOC =3×12×BO ⋅CO =32×3×1,解得x =1或3,故点P 的坐标为(1,92)或(3,3);(3)由抛物线的表达式知,其对称轴为x =32,故点Q 的坐标为(32,n), 当∠BAQ 为直角时,如图2−1,设BQ 交x 轴于点H ,由直线AB 的表达式知,tan∠BAO =34,则tan∠BHO =43, 故设直线BQ 的表达式为y =43x +t , 该直线过点B(0,3),故t =3, 则直线BQ 的表达式为y =43x +3, 当x =32时,y =43x +3=5, 即n =5;②当∠BQA 为直角时,过点Q 作直线MN 交y 轴于点N ,交过点A 与y 轴的平行线于点M ,∵∠BQN +∠MQA =90°,∠MQA +∠MAQ =90°, ∴∠BQN =∠MAQ , ∴tan∠BQN =tan∠MAQ , 即BNNQ =MQMA ,则n−332=4−32n,解得n =3±2√62; ③当∠BAQ 为直角时, 同理可得,n =−103;综上,以点Q 、A 、B 为顶点的三角形是锐角三角形,则△ABQ 不为直角三角形, 故点Q 纵坐标n 的取值范围为−103<n <3−2√62或3+2√62<n <5.【解析】(1)用待定系数法即可求解;(2)由矩形PEGF 的面积=PF ⋅PE =2×(−34x 2+94x +3+34x −3)=3S △BOC =3×12×BO ⋅CO =32×3×1,即可求解;(3)当∠BAQ 为直角时,求出直线BQ 的表达式为y =43x +3,得到n =5;当∠BQA 为直角时,利用解直角三角形的方法求出n =3±2√62;当∠BAQ 为直角时,同理可得,n =−103,进而求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

辽宁省沈阳市2021年中考数学试卷A卷

辽宁省沈阳市2021年中考数学试卷A卷

辽宁省沈阳市2021年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-3的相反数是()A . 3B . -3C .D . -2. (2分) (2019九上·朝阳期末) 若二次根式有意义,则x的取值范围为()A . x>2B . x<2C . x≤2D . x≥23. (2分) (2019九上·宁波期中) 下列事件是必然事件的是()A . 某人体温是100℃B . 太阳从西边下山C . a2+b2=﹣1D . 购买一张彩票,中奖4. (2分) (2020八上·东台月考) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A .B .C .D .6. (2分)(2012·抚顺) 从﹣2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是()A .B .C .D .7. (2分)(2020·云梦模拟) 如图所示,菱形AOBC的顶点B在y轴上,顶点A在反比例函数y=的图象上,边AC,OA分别交反比例函数y=的图象于点D,点E,边AC交x轴于点F,连接CE.已知四边形OBCE的面积为12,sin∠AOF=,则k的值为()A .B .C .D .8. (2分) (2020九下·哈尔滨月考) 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车距甲地还有()A . 70千米B . 80千米C . 90千米D . 100千米9. (2分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;=.正确的有()A . ①②B . ①④⑤C . ①②④⑤D . ①②③④⑤10. (2分) (2016七上·绵阳期中) 如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n(n 为正整数)个三角形,则需要火柴棍()A . (2n+3)根B . 2n根C . (2n+1)根D . (2n﹣1)根二、填空题 (共6题;共6分)11. (1分) (2019七下·昭平期中) 计算=________.12. (1分)一组数据:3,4,4,6,6,6的中位数是________.13. (1分)计算:=________14. (1分) (2019九下·江阴期中) 在□ABCD中,若∠A=40°,则∠C=________°.15. (1分)(2019·双牌模拟) 如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A (﹣1,0)与点C(x2 , 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中符合题意结论的序号为________.16. (1分)(2019·通辽) 如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为________.三、解答题 (共8题;共91分)17. (5分) (2020八上·恩平期末) 计算:18. (5分) (2019七下·安徽期末) 根据提示,完成推理:已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程解:AC⊥DG,理由如下:∵EF⊥BC,AD⊥BC,∴AD∥EF.∴∠2=∠3.……请完成以上推理过程.19. (11分)(2019·衢州) 某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动。

2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)

2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)

2021年辽宁省沈阳市中考数学试卷一。

选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2021•沈阳)比0大的数是()C.﹣0。

5 D.1A.﹣2 B.﹣2.(3分)(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2021•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2021•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2021•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2021•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3。

5,5 B.4,4 C.4,5 D.4。

5,47.(3分)(2021•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2021•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二。

填空题(每小题4分,共32分)9.(4分)(2021•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2021•沈阳)不等式组的解集是.11.(4分)(2021•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2021•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65。

辽宁省沈阳市2021年中考数学试卷C卷

辽宁省沈阳市2021年中考数学试卷C卷

辽宁省沈阳市2021年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·高邮模拟) 1不是﹣1的()A . 相反数B . 绝对值C . 倒数D . 平方数2. (2分) (2020七下·江阴月考) 若,,则的值为()A . 6B . 7C . 8D . 93. (2分)小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A . 俯视图B . 左视图C . 主视图D . 都有可能4. (2分)下列说法正确的是()A . 了解飞行员视力的达标率应使用抽样调查B . 一组数据3,6,6,7,9的中位数是6C . 从2000名学生中选200名学生进行抽样调查,样本容量为2000D . 掷一枚质地均匀的硬币,正面朝上是必然事件5. (2分) (2019七下·广州期中) 如图,AB∥CD,直线l分别与AB,CD相交,若∠1=130°,则∠2=()A . 40°B . 50°C . 130°D . 140°6. (2分)(2019·福田模拟) 在一次“爱心义卖活动”中,某校9年级的六个班级捐献的义卖金额数据如下:900元,920元,960元,1000元,920元,950元.这组数据的众数和中位数分别是()A . 920元,960元B . 920元,1000元C . 1000元,935元D . 920元,935元7. (2分) (2020九上·岐山期末) 已知关于x的函数y=k(x+1)和y= (k≠0)它们在同一坐标系中的大致图象是()A .B .C .D .8. (2分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工恰好同时完成任务,甲队比乙队每天多安装2台,则甲、乙两队每天安装的台数分别为()A . 32台,30台B . 22台,20台C . 12台,10台D . 16台,14台9. (2分) (2020九上·高平期末) 已知A4纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为()A .B .C .D . 无法确定10. (2分) (2019八上·常州期末) 小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A . 两人从起跑线同时出发,同时到达终点B . 小苏跑全程的平均速度大于小林跑全程的平均速度C . 小苏前跑过的路程大于小林前跑过的路程D . 小林在跑最后的过程中,与小苏相遇2次二、填空题 (共8题;共8分)11. (1分) (2017八上·江门月考) 用科学记数法表示:0.0002015=________.12. (1分) (2018八上·望谟月考) 正多边形一个外角的度数是,则该正多边形的边数是________.13. (1分)(2018·苏州模拟) 小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是________.14. (1分) (2016八上·宁海月考) 当,时, ________0(填“<”或“>”).15. (1分) (2016八上·桐乡期中) 如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=________度。

2021辽宁省沈阳市中考数学试卷

2021辽宁省沈阳市中考数学试卷

辽宁省沈阳市中考数学试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2B.1C.2D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105 3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO =AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=B,对角线AC,BD相交于点O,点P为边AD 上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.2020年辽宁省沈阳市中考数学试卷参考答案一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.A;2.CD;3.D;4.C;5.B;6.A;7.A;8.B;9.D;10.C;二、填空题(每小题3分,共18分)11.x(2x+1);12.;13.乙;14.6;15.8;16.或1;三、解答题(第17小题6分,第18、19小题各8分,共22分)17.;18.;19.;四、(每小题8分,共16分).20.;;;21.;五、(本题10分)22.;六、(本题10分)23.;;;;七、(本题12分)24.;八、(本题12分)25.;;。

辽宁省沈阳市2021版中考数学试卷(I)卷

辽宁省沈阳市2021版中考数学试卷(I)卷

辽宁省沈阳市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)绝对值大于2且不大于4的整数有()A . 3个B . 4个C . 5个D . 6个2. (2分)若使二次根式在实数范围内有意义,则x的取值范围是()A . x≥2B . x>2C . x<2D . x≤23. (2分)下列计算正确的是()A . (2x﹣3)2=4x2+12x﹣9B . (4x+1)2=16x2+8x+1C . (a+b)(a﹣b)=a2+b2D . (2m+3)(2m﹣3)=4m2﹣34. (2分) (2016七下·滨州期中) 如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH 与AB交于点P,则下列结论错误的是()A . ∠EMB=∠ENDB . ∠BMN=∠MNCC . ∠CNH=∠BPGD . ∠DNG=∠AME5. (2分)(2019·大邑模拟) 关于分式方程的解,下列说法正确的是()A . 解是x=2B . 解是x=4C . 解是x=﹣4D . 无解6. (2分) (2016七上·夏津期末) 如图是由4个大小相同的正方体搭成的几何体,其主视图是()A .B .C .D .7. (2分)(2017·泸州) 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A .B . 2C . 6D . 88. (2分)小明周末去爬山,从家出发到山下开始爬山,到达山顶后在原地休息了一会,再原路返回下山到家,那么小明离家的距离S(单位:千米)与离家的时间t(单位:时)之间的函数关系图象大致是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019·淮安) 分解因式: ________.10. (1分)(2011·徐州) 某班40名同学的年龄情况如下表,则这40名同学的年龄的中位数是________岁.年齡/岁14151617人数41618211. (1分) (2017九上·西城期中) ⊙O中,AB为⊙O的弦,∠AOB=140°,则弦AB所对的圆周角为________度.12. (1分) (2019八下·桐乡期中) 设α、β是方程两个实数根,则的值为________.13. (1分)(2017·凉州模拟) 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为________cm.14. (1分)周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=________ .(不需要写出定义域)15. (1分)某学校去年对实验器材的投资为2万元,预计今年和明年的投资总额为12万元,求该学校这两年在实验器材投资上的平均增长率是________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年辽宁省沈阳市中考数学真题及答案一、选择题(本题有10小题,每小题2分,共20分) 1. 9的相反数是A.91 B. 91- C. 9 D. -9 2. 如图是由6个相同小立方块搭成的几何体,这个几何体的主视图A.B.C.D.3. 据报道,截至2021年5月24日16时,沈阳市新冠疫苗累计接种3270000剂次,将数据3270000用科学计数法表示为A. 32.7×105B. 0.327×107C. 3.27×105D. 3.27×1064. 下列计算正确的是A. 824a a a =⋅B. a a a 426=-C. 326a a a =÷ D. 2422)(b a b a -=-5. 如图,直线a ,b 被直线c 所截,若,∠1=70°,则∠2的度数是A. 70°B. 100°C. 110°D. 120° 6. 信息技术课上,在老师的指导下,小好同学训练打字速度(字/min ),数据整理如下:15,17,23,15,17,17,19,21,21,18,对于这组数据,下列说法正确的是A. 众数是17B. 众数是15C. 中位数是17D. 中位数是18 7. 如图,△ABC 与△A 1B 1C 1位似,位似中心是点O ,若OA:OA 1=1:2,则△ABC 与△A 1B 1C 1的周长比是A. 1:2B. 1:3C. 1:4D.2:18. 一次函数13+-=x y 的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9. 下列说法正确的是A. 任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B. “从一副扑克牌中任意抽取一张,抽到大王”是必然事件C. 了解一批冰箱的使用寿命,采用抽样调查的方式D. 若平均数相同的甲,乙两组数据3.02=甲S ,02.02=乙S ,则甲组数据更稳定10. 如图,△ABC 是⊙O 的内接三角形,AB=32,∠ACB=60°,连结OA ,OB ,则的长是A. 3πB. 32πC. πD. 34π二、填空题(本题有6小题,每小题3分,共18分) 11. 分解因式:a ax ax ++22=________12. 不等式组⎩⎨⎧≥-<-05315x x 的解集是________13. 化简:)4()16841(2+⋅---x x x =________ 14. 如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数)0(≠=k xky 图象上的一点,过A 分别作AM ⊥x 轴于点M ,AN ⊥y 轴于点N ,若四边形AMON 的面积为12,则k 的值是________15. 某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件。

经调查发现,这种生活用品的销售单价每提高1元,其销量相应减少4件,那么将销售价定为________元时,才能使每天所获销售利润最大16. 如图,△ABC 中,AC=3,BC=4,AB=5,四边形ABEF 是正方形,点D是直线BC 上一点,且CD=1,P 是线段DE 上一点,且PD=32DE ,过点P 作直线l 与BC 平行,分别交AB ,AD 于点G ,H ,则GH 的长是________三、解答题(共82分) 17.(本题6分)计算:2)21(3130tan 3)2021(-+-+︒--π18.(本题8分)如图,在菱形ABCD 中,点M ,N 分别是边BC ,DC 上的点,BM=43BC ,DN=43DC ,连结AM ,AN ,延长AN 交线段BC 的延长线于点E 。

(1)求证:△ABM ≌△AND ;(2)若AD=4,则ME 的长是________。

19.(本题8分)某品牌免洗洗手液按剂型分为凝胶型、液体型、泡沫型三种型号(分别用A 、B 、C 依次表示这三种型号),小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同。

(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。

20.(本题8分)学史明理,学史增信,学史崇德,学史力行。

在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A ,B ,C ,D 四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了________名学生;(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,D等级对应的圆心角度数是________度;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少学生的成绩评定为C等级。

21.(本题8分)某校团体操表演队有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,求增加了多少行或多少列?22.(本题10分)如图,AB是⊙O的直径,AD与⊙O交于点A,点E是半径OA上一点(点E不与点O,A重合),连结DE交⊙O于点C,连结CA,CB。

若CA=CD,∠ABC=∠D,(1)求证:AD是⊙O的切线;(2)若AB=13,CA=CD=5,则AD 的长是________。

23.(本题10分)如图,平面直角坐标系中,O 是坐标原点,直线15+=kx y (k ≠0)经过点C (3,6),与x 轴交于点A ,与y 轴交于点B 。

线段CD 平行于x 轴,交直线x y 43=于点D ,连结OC ,AD 。

(1)填空:k =________,点A 的坐标是(____,____); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D为止;动点Q 同时从点D 出发,沿对角线DO 以每秒1个单位长度的速度向点O 运动,直到点O 为止。

设两个点的运动时间均为t 秒, ①当1=t 时,△CPQ 的面积是________;②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值。

24.(本题12分)在△ABC 中,AB=AC ,△CDE 中,CE=CD (CE ≥CA ),BC=CD ,∠D=α, ∠ACB+∠ECD=180°,点B ,C ,E 不共线,点P 为直线DE 上一点,且PB=PD 。

(1)如图1,点D 在线段BC 延长线上,则∠ECD=________,∠ABP=________(用含α的代数式表示);(2)如图2,点A ,E 在直线BC 同侧,求证:BP 平分∠ABC ;(3)若∠ABC=60°,BC=13+,将图3中的△CDE 绕点C 按顺时针方向旋转,当BP ⊥DE 时,直线PC 交BD 于点G ,点M 是PD 的中点,请直接写出GM 的长。

25.(本题12分)如图,面直角坐标系中,O 是坐标原点,抛物线c bx x y ++-=2与x 轴交于A ,B 两点(点A 在点B 的左侧),点B 坐标是(3,0),抛物线与y 轴交于点C (0,3),点P 是抛物线的顶点,连结PC 。

(1)求抛物线的函数表达式,并直接写出顶点P 的坐标;(2)直线BC 与抛物线的对称轴交于点D ,点Q 为直线BC 上一动点,①当△QAB 的面积等于△PCD 面积的2倍时,求点Q 的坐标;②在①的条件下,当点Q 在x 轴上方时,过点Q 作直线l 垂直于AQ ,直线3731-=x y 交直线l 于点F ,点G 在直线3731-=x y 上,且AG=AQ 时,请直接写出GF 的长。

参考解答一、选择题(本题有10小题,每小题2分,共20分)1 2 3 4 5 6 7 8 9 10 DBDBCAACCD二、填空题1112131415162)1(+x a35≤6<x 1 -12 11 31或95 提示:16. 如图,KM=EM ED PD ⋅=38432=⨯,AN=AC-NC=383-=31,91331==AC AN ,GN=94491=⨯=⋅BC AC AN ,HN=CD AC AN ⋅=91,GH=GN ±HN=9194±。

点D 有可能在BC 边上,也可能在BC 的延长线上。

三、解答题17. 2)21(3130tan 3)2021(-+-+︒--π=2)13(3331+-+⨯-=221331=+-+-18. 解:(1)菱形ABCD 中,∠B=∠D ,AB=BC=CD=AD ,而BM=43BC ,DN=43DC ,∴BM=DN , △ABM 和△ADN 中,∵AB=AD ,∠B=∠D ,BM=DN , ∴△ABM ≌△ADN (SAS );(2)当AD=4时,BM=DN=43DC=43×4=3,则MC=NC=1, ∵AD ∥CE ,∴△ECN ∽△ADN ,∴31==DN CN AD EC ,∴EC=31AD=34, ∴ME=MC+EC=37341=+。

19.(1)31; (2)如下表:小辰 A A A B B B C C C 小安 A B C A B C A B C 同一型号√√√由表知:他们选择同一型号的概率为31。

20.(1)由两张图知:A 有32人,占40%,所以样本容量是80人;(2)求出B 的人数是16人,补全条形图如图; (3)D 等占10%,扇形圆心角是36°; (4)在被抽到的80人中,C 等级24人,占30%,以此估计全校2000人中评为C 的可能有 2000×30%=600,即可能有600人。

21. 解:设增加了x 行,则共有(6+x )行,(8+x )列,根据题意:5186)8)(6(+⨯=++x x , 0)3)(17(=-+x x , ∵017≠+x ,∴3=x , 答:增加了3列。

22. 提示(1)AB 是直径,∠ACB=90°,∠B+∠2=90°;DC=AC ,那么∠D=∠1,而∠D=∠B , 所以∠1+∠2=90°,所以AD 是切线;(2)勾股定理求出BC=12,作CG ⊥AD ,△ACG 与△BAC 相似,对应边成比例, 则AG=1360=⋅AB BC AC ,则AD=2AG=13120。

23.(1)直线15+=kx y 过点C (3,6),那么6153=+k ,∴3-=k ,直线153+-=x y 与x 轴的交点为A (5,0); (2)∵CD ∥OA ,而点C 纵坐标为6,∴设D (x ,6),∵直线x y 43=过点D (x ,6),∴8=x , 则D (8,6),CD=5,而A (5,0),OA=5,∴CD=OA ,∵CD ∥OA ,且CD=OA ,∴四边形OADC 是平行四边形; (3)点C 纵坐标为6,则CD 与OA 之间的距离为6=d ,S □OADC =OA ·d =5×6=30,则S △COD =21S □OADC =15, 分别作点C ,D 到x 轴的垂线段CE 和DF ,则E (3,0),F (8,0),CE=DF=6, AE=2,OF=8,在Rt △ACE 和Rt △ODF 中,分别求得AC=102,OD=10; ①当1=t 时,OP=DQ=1,PQ=OD-OP-DQ=10-1-1=8, S △CPQ =COD S OD PQ ∆⋅=1215108=⨯; ②记OD 和AC 的交点为G ,则OD 和AC 互相平分于点G ,而OP=DQ ,∴GP=GQ ,∴四边形CPAQ 是平行四边形(对角线互相平分的四边形是平行四边形),当□CPAQ 是矩形时,只要PQ=AC=102,∵OP=DQ=t (0≤t ≤10),∴PQ=|OP+DQ-OD|=102-t ,102102=-t ,也就是102102=-t ,或102102-=-t∴1051-=t ,1052+=t (均满足0≤t ≤10)。

相关文档
最新文档