因式分解的规则与要点

合集下载

初中因式分解的常用方法

初中因式分解的常用方法

初中因式分解的常见方法因式分解的概念与原则1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。

2、原则:(1)分解必须要彻底(即分解之后的因式均不能再做分解);(2)结果最后只留下小括号;(3)结果的多项式是首项为正,为负时提出负号;(4)结果个因式的多项式为最简整式,还可以化简的要化简;(5)如有单项式和多项式相乘,应把单项式提到多项式前;(6)相同因式的乘积写成幂的形式;(7)如无特殊要求,一般在有理数范围内分解。

如另有要求,在要求的范围内分解。

因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;(3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解;(4)检查各因式是否进行到每一个因式的多项式都不能再分解。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。

十字相乘试一试,分组分解要相对合适。

”因式分解的常用方法因式分解与整式乘法是互逆的运算,是学好代数的基础之一,希望同学给以足够的重视。

因式分解的每一步都必须是恒等变形,必须进行到每一个多项式因式都不能再分解为止。

常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。

在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。

下面通过例题一一介绍。

一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)总结(口诀):找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。

因式分解

因式分解

因式分解知识点一:因式分解的概念及注意事项因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;知识点二:因式分解基本方法方法一·提公因式法1、提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的整式.2、提公因式法分解因式,关键在于观察、发现多项式的公因式.3、找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4、注意事项:多项式的公因式应是各项所共有的最高因式,公因式的系数原则上是不定的。

但对整系数的多项式,其公因式的系数一般取所有系数的最大公约数;对分数系数的多项式,其公因式的系数一般取所有分母的最小公倍数分之一;公因式的字母取各项共有的字母,各相同字母的指数取其次数最低的。

公因式可以是单项式也可以是多项式,有时要进行适当变形才能出现公因式。

题型展示:1、将下列各式分解因式: (1)y)2b(x -y)3a(x ++;(2)32)(18)(12n m n m -+-;(3)3)2(6)2(3x y y x ---;(4)22222)(83)(41p q ab q p b a ---; 2、下列分解因式结果正确的是( )A.)6)(2()2()2(6x x x x x +-=-+-B.)2(2223x x x x x x +=++C.)()()(2b a a b a ab b a a -=-+- D.)2(3632+=+x xn xn n x提高练习1、如果b -a =-6,ab =7,那么22ab b a -的值是( )A.42B.-42C.13D.-132、若4x 3-6x 2=2x 2(2x +k ),则k =________.3、2(a -b )3-4(b -a )2=2(a -b )2(________).4、36×29-12×33=________.5、分解因式(1)2)())((y x y x y x +--+(2))(4)(82x y b y x a ---6.计算与求值29×20.03+72×20.03+13×20.03-14×20.03.7、.先化简,再求值a (8-a )+b (a -8)-c (8-a ),其中a =1,b =21,c =21.8、已知812=-y x ,2=xy ,求43342y x y x -的值.方法二·公式法【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

因式分解知识点总结

因式分解知识点总结

因式分解知识点总结一、因式分解的概念。

1. 定义。

- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。

2. 与整式乘法的关系。

- 因式分解与整式乘法是互逆的恒等变形。

整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。

二、因式分解的方法。

1. 提公因式法。

- 公因式的确定。

- 系数:取各项系数的最大公因数。

例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。

- 字母:取各项相同的字母。

在6x^2+9x中,相同的字母是x。

- 字母的指数:取相同字母的最低次幂。

对于6x^2+9x,x的最低次幂是1。

所以公因式是3x。

- 提公因式的步骤。

- 找出公因式。

- 用多项式除以公因式,得到另一个因式。

例如,6x^2+9x = 3x(2x+3)。

2. 公式法。

- 平方差公式。

- 公式:a^2-b^2=(a + b)(a - b)。

- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。

例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。

- 完全平方公式。

- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。

- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。

例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。

3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。

因式分解最全方法归纳

因式分解最全方法归纳

因式分解最全方法归纳一、因式分解的概念与原则1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。

2、原则:(1)分解必须要彻底(即分解之后的因式均不能再做分解);(2)结果最后只留下小括号;(3)结果的多项式是首项为正,为负时提出负号;(4)结果个因式的多项式为最简整式,还可以化简的要化简;(5)如有单项式和多项式相乘,应把单项式提到多项式前;(6)相同因式的乘积写成幂的形式;(7)如无特殊要求,一般在有理数范围内分解。

如另有要求,在要求的范围内分解。

3、因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;(3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解;(4)检查各因式是否进行到每一个因式的多项式都不能再分解。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。

十字相乘试一试,分组分解要相对合适。

”二、因式分解的方法1、提取公因式公因式:一个多项式的多项都含有的相同的因式叫做这个多项式的公因式。

公因式可以是单项式,也可以是多项式。

确定公因式的方法:公因数的常数应取各项系数的最大公约数,多项式第一项为负的,要提出负号;字母取各项的相同字母,而且各字母的指数取次数最低的。

提取公因式:公因式作为一个因式,原式除以公因式的商作为另一个因式。

注意事项:(1)先确定公因式,一次把公因式全部提净;(2)提完公因式后,商的项数与原式相同,与公因式相同的项,其商为1 不可丢掉;(3)提取的公因式带负号时,多项式的各项要变号。

例1、分解因式:6a 2 b–9abc+3ab解:原式=3ab (2a-3c+1 )例2、分解因式:–12x 3 y 2 +4x 2 y 3解:原式=–4x 2 y 2 ( 3x–y)总结(口诀):找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。

【知识】因式分解知识点归纳

【知识】因式分解知识点归纳

【关键字】知识因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就能够了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就能够用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

因式分解知识点归纳

因式分解知识点归纳

因式分解知识点归纳因式分解是代数中的重要概念和技巧,它在解方程、求根、化简表达式等方面都有广泛的应用。

以下是关于因式分解的知识点归纳:一、基本概念1.因式:在乘法中,参加运算的每个数或字母或含有字母的式子,称为因式。

2.因式分解:把一个多项式写成若干个因式相乘的形式,称为因式分解。

3.因数:若一个数a能够整除另一个数b,那么称a是b的因数,b 是a的倍数。

二、因式分解的原则1.分解的因式中只能有素数,即不能再分解。

2.同一因式在分解式中只能出现一次,不允许出现多个相同的因式。

三、因式分解的方法1.公因式法:把多项式中的公因式提出来,然后将剩余部分进行因式分解。

2.提取因式法:将多项式中的因式提取出来,然后将剩余部分进行因式分解。

3.平方差公式:对于两个完全平方差的多项式,可以利用平方差公式进行因式分解。

4.分组分解法:将多项式中的项进行分组,然后利用求和公式或平方差公式进行因式分解。

5.完全平方公式:对于一个完全平方的多项式,可以利用完全平方公式进行因式分解。

四、常用的因式分解公式1.两个平方差的因式分解公式:a²-b²=(a+b)(a-b);a² + 2ab+ b² = (a + b)²;a² - 2ab + b² = (a - b)²。

2.完全平方公式:a² + 2ab + b² = (a + b)²;a² - 2ab + b² = (a - b)²。

3.一次式的因式分解公式:ax + bx = x(a + b);ax - bx = x(a - b);ax + ay = a(x + y);ax - ay = a(x - y)。

五、案例分析1.因式分解:将多项式因式分解为两个一次因式的乘积。

例如:x²-3x-10=(x-5)(x+2)。

2.提取公因式:将多项式中的公因式提取出来。

因式分解法知识点

因式分解法知识点

因式分解法知识点一、知识概述《因式分解法》①基本定义:因式分解法呢,就是把一个多项式化成几个整式乘积的形式。

简单说,就像是把一个大的“数学组合体”拆成几个小“零件”相乘的样子。

比如说多项式$x^2 - 4$,把它变成$(x + 2)(x - 2)$,这就是因式分解。

②重要程度:在数学这个学科里,它可太重要了。

在解方程里经常要用,如果不会因式分解,很多方程都解不出来。

而且在分式运算、化简代数式等方面也是超级重要的。

就好比在一个建筑工程里,它是基础中的基础,要是不会,后面一系列高楼大厦(复杂的数学问题)都盖不起来。

③前置知识:那得先掌握整式乘法的知识,像单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这些。

还得知道基本的代数式运算规则,加减乘除啥的。

比如说不知道乘法规则,怎么能知道怎么把一个多项式拆成乘法的形式呢?④应用价值:实际应用啊,就比如在物理计算里,如果要化简一个关于力或者速度的表达式,可能就用到因式分解把式子变简单去计算。

再比如安排人员分组计算的时候,若关系用式子表示出来,因式分解能帮助快速算出分组个数和每组人数的关系。

二、知识体系①知识图谱:在数学这个大乐园里,因式分解算是代数部分的一个重要“景点”。

它跟很多地方都有联系,像是解方程的桥上、分式化简的城堡旁。

②关联知识:跟整式、方程、分式、代数式求值都有关系啊。

就像在一个大家庭里,它和其他成员相互帮助,整式为它提供原材料,方程依靠它来破解答案,分式需要它梳理关系,代数式求值借助它来变身简化。

③重难点分析:- 掌握难度:说实话,这个对于初学者有点难。

因为有时候要观察多项式的特点,不是一眼就能看出来怎么分解的。

- 关键点:关键就在于对多项式的形式要特别敏感。

看到多项式得能想到它可能用哪种分解方法,比如看到平方差形式,就知道可以用平方差公式。

④考点分析:- 在考试中的重要性:考试里经常出现啊,特别是在代数部分的考试中。

不管是选择题、填空题还是解答题,都有可能露面。

因式分解知识点

因式分解知识点

因式分解知识点因式分解是数学中重要的基础知识之一。

它是指将一个多项式表示成若干个一次或多次幂的乘积的形式。

因式分解在数学中有广泛的应用,例如解方程、计算极限、构建数据模型等等。

本文旨在深入探讨因式分解的相关知识点。

一、基本概念1.1 多项式与因式:多项式是由常数、变量和幂次依次相乘所得的代数式,如$x^2+2x+1$。

因式是一种可以被一个数或一个代数式整除的代数式,如$x+1$是$x^2+2x+1$的因式。

1.2 因数与因式分解:在数学中,一个数$a$能够被另一个数$b$整除,即$a=bn$,则称$b$是$a$的因数。

因式分解是指将一个代数式写成各个因数的乘积的形式。

二、因式分解方法2.1 提公因式法:提公因式法是指先提取出多项式中的公因式,然后将公因式与剩余项相乘得到原多项式。

例如,$3x^3+6x^2=3x^2(x+2)$。

2.2 分组分解法:分组分解法是指将多项式中的项分成两组,使得每组之间可以找到一个公因式,然后将两组分别提取出公因式后合并得到原多项式。

例如,$x^2+2xy+y^2= (x+y)^2$。

2.3 短除法:短除法是将多项式中的项按某个因式进行除法运算后得到商式,将商式再按另一因式进行除法运算,直到多项式无法再做除法为止。

例如,$x^3-8=(x-2)(x^2+2x+4)$。

2.4 公式法:公式法是指利用一些基本公式对多项式进行因式分解。

例如,$a^2-b^2=(a+b)(a-b)$。

三、应用3.1 解高次方程:因式分解可以方便地解决高次方程,如 $x^2-5x+6=0$可以因式分解为$(x-2)(x-3)=0$,从而得到解$x=2$和$x=3$。

3.2 计算极限:因式分解可以化简复杂的代数式,从而方便计算极限,如$\lim\limits_{x\rightarrow3}\dfrac{x^3-27}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{(x-3)(x^2+3x+9)}{(x+3)(x-3)}=\lim\limits_{x\rightarrow3}\dfrac{x^2+3x+9}{x+3}=12$。

因式分解的条件

因式分解的条件

因式分解的条件因式分解是代数学中的一种基本运算,它可以将一个多项式分解为多个因式的乘积。

在进行因式分解时,有一些条件需要满足才能进行有效的分解。

本文将以因式分解的条件为标题,介绍这些条件及其应用。

一、多项式必须是一个代数式因式分解的基础是多项式,而多项式是由代数式组成的。

代数式由常数、变量和运算符组成,例如加法、减法、乘法和除法等。

在进行因式分解时,我们需要的是一个多项式,而不是其他类型的代数式。

二、多项式必须是一个多项式函数多项式函数是指多项式的每一项按照一定顺序相加得到的函数。

多项式函数的特点是:变量的指数必须是非负整数,每一项的系数可以是任意实数。

只有满足这个条件的多项式才能进行因式分解。

三、多项式的各项次数必须满足一定关系在进行因式分解时,多项式的各项次数有一定的关系。

如果多项式的各项次数相同,我们可以按照因式分解的规则进行分解。

如果多项式的各项次数不同,我们需要进行一些变形操作才能进行因式分解。

四、多项式必须是可约的可约多项式是指可以分解为两个或多个非平凡因式之积的多项式。

非平凡因式是指次数大于0的因式,即除了1和自身之外的因式。

如果一个多项式不能分解为非平凡因式的乘积,那么它就是不可约的,无法进行因式分解。

五、多项式必须满足一定的整除条件在进行因式分解时,多项式的各项必须满足一定的整除条件。

如果一个多项式的某个因式可以整除该多项式的每一项,那么这个因式就是多项式的一个因子。

而进行因式分解的目的就是找出多项式的所有因子,将多项式分解为这些因子的乘积。

六、多项式必须满足一定的规范形式在进行因式分解时,多项式必须满足一定的规范形式。

这个规范形式可以是多项式的系数按照一定顺序排列,也可以是多项式的各项按照一定次序排列。

只有满足规范形式的多项式才能进行因式分解。

七、多项式必须满足一定的求解条件在进行因式分解时,多项式必须满足一定的求解条件。

这个求解条件可以是多项式的根或零点,也可以是多项式的系数或次数。

因式分解知识要点

因式分解知识要点

因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。

1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。

本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。

2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。

如:()++=++。

ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。

公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。

2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。

运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。

初三数学-因式分解知识总结归纳

初三数学-因式分解知识总结归纳

初三数学因式分解知识总结归纳因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;一、提公因式法①概念:公因式:各项都含有的公共的因式叫做这个多项式各项的公因式②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. 如am +bm +cm =m (a+b+c )③具体方法:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.二、运用公式法。

①平方差公式:. a 2-b 2=(a +b)(a -b)②完全平方公式: a 2±2ab +b 2=(a ±b)2注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. (运用完全平方公式也叫配方法)③立方和公式:a 3+b 3= (a+b)(a 2-ab+b 2).立方差公式:a 3-b 3= (a-b)(a 2+ab+b 2).④完全立方公式: a 3±3a 2b +3ab 2±b 3=(a ±b)3三、十字相乘法分解因式:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。

第一讲因式分解

第一讲因式分解

第1讲 因式分解【考点 .方法 .破译】(一) 考点点击1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2. 因式分解的基本方法有提公因式法、运用公式法、分组分解法、换元法、主元法、配方法、待定系数法等。

3. 因式分解的基本原则:有公因式先提出公因式、分解必须进行到每一个多项式都不能再分解为止。

4. 竞赛中常出现的因式分解问题,常用到换元法、主元法、拆项添项法、配方法和待定系数法等方法、例如2x px q ++的多项式,当; a p b =+,q ab =时,可分解为()()x a x b +- 的形式。

5. 利用因式分解求代数式的值与求某些特殊方程的解。

(二)热点提示1. 本章的重难点是掌握提取公因式法、公式法、分组分解法等因式分解方法。

2. 考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

【预见性困难】学生结合自己实际情况认真填表【教材知识全解】一、知识结构二、知识要点因式分解的概念:把一个含字母的多项式表示成多个均含字母的多项式乘积的形式,其中单项式可以看成只有一项的多项式,分解后的多项式是原多项式的因式。

如:f gh =,其中,g h 是f 的因式。

强化观念:⑴整式的乘法是一种运算,而因式分解是对多项式形 式的一种转变。

⑵因式分解是对多项式而言的,单项式不能进行因式分解,如 3...a b a a a b = 就不是因式分解。

⑶因式分解的结果必须是积的形式,不能是和差的形式,如 234(3)4y y y y --=-- 从总体上看,等式的右边是两数之 差,不是积的形式,所以从左边到右边的变形不是因式分解。

(4)因式分解的结果中的每一个因式必须是整式,即分母中不含字母,如11(1)x x x -=- , 结果中的因式中含11x - 不是整式,所以这不是因式分解。

数学中的因式分解知识点总结

数学中的因式分解知识点总结

数学中的因式分解知识点总结因式分解是数学中重要的基础概念之一,它在代数运算、方程求解、函数图像等领域都有广泛的应用。

本篇文章将对数学中的因式分解知识点进行总结和归纳,旨在帮助读者更好地理解和掌握这一知识点。

一、因式分解的基本概念因式分解是将一个数、一个代数式或一个多项式表示为若干个乘积的形式,其中每个乘积因子都是不可再分解的。

因式分解可以简化复杂的式子,方便进行进一步的计算和求解。

在因式分解中,常用的因式分解形式有公因式、差平方公式、完全平方式、三项完全平方式等。

二、公因式的因式分解公因式是多个代数式的公共因子,通过提取公因式,可以将一个多项式进行因式分解。

公因式的因式分解是因式分解的基础,也是其他形式的因式分解的前提。

公因式分解的关键是找到所有项的公共因子,然后将其提取出来作为公因式。

三、差平方公式的因式分解差平方公式(a²-b²)=(a+b)(a-b) 是平方差公式的一个特例。

差平方公式的因式分解运用了平方差公式的性质,通过将一个二次多项式表示为两个一次多项式的乘积形式,从而进行因式分解。

在应用差平方公式进行因式分解时,需要根据具体的题目要求,将其转化为差平方的形式,然后使用差平方公式进行因式分解。

四、完全平方式的因式分解完全平方式是将一个二次多项式表示为两个一次多项式乘积的形式,数学中非常常见的一种因式分解形式。

完全平方式的因式分解要求将二次多项式写成一个二次平方的形式((a±b)²),然后应用完全平方式进行因式分解。

在应用完全平方式进行因式分解时,需要根据题目给出的多项式,将其转化为完全平方式的形式,然后应用完全平方式进行因式分解,得到最终的结果。

五、三项完全平方式的因式分解三项完全平方式是将一个三次多项式表示为三个一次多项式乘积的形式,同样也是一种常见的因式分解形式。

三项完全平方式的因式分解要求将三次多项式写成三个完全平方式的乘积形式((a±b)³),然后应用三项完全平方式进行因式分解。

初中数学因式分解知识点总结

初中数学因式分解知识点总结

初中数学因式分解知识点总结
初中数学因式分解知识点总结
导语:知识的学习需要的不仅是大量的做题,更重要的是知识点的累积。

以下是小编为大家精心整理的初中数学,欢迎大家参考!
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:
①结果必须是整式
②结果必须是积的.形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:
①系数是整数时取各项最大公约数。

②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:
①确定公因式。

②确定商式。

③公因式与商式写成积的形式。

分解因式注意事项:
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。

因式分解经典讲义(精)

因式分解经典讲义(精)

第二章 分解因式【知识要点】1.分解因式(1)概念:把一个________化成几个___________的形式,这种变形叫做把这个多项式分解因式。

(2)注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。

②分解因式的结果中,每个因式必须是整式。

③分解因式要分解到不能再分解为止。

2.分解因式与整式乘法的关系整式乘法是____________________________________________________; 分解因式是____________________________________________________; 所以,分解因式和整式乘法为_______关系。

3.提公因式法分解因式(1)公因式:几个多项式__________的因式。

(2)步骤:①先确定__________,②后__________________。

(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。

②当多项式的第一项的系数是负数时,通常先提出“-”号。

4.运用公式法分解因式(1)平方差公式:_________________________ (2)完全平方公式:_________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。

【考点分析】考点一:利用提公因式法分解因式及其应用 【例1】分解因式:(1)3241626m m m -+- (2)2()3()x y z y z +-+(3)2()()()x x y x y x x y +--+ (4)(34)(78)(1112)(78)a b a b a b a b --+--解析:(1)题先提一个“-”号,再提公因式2m ;(2)题的公因式为y z +;(3)题的公因式为()x x y +; (4)题的公因式为78a b -。

答案:(1)22(2813)m m m --+; (2)()(23)y z x +-;(3)2()xy x y -+; (4)22(78)a b -。

数学中的因式分解知识点

数学中的因式分解知识点

数学中的因式分解知识点在数学中,因式分解是指将一个多项式或一个整数分解为若干个乘积的形式,其中每一个乘积因子都是原多项式或整数的因子。

因式分解是数学中的基础概念之一,它在代数、方程与不等式、多项式、分式等诸多领域具有重要的应用。

本文将主要介绍因式分解的一些基本概念和常见方法。

一、整数因式分解整数因式分解是指将一个整数表示为几个素数的乘积的形式。

这种分解方法也叫做质因数分解。

对于任何一个大于1的整数,都可以找到一组素数,使得它们的乘积等于该整数。

例如,对于整数60,可以进行如下的因式分解:60 = 2 × 2 × 3 × 5上述式子中的2、3和5都是素数,它们的乘积正好等于60。

其中2、3、5就是60的质因数。

通过整数的因式分解,我们可以更好地理解整数的性质,例如判断整数的奇偶性、最大公约数、最小公倍数等。

同时,整数因式分解也为解决一些与整数相关的问题提供了有效的方法。

二、多项式因式分解多项式因式分解是指将一个多项式表示为若干个乘积的形式。

在进行多项式因式分解时,可以根据多项式的特点应用不同的方法。

1. 提取公因式法提取公因式法是一种常用的多项式因式分解方法,它适用于多项式中每一项都含有相同的因子的情况。

通过提取公因式,可以将多项式分解为含有公因式的乘积形式。

例如,对于多项式3x^2 + 6x,我们可以进行如下的因式分解:3x^2 + 6x = 3x(x + 2)上述分解过程中,我们提取出了3x这个公因式。

通过提取公因式,我们将多项式3x^2 + 6x分解为了3x和x + 2两个乘积。

2. 平方差公式平方差公式也是一种常用的多项式因式分解方法,它适用于多项式的形式为a^2 - b^2的情况。

平方差公式可以将这种多项式分解为两个因式的乘积。

例如,对于多项式x^2 - 9,我们可以进行如下的因式分解:x^2 - 9 = (x + 3)(x - 3)上述分解过程中,我们利用了平方差公式将多项式x^2 - 9分解为(x + 3)和(x - 3)两个乘积。

因式分解的9种方法

因式分解的9种方法

因式分解的多种方法----知识延伸,向竞赛过度1. 提取公因式:这种方法比较常规、简单,必须掌握。

常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。

总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。

2. 公式法常用的公式:完全平方公式、平方差公式。

注意:使用公式法前,部分题目先提取公因式。

例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b ,即a 1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。

因式分解的规则

因式分解的规则

因式分解的规则概述因式分解是一种数学运算方法,用于将一个多项式表达式分解为更简单的乘积形式。

因式分解在代数中起着重要的作用,可以帮助简化计算和解决多项式相关的问题。

本文档将介绍因式分解的一些基本规则和要点。

规则以下是一些常见的因式分解规则:1. 公因式提取:当多项式中多个项有一个公因子时,可以将公因子提取出来。

例如,多项式 `3x + 6y` 可以因式分解为 `3(x + 2y)`。

公因式提取:当多项式中多个项有一个公因子时,可以将公因子提取出来。

例如,多项式 `3x + 6y` 可以因式分解为 `3(x + 2y)`。

2. 平方差公式:平方差公式用于将一个平方差分解为两个因子的乘积。

例如,`a^2 - b^2` 可以因式分解为 `(a + b)(a - b)`。

平方差公式:平方差公式用于将一个平方差分解为两个因子的乘积。

例如,`a^2 - b^2` 可以因式分解为 `(a + b)(a - b)`。

3. 完全平方式:完全平方式用于将一个二次三项式分解为两个因子的乘积。

例如,`x^2 + 2xy + y^2` 可以因式分解为 `(x + y)^2`。

完全平方式:完全平方式用于将一个二次三项式分解为两个因子的乘积。

例如,`x^2 + 2xy + y^2` 可以因式分解为 `(x + y)^2`。

4. 分组分解:当多项式中存在四个或更多的项时,可以进行分组分解。

首先,将多项式中的项进行分组,然后在每个组内寻找公因子。

接着,对每个组提取公因式,并使用公因式提取法或其他因式分解方法继续分解。

最后,将每个组的结果相乘即可得到整个多项式的因式分解。

分组分解:当多项式中存在四个或更多的项时,可以进行分组分解。

首先,将多项式中的项进行分组,然后在每个组内寻找公因子。

接着,对每个组提取公因式,并使用公因式提取法或其他因式分解方法继续分解。

最后,将每个组的结果相乘即可得到整个多项式的因式分解。

5. 特殊因式分解:某些特殊类型的多项式可以根据其形式进行因式分解。

因式分解方法总结

因式分解方法总结

因式分解方法总结一、定义定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).因式分解与整式乘法为相反变形,同时也是解一元二次方程中公式法的重要步骤.二、因式分解三原则1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:)三、基本方法(一) 提公因式法如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式法.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取次数最低的;(3)取相同的多项式,多项式的指数取次数最低的;(4)所有这些因式的乘积即为公因式.(5)如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数,提出“-”号时,多项式的各项都要变号.口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶.例如:注意:把变成不叫提公因式.例1、 分解因式(2003年淮安市中考题)解:例2、 能被整除吗?还能被那些数整除?(二) 公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.1、平方差公式:2、完全平方公式:3、立方和公式:4、立方差公式:5、6、完全立方公式:7、例3、 分解因式(2003年南通市中考题)解:()am bm cm m a b c -++=---例4、已知是的三边,且,则的形状是().直角三角形 .等腰三角形 .等边三角形 .等腰直角三角形解:(三)分组分解法能分组分解的多项式一般有四项或大于四项,一般的分组分解有两种形式:二二分法、三一分法.1.分组后能直接提取公因式.例5、分解因式 .解:原式==每组之间还有公因式!=例6、分解因式解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的规则与要点
因式分解是在代数学中常用的一种方法,通过将一个多项式表
达式拆分成多个因子的积,从而简化计算和解题过程。

以下是因式
分解的一些规则和要点:
1. 提取公因子
当一个多项式中的每一项都有一个公因子时,可以将该公因子
提取出来,并写在括号外面。

例如,对于表达式2x + 4y,可以提
取出公因子2,得到2(x + 2y)。

2. 分解差的平方
当一个多项式是两个项的平方差时,可以根据公式进行因式分解。

例如,对于表达式x^2 - y^2,可以因式分解为(x + y)(x - y)。

3. 分解平方和
当一个多项式是两个项的平方和时,可以根据公式进行因式分解。

例如,对于表达式x^2 + 2xy + y^2,可以因式分解为(x + y)^2。

4. 完全平方式
对于一个多项式的平方,可以根据公式进行因式分解。

例如,
对于表达式x^4 + 2x^2 + 1,可以因式分解为(x^2 + 1)^2。

5. 一次因式分解
如果一个多项式是一次多项式,即各项次数相同且因子相同,
可以进行一次因式分解。

例如,对于表达式x^3 + x^2 + x,可以因
式分解为x(x^2 + x + 1)。

6. 二次因式分解
如果一个多项式是二次多项式,即各项次数相同且因子相同,
可以进行二次因式分解。

例如,对于表达式x^4 + 2x^3 + x^2,可
以因式分解为x^2(x^2 + 2x + 1)。

7. 分解三角形
当一个多项式是三个项的乘积时,可以考虑是否存在某种连接,从而进行因式分解。

例如,对于表达式x^3 + x^2 - x - 1,可以因式
分解为(x^2 - 1)(x + 1)。

以上是因式分解的一些常用规则与要点,通过熟练掌握这些规则,可以更快地进行因式分解,并简化计算和解题过程。

希望本文档对您有所帮助!。

相关文档
最新文档