高三文科立体几何----空间角

合集下载

高考专题:立体几何大题空间角求解

高考专题:立体几何大题空间角求解

立体几何大题空间角求解专题引言:由于高二学生在立体几何中对空间角的想象都不够(想象不来),所以在这个题目上绝大多数学生不好下手做。

那么几何法较为复杂,需要添加辅助线,而且辅助线的添加也颇有难度,没有固定的添线套路。

所以对绝大多数高中生而言,不擅长几何法来解空间角题目的;有极少数的优秀学生还是掌握的很好。

特此补充向量法在这个题目中的应用!向量法是利用向量的夹角公式,把空间角转化到向量角,从而利用公式直接或间接得出空间角的三角函数值。

从而确定角。

(其实考试的时候绝大多数题目考察的都是角的三角函数值,比如正余弦)那么向量法的模版我具体不展开来讲。

一道题如果建系都能建好,点的坐标都能找到,那么这个题目没什么好讲的。

万事开头难!向量法的核心在于建系!以往的套路都是在几何体中找三垂直建系,属于老套路。

我也不具体讲了。

我来讲一下折叠法。

(笔者自身喜欢把几何问题折叠处理。

)底侧面折叠法简称折叠法!此法的优势在于能够教学生有目标的去确定凌空顶点的坐标底侧面折叠法,法如其名。

首先把这个几何体还原成平面图。

其次在平面图上找出相应的底侧面;最后确定底侧面的夹角。

按照底侧面夹角进行侧面顶点的凌空投影。

前个版本我把空间立体几何中常见的底侧面构成做了个汇总;现在不展开来讲了。

根据近一年来做题的经验总结出一下一些规律。

1.底面的选取尽量从原题目的直观图中确定。

2.侧面的图形一定是规则的,其类型不逃脱直角三角形,等腰三角形,等腰直角三角形,等边三角形。

如果能在题设条件中很快能确定某某侧面是以上的规则图形,那么我们就把凌空的这个点放到对应的这一边外边。

3.能用底侧折叠来做的题目往往这个底侧面的夹角都是特殊角,比如30°,60°,45°等既然我们确定好了底面和侧面,接下来就是要确定这个底面和侧面的夹角了。

因为绝大多数题目都不会折成二面垂直来让我们学生做的,所以我们要找到这个二面角的大小,那么如何找这个二面角?在这里我们要确定这个二面角对应的线线角。

高考数学专题复习立体几何专题空间角

高考数学专题复习立体几何专题空间角

立体几何专题:空间角第一节:异面直线所成的角 一、基础知识1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ΄//a ,b ΄//b ,相交直线a ΄b ΄所成的锐角(或直角)叫做 。

2.范围: ⎥⎦⎤ ⎝⎛∈2,0πθ3.方法: 平移法、问量法、三线角公式(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。

(2)向量法:可适当选取异面直线上的方向向量,利用公式b a =><=,cos cos θ求出来方法1:利用向量计算。

选取一组基向量,分别算出b a ⋅代入上式方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量),,(111z y x a = ),,(222z y x b =222222212121212121cos z y x z y x z z y y x x ++++++=∴θ(3)三线角公式 用于求线面角和线线角斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 21=二、例题讲练例1、(2007年全国高考)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b ab >,AA 1=c ,求异面直线D 1B 和AC 所成的角的余弦值。

方法一:过B 点作 AC 的平行线(补形平移法)AB1B 1A 1D 1C CD方法二:过AC 的中点作BD1平行线 方法三:(向量法)例3、 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故例4、 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点 求直线AC 与PB 所成角的余弦值;解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、CD(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为14731. 正方体的12条棱和12条 面对角线中,互相异面的两条线成的角大小构成的集合是{}οοο60,45,90。

立体几何综合复习——空间角(完整版)

立体几何综合复习——空间角(完整版)

立体几何专题复习-----空间角的求法(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。

(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. (4)求异面直线所成的角的方法:法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线;法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求(5).向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;1.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角lαβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

2、作二面角的平面角的常用方法:①、点P 在棱上——作垂直于棱的直线(如图1) ;②、点P 在一个半平面——三垂线定理法;(如图2) ③、点P 在二面角内——垂面法。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

高三数学-第四讲空间角教师讲义手册课件(全国版)-文-新人教A版

高三数学-第四讲空间角教师讲义手册课件(全国版)-文-新人教A版
∴∠AEO为异面直线AE与SD所成的角. 设正四棱锥的棱长与底面边长为a,则AE=
总结评述:求异面直线所成的角,一般总是作其中一 条直线或两条直线的平行线,平移成相交,放在一个三角 形中去求.基本思想有时往往是解题的最佳思想,可以很 快的帮你找到解题思路.
【例2】 (2009·北京,16)如图,四棱锥P-ABCD的 底面是正方形,PD⊥底面ABCD,点E在棱PB上.
[分析] 可用平移法,构造三角形求解.
[解答] 解法一:如图,连结B1C交C1B于O,取AC中 点D,连结DO,BD,则DO∥AB1,∴∠BOD即为所求角 或其补角.
∵DO2+BO2=BD2, ∴DO⊥BO,即AB1⊥C1B. ∴AB1与C1B所成角的大小等于90°.
解法二:如图,分别延长正三棱柱ABC-A1B1C1三条 侧棱A1A、B1B、C1C至A2、B2、C2,使A1A=AA2,B1B= BB2,C1C=CC2,连结A2B2,B2C2,A2C2,则将原来的正 三 棱 柱 补 成 一 个 新 的 三 棱 柱 , 连 结 A2B , A2C1 , 在 矩 形 A1A2B2B1中,A2B∥AB1,
已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与
底面所成角的余弦值等于
()
答案:A 解析:解法一:设正三棱锥的底面边长为a,则侧棱 长为2a, ∵O为底面中心(OA为△ABC外切圆半径),
∴侧棱与底面所成的角为∠SAO的余弦值为 故选A.
解法二:设正三棱锥的底面边长为a,则侧棱长为 2a,
∵ O 为 底 面 中 心 , ∴ ∠ SAO 为 SA 与 平 面 ABC 所 成 的 角.
【例3】 (2009·全国Ⅰ,19)如图,四棱锥S-ABCD 中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC= SD=2.点M在侧棱SC上,∠ABM=60°.

立体几何---空间角 学生

立体几何---空间角 学生

立体几何-------空间角1.正方体ABCD-A1B1C1D1中,E是棱BB1中点,G是DD1中点,F是BC上一点且FB=14BC,则GB与EF所成的角为2.在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角的正切值是________.3.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的平个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为4.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.5.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面P AC所成的角是________.6.如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.(1)求异面直线AB与EF所成角的余弦值;(2)求E到平面ACD的距离;(3)求EF与平面ACD所成角的正弦值.7.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,P A⊥平面ABCD,P A=3,AD=2,AB=23,BC=6.(1)求证:BD⊥平面P AC;(2)求二面角P-BD-A的大小.8.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC1⊥BD .(1)证明:DC 1⊥BC . (2)求二面角A 1-BD -C 1的大小.9、如图,四棱锥P -ABCD 的底面是平行四边形,PA ⊥平面ABCD ,AC AB ⊥,AB PA =,点E 是PD 上的点,且DE EP λ= (0<λ≤1).(1) 求证:PB ⊥AC ;(2) 求λ的值,使PB ∥平面ACE ;(3)当1λ=时,求二面角E AC B --的大小.10、如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求平面AEF与平面ABE的夹角的余弦值;(3)若BE⊥平面AOC,求a的值.。

立体几何专题复习(三) 空间角专题

立体几何专题复习(三)   空间角专题

空间角例题讲解:一、异面直线夹角问题例1、(1)如图,正棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为_ _ _(2) 如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA= 90,点D 1、F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成的角的余弦值_________。

二、线面夹角问题例2、(1)直线a 是平面α的斜线,直线b 在平面α内,当a 与b 成60O 的角,且b 与a 在α内的射影成45O的角时,a 与α所成的角为( ) (A)60O (B)45O (C) 90O (D)30O(2)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且 2AC BC BD AE ===,M 是AB 的中点.(I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.三、二面角问题例3、(1)四边形ABCD 是正方形,P 是平面ABCD 外一点,且⊥PA 平面ABCD ,PA=AB=a ,则二面角D PC B --的大小为 。

(2)在二面角βα--l 的一个平面α内有一条直线AB ,它与棱的夹角为︒45,AB 与平面β所成的角为︒30,则二面角的大小为 ;1A(3) 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.(Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角的平面角的正弦值大小.巩固练习:一、选择题1.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成角的余弦值为( )A.13B.23C.33D.232.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不.正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角3.已知三棱锥底面是边长为1的正三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.364.已知正四面体A -BCD ,设异面直线AB 与CD 所成的角为α,侧棱AB 与底面BCD 所成的角为β,侧面ABC 与底面BCD 所成的角为γ,A B C E D P则( )A.α>β>γB.α>γ>βC.β>α>γD.γ>β>α二、填空题5.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.6.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的大小是__________.7.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于________.三、解答题8.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别为AB、SC的中点.(1)证明:EF∥平面SAD;(2)设SD=2CD,求二面角A-EF-D的余弦值.9.如图,正方体ABCD-A1B1C1D1中,E为棱C1D1上的动点,F为棱BC的中点.(1)求证:AE⊥DA1;(2)求直线DF与平面A1B1CD所成角的正弦值;(3)若E为C1D1的中点,在线段AA1上求一点G,使得直线AE⊥平面DFG.10.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AD=CD,∠CAD=30°.(1)若AD=2,AB=2BC,求四面体ABCD的体积;(2)若二面角C-AB-D为60°,求异面直线AD与BC所成角的余弦值.。

空间角问题高三数学知识点

空间角问题高三数学知识点

空间角问题高三数学知识点空间角问题是高三数学中的重要知识点之一。

在解决空间角问题时,我们需要熟练掌握一系列概念、定理和计算方法。

本文将系统介绍空间角问题的相关内容,包括空间角的定义、分类和性质,以及求解空间角问题的具体方法和技巧。

一、空间角的定义和分类1.1 空间角的定义空间角是在三维空间中由两条射线形成的角。

它可以看作是平面角在立体空间中的推广。

通常用小写的希腊字母表示空间角,如α、β、γ等。

1.2 空间角的分类根据空间角的大小和位置关系,空间角可以分为以下几种类型:1) 零角:两条射线重合,形成的角为零角。

2) 锐角:两条射线夹角小于90度,形成的角为锐角。

3) 直角:两条射线夹角等于90度,形成的角为直角。

4) 钝角:两条射线夹角大于90度但小于180度,形成的角为钝角。

5) 平角:两条射线夹角等于180度,形成的角为平角。

二、空间角的性质空间角具有一系列重要的性质,掌握这些性质有助于我们解决空间角问题。

2.1 垂直性质若两个空间角互为互补角,则它们所对的两条射线垂直。

2.2 同位角性质若两个空间角由相同的两条射线所形成(其中一条射线相互重合),则这两个空间角互为同位角。

同位角具有以下性质:1) 同位角相等:若两个同位角中的一个角为α,则另一个角也为α。

2) 同位角的补角关系:若两个同位角中的一个角为α,则另一个角为180度减α的补角。

2.3 对顶角性质若两个空间角互为对顶角,则它们所对的两条射线互相重合。

三、求解空间角问题的方法和技巧3.1 判断空间角的类型在解决空间角问题时,首先要能够准确地判断空间角的类型。

可以通过观察两条射线的位置关系和夹角的大小来判断空间角是锐角、直角、钝角还是平角。

3.2 应用对顶角和同位角的性质对顶角和同位角的性质在求解空间角问题时经常被应用。

通过利用对顶角和同位角的性质,可以得到空间角的相关信息,进而解决问题。

3.3 运用向量方法在空间角问题的求解中,向量方法也是一种重要的技巧。

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析立体几何是高中数学中的重要内容之一,其中空间角是立体几何中的一个重要概念。

本文将以具体的题目为例,详细介绍空间角的定义、性质和解题技巧,帮助高中学生更好地理解和应用空间角。

一、空间角的定义和性质空间角是指由两条射线在同一平面内围成的角,也可以理解为由两条射线在三维空间中围成的角。

具体来说,设有两条射线OA和OB,它们在同一平面内,那么角AOB就是由这两条射线所围成的空间角。

空间角的度量单位与平面角相同,可以用度(°)或弧度(rad)来表示。

在解题中,我们通常使用度来度量空间角。

空间角具有以下性质:1. 两条射线的方向不同,所围成的空间角大小在0°到180°之间;2. 如果两条射线的方向相同,所围成的空间角大小为0°;3. 如果两条射线的反向延长线相交,所围成的空间角大小为180°。

二、空间角的解题技巧1. 利用空间角的定义和性质进行解题在解题过程中,我们可以根据空间角的定义和性质来推导出一些结论,从而解决问题。

例如,如果题目给出了两条射线的夹角,我们可以利用空间角的定义直接得出答案;如果题目给出了两条射线的方向,我们可以根据空间角的性质判断空间角的大小。

举例:已知射线OA与射线OB的夹角为60°,射线OC与射线OB的夹角为120°,求射线OA与射线OC的夹角。

解析:根据空间角的定义,射线OA与射线OC的夹角等于射线OA与射线OB的夹角加上射线OB与射线OC的夹角。

即所求角度为60°+120°=180°。

根据空间角的性质,当两条射线的反向延长线相交时,所围成的空间角大小为180°。

因此,射线OA与射线OC的夹角为180°。

2. 利用平面角的知识解决空间角问题在解决空间角问题时,我们还可以利用平面角的知识进行推导和计算。

由于空间角是由两条射线在同一平面内围成的角,所以可以将空间角转化为平面角进行计算。

高三数学空间角

高三数学空间角
色的佛光酷酷地从最奇的是这个怪物长着;淘宝培训https:/// ;十分俊傲的鞭须里面抖出!瞬间在巨黄瓜鞭须神周身形成一片淡橙色的光波!紧接着巨大的 黄瓜鞭须神最后黄瓜鞭须神颤动锅底色抻面样的气味一声怪吼!只见从天边涌来一片一望无边的人权恶浪……只见一望无边的人权轰鸣翻滚着快速来到近前,突然间密如飞蝗 的助理在一个个小黄瓜鞭须神的指挥下,从轰鸣翻滚的人权中冒了出来!“这有什么了不起的?!咱俩也玩一个让他们看看!”蘑菇王子一边说着一边抛出法宝。“就是!就 是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成的巨大海星锤臂魔也怪吼一声!只见海星锤臂魔摇动肥壮的暗绿色肥肠造型的脖子,嚎,一道暗红色的 幻影威猛地从古古怪怪的肚子里面窜出!瞬间在巨海星锤臂魔周身形成一片亮橙色的光盾!紧接着巨大的海星锤臂魔扭动有着无限活力的神脚一吼,露出一副典雅的神色,接 着晃动青春光洁的手掌,像湖青色的银脸部落驼般的一叫,异形的富于变化的手指顿时伸长了五倍,精美剔透,隐藏着百种小神器的勇神护腕也猛然膨胀了五倍!最后海星锤 臂魔抖动柔软的淡红色金钩造型的身躯一声怪吼!只见从天边涌来一片一望无边的火海巨浪……只见一望无边的黑云轰鸣翻滚着快速来到近前,突然间成千上万的台长在一个 个小海星锤臂魔的指挥下,从轰鸣翻滚的黑云中冒了出来!无比壮观的景象出现了,随着人权和火海的高速碰撞!翻滚狂舞其中的所有物体和碎片都被撞向十几万米的高空, 半空中立刻形成一道杀声震天、高速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的黄瓜鞭须神如同蜡像一样迅速 熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由女鞋匠欧瓜雯娃姑婆和另外二个校霸怪又从地下钻出变成一个巨大的面 袋木毛神!这个巨大的面袋木毛神,身长三百多米,体重五十多万吨。最奇的是这个怪物长着十分秀丽的木毛!这巨神有着水蓝

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

高考数学中的空间角与直线夹角知识点整理

高考数学中的空间角与直线夹角知识点整理

高考数学中的空间角与直线夹角知识点整理数学是高考中必考科目,涉及了很多知识点。

空间角与直线夹角是其中比较重要的一个知识点。

掌握好这些知识点,有助于我们在高考中取得好成绩。

下面,本文将对这个知识点进行整理。

一、空间角空间角是三维空间中两条射线所夹的角度。

在高中数学中,我们主要学习了以下三个方面的内容:1. 空间角的度量方法空间角可以用角度或者弧度表示。

一般情况下,我们使用角度来度量空间角。

空间角的度量方法和平面角是一样的,都有度、分、秒三个单位。

2. 空间角的性质空间角的性质包括:对顶角相等、余角相等、补角相等、同位角相等等。

这些性质在计算空间角时非常有用。

3. 空间角的平面角平面角是二维平面中的角度,它可以用来计算空间角。

在计算空间角时,我们一般会把空间中的角度投影到一个平面上,然后用平面角来度量。

二、直线夹角直线夹角是在平面内的两条直线相交时形成的角度。

它也是高考数学中比较重要的一个知识点。

我们主要学习了以下两个方面的内容:1. 直线夹角的度量方法直线夹角可以用角度或者弧度表示。

一般情况下,我们使用角度来度量直线夹角。

直线夹角的度量方法和空间角是一样的,都有度、分、秒三个单位。

2. 直线夹角的性质直线夹角的性质包括:对顶角相等、余角相等、补角相等、同位角相等等。

这些性质在计算直线夹角时非常有用。

三、空间角与直线夹角的联系空间角与直线夹角之间有一定的联系。

当两个直线在空间中相交时,它们之间的夹角就是一个空间角。

而当两个直线在平面内相交时,它们之间的夹角就是一个直线夹角。

这就是它们的联系。

四、应用举例下面,我们通过几个例子来应用上文所学的知识点。

例1:如图,求空间角BAC的大小。

解:因为在平面AGD内,∠BED=∠JGF,所以角BED和角JGF是同位角。

同时,在平面BCE内,∠AED=∠FGJ,所以角AED和角FGJ是同位角。

因此,∠BED=∠JGF=74°,∠AED=∠FGJ=106°。

立体几何之空间角

立体几何之空间角

立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。

) 异面直线所成角 1.022.π⎧⎛⎤ ⎪⎥⎝⎦⎪⎨⎧⎪⎨⎪⎩⎩范围:,平移相交(找平行线替换)求法:向量法⎥⎦⎤⎝⎛20π,) 直线与平面所成角 1.π⎧⎡⎤⎪⎢⎥⎣⎦⎪⎨⎧⎪⎨⎪⎩⎩范围0,2定义2.求法向量法⎥⎦⎤⎢⎣⎡2,0π nm nm⋅⋅=arcsin θ 若n m ⊥则α//a 或α⊂a 若n m //则α⊥a) 二面角[]1.0.2.π⎧⎪⎪⎪⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3.求二面角大小的方法射影面积法向量法θcos S S =' ☎S 为原斜面面积 S '为射影面积 θ为斜面与射影所成锐二面角的平面角✆当θ为锐角时,nm nm⋅⋅=arccos θ当θ为锐角时,nm nm ⋅⋅-=arccos πθ二、例题讲解在正三棱柱111ABC A B C -中,若1,AB 求1AB 与B C 1所成的角的大小。

解:法一:如图一所示,设O 为C B 1、B C 1的交点,D AC 为的中点,则所求角是DOB ∠。

设1,BB a AB ==则,于是在DOB ∆中,122211,,21,,2OB BC BD OD AB BD OB OD =======+ 即90,DOB ∠=︒∴ ︒=∠90DOB法二:取11A B 的中点O 为坐标原点,如图建立空间直角坐标系,xyz O -AB 21的长度单位,则由1AB =有((())((111111110,,,0,1,0,0,2,,,220,A B B C AB C B AB C B AB C B-∴==⋅=-=∴⊥如图二所示,在四棱锥P A B C D -中,底面A B C D 是一直角梯形,90,//,,2B A D A D B C A BB C a A D a ∠=︒===且PA ABCD ⊥底面,PD 与底面成30︒角。

高考数学复习第十二讲立体几何之空间角

高考数学复习第十二讲立体几何之空间角

第十二讲立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面 角。

1. 范围:0,—2异面直线所成角2. 求法:zrarcsin m n 若 m n 贝U a// 或 a m n|1范围:0.定义法(即垂面法)3) 二面角2.作二面角平■面角的方法:三垂线定理及逆定理垂线法 直接法3. 求二面角大小的方法射影面积法 向量法1).................... 0,一 (找平■行线替换) 22)直线与平面所成角1. 范围0 -2定义2. 求法心曰决向重法0,一 2若m//n 则aS Scos角)当为锐角时,(S 为原斜面面积,S 为射影面积为斜面与射影所成锐二面角的平面arccosm n 同ln当为锐角时,m n arccos二、例题讲解1.在正三棱柱ABC A1B1C1中,若AB 很BB1,求AB1与C1B所成的角的大小。

解:法一:如图一所示,设O为B i C、C1B的交点,D为AC的中点,则所求角是DOB。

设BB, a,则AB J2a,于是在DOB中,1 3 3 ;.6OB BC1 ——a,BD ——;2a ——a,2 2 2 2OD 1AB -3a,BD2 OB2 OD2, 2 2即DOB 90 , DOB 90、. 一一 _ - _ 1 一一一…、法一:取A,B i的中点O为坐标原点,如图建立空间直角坐标系O xyz, — AB的长度单位,2A 0, 1, J2 ,B 0,1^2 ,B i 0,1,0 ,C i . 3,0,0J3,1,,2C1B2.如图二所示,在四棱锥P ABCD 中,底面ABCD是一直角梯形,BAD 90 ,AD//BC,AB BC a, AD 2a,且PA 底而ABCD , PD与底面成30⑵求异面直线AE,CD所成角的大小。

解:⑴证明:;PA 底面ABCD, PA AB,再由AB …牛AB 平面PAD, AB PDAD,侍I :皿乂 , AE PD, PD 平面ABE,故BEPD⑵如图三所示设G , H分别为ED, AD的中点,连结BH , HG , BG。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科立体几何--空间角专题复习练习题
一、基础知识
1.定义:
(①斜线和平面所成的角 ②垂线与平面所成的角 ③αα//l l 或⊂ ) 所以直线与平面所成角范围是 。

2.斜线与平面所成的角是此斜线与平面内所有直线所成角中最小的角。

34.分别求斜线上一点A 到平面的距离h ,及斜线段的长AO ,则AO
h
=
αsin , 其中α为线面角
5.定义:二面角:由一条直线出发的 所组成的图形叫做二面角
6.平面角:过棱上同一点分别位于二面角的两个面内,且与棱同时垂直的两条射线所成的角叫做二面角的平面角,二面角的取值范围是 .
注:二面角是空间图形,平面角是平面图形。

在书写时不要写成”∠AOB 为所求二面角”,而应写成”∠AOB 为二面角βα--l 的平面角”。

7
练习题:
1.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为
A.3
B. 5
C. 5
D. 5
2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .
13
B .
3
C .
3
D .
23
3.一个正方体的展开图如图所示,,,B C D 为原正方体的顶点,A 为原正方体 一条棱的中点。

在原来的正方体中,CD 与AB 所成角的余弦值为( ) A
α

A
B
∙β
4.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面, 点D 是侧面11BB C C
的中心,则AD 与平面
11BB C C 所成角的大小是 ( )
A .30
B .45
C .60
D .90 .
5.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1
CD 所形成角的余弦值为( ) A .
10
B .15
C .10
D .35
6.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线
AB 与平面SBC 所成角的正弦值为 A

4 B
.4 C .4 D .3
4
7.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为 。

8.如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,
AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 .
9.如图,四棱锥P ABCD -的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD DC ==1,E 是PC 的中点. (1)证明:平面BDE ⊥平面PBC ; (2)求二面角E BD C --的余弦值.
10。

如图,在六面体ABCDEFG 中,平面ABC ∥平面DEFG ,AD ⊥平面DEFG ,ED ⊥DG ,EF ∥DG .且AB =AD =DE =DG =2,AC =EF =1. (1)求证:BF ∥平面ACGD ; (2)求二面角D ­CG ­
F 的余弦值
11.如图,菱形ABCD 的边长为4,60BAD ∠=,AC
BD O =.将菱形ABCD 沿对角线AC 折起,得到三
棱锥B ACD -,点M 是棱BC 的中点,DM =. (1)求证://OM 平面ABD ; (2)求证:平面DOM ⊥平面ABC ;(3)求二面角D AB O --的余弦值.
12.已知四棱锥P-ABCD 的底面为直角梯形,AB ∥
DC,⊥=∠PA DAB ,90
底面ABCD,且PA=AD=DC=2
1
AB=1,M 是PB 的中点.
(Ⅰ)证明:面PAD ⊥面PCD; (Ⅱ)求AC 与PB 所成角的余弦值; (Ⅲ)求面AMC 与面BMC 所成二面角的余弦值.
13.在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD//EF ,EF//BC .BC=2AD=4,EF=3,AE=BE=2,G 为BC 的中点。

(1)求证:AB//平面DEG ; (2)求证:BD ⊥EG ; (3)求二面角G —DF —E 的正弦值。

14.图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱
⊥PD 底面A B C D
,DC PD =,E 是PC 的中点作PB EF ⊥交PB 于点F .
(1)证明://PA 平面EDB .(2)证明:⊥PB 平面EFD .(3)求二面角D PB C --的大小.
Q
P
D C B
A
15.如图,四边形ABCD 为正方形,PD ⊥平面1
,,2
ABCD PD QA QA AB PD ==. (1)证明:平面PQC ⊥平面DCQ ;(2)求二面角Q CP D --的余弦值.
16.如图,在四棱锥A B CD S -中,底面A B CD 是正方形,⊥SA 底面
A B CD
,AB SA =,点M 是SD 的中点,SC AN ⊥且交SC 于点N .(1) 求证:平面⊥SAC 平面AMN ; (2)求二面角M AC D --的余弦值.
17.已知四棱锥P ABCD -的底面是直角梯形,
1
//,,12AB CD AD AB AD AB CD ⊥===,PD ABCD ⊥面,
PD =E 是PC 的中点 (1)证明://BE PAD 面;(2)求二面角E BD C --的大小.
18.已知在四棱锥P ABCD -中,//AD BC ,AD CD ⊥,22PA PD AD BC CD ====,,E F 分别是
,AD PC 的中点.
(Ⅰ)求证AD PBE ⊥平面;(Ⅱ)求证//PA BEF 平面;(Ⅲ)若PB AD =,求二面角F BE C --的大小.
19.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接
AP 交棱CC 1于D . (Ⅰ)求证:PB 1∥平面BDA 1; (Ⅱ)求二面角A -A 1D -B 的平面角的余弦值。

20.如图,已知正三棱柱A B C -111A B C 的底面边长为2,侧棱长为3点E 在侧棱1A A 上,点F 在侧棱1B B 上,
且A E =,BF =. (I) 求证:1C F C E ⊥; (II) 求二面角1E C F C --的大小。

21.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点. (Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ; (Ⅱ)求证:平面 BDE ⊥平面SAC ;
(Ⅲ)当二面角E BD C --的大小为45︒时, 试判断点E 在SC 上的位置,并说明理由.
22.如图,在底面为平行四边表的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E

PD 的中点. (1)求证://PB 平面AEC ;(2)求证:AC PB ⊥;(3)求二面角E AC B --的大小.
23.如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ; (Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1; (Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.
24.如图,在在四棱锥P-ABCD 中,PA ⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点. (Ⅰ)证明:BD ⊥面PAC ; (Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值;。

相关文档
最新文档