pi调节

合集下载

双闭环pi参数调节技巧

双闭环pi参数调节技巧

双闭环pi参数调节技巧双闭环PI参数调节技巧引言:双闭环PI参数调节技巧是一种常用的控制策略,广泛应用于工业自动化系统中。

本文将深入探讨双闭环PI参数调节技巧的多个方面,从理论基础、调节方法、优化策略等方面进行介绍和讨论。

一、双闭环控制理论基础1.1 双闭环控制原理双闭环控制是指在主闭环的基础上再添加一个辅助闭环,将被控对象的输出作为辅助闭环的参考输入。

这样,主闭环通过调节控制器参数来控制辅助闭环。

这种控制策略可以更好地消除扰动和提高系统的鲁棒性。

1.2 双闭环PI参数调节的必要性双闭环控制相比单闭环控制,具有更好的控制性能和抗干扰能力。

然而,参数的选择对系统的控制效果至关重要。

通过对PI参数的合理选择和调节,可以实现系统的快速响应、稳定性和鲁棒性。

二、双闭环PI参数调节的方法2.1 经验法则法经验法则法是一种常用的参数调节方法,通过调整经验法则中的参数来得到合适的PI参数。

Ziegler-Nichols法则和Chien-Hrones-Reswick法则等都是常见的经验法则。

2.2 试控法试控法是指通过不断试控和观察系统响应,来调节PI参数。

具体操作可以采用逐步调整法、渐进调整法或分步调整法等。

这种方法需要经验丰富的调节员或现场试验。

2.3 自整定方法自整定方法是指利用系统的数学模型和自整定规律,通过计算机辅助设计软件来获取合适的PI参数。

常见的自整定方法有最小二乘法、优化算法和专家系统等。

三、双闭环PI参数调节的优化策略3.1 正交实验法正交实验法是一种常用的优化策略,通过设计一组正交实验矩阵来寻找最佳的PI参数组合。

这种方法可以最大程度地减少试验次数,提高调节效率。

3.2 遗传算法遗传算法是一种优化搜索算法,通过模拟生物进化过程,不断调整参数组合,使目标函数达到最优。

遗传算法可以克服传统方法在参数搜索空间大时的困难,具有较好的全局优化能力。

3.3 控制器参数整定软件控制器参数整定软件是运用计算机辅助设计工具,通过建立系统模型和优化算法,自动搜索最佳的PI参数组合。

pi调节器原理

pi调节器原理

pi 调节器原理
PI 调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制,下面就跟小编一起来了解下PI 调节器的原理,电路以及其它pi 调节器的知识吧。

什幺是PI 调节器
PI 调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例(P)和积分(I)通过线性组合构成控制量,对被控对象进行控制。

比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决于积分时间常数TI,TI 越小,积分作用就越强。

反之TI 大则积
分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI 调节器或PID 调节器。

pi调节

pi调节

论坛上有一个帖子问:“pi d参数工程整定法里,资料介绍常用的是临界比例度法......。

疑问有二:1. 比例系数如何调整?变化的频度和幅度如何选取?2. 如何判断已经达到了临界振荡呢?判断的数学模型是什么?”。

临界比例度整定法又称为“闭环振荡法”,它的特点是:不需要求得控制对象的特性,而直接在闭合的控制系统中进行整定。

但在某些生产过程中不允许振荡的场合,此整定法就不适用了。

我们先看一下,用临界比例度整定法时,怎样来得到临界比例度PB和临界周期Tk。

1.被控系统稳定后,把控制器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2.通过外界干扰或使控制器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3.从大到小的,逐步把控制器的比例度减小,看测量值振荡的变化是发散的还是衰减的?如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4.连续重复2、3步,直至测量值按恒定幅度和周期发生振荡,即持续4--5次等幅振荡为止。

此时的比例度示值就是临界比例度PB。

5.从振荡波形图来看,来回振荡一次的时间就是临界周期Tk,即从振荡波的第一个顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰--峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk。

得到了临界比例度PB和临界周期Tk后,就可根据经验公式求出控制器的P.Ti.Td参数,然后进行整定了。

经验公式及整定方法,许多书上都有介绍,不再赘述。

所谓比例度就是使控制器输出变化全范围时,输入偏差改变了满量程的百分数。

比例控制器实际上就是一个放大倍数可调的放大器,其既可以起放大作用,也可以起缩小作用。

比例度与控制器的放大器倍数的倒数成比例,也就是说控制器的比例度示值越小,它的放大倍数就越大,它把偏差放大的能力越大,反之亦然。

知道了以上关系,用临界比例度整定法时,比例度如何调整?就清楚了,变化的频度以持续4--5次等幅振荡即可;变化的幅度当然是越大越好观察,但有个前提是不能超过工艺允许的最大偏差。

分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路今天来介绍一个自动控制上常用的一个调节电路:PI调节电路,也就是比例积分电路。

当然作为PID调节电路,会有很多种形式,这可是最简单的由单运放构成的PI电路。

你也可以通过三个运放来构成,U2构成积分器,U1做比例运算,U3构成加法器。

如图1:图1上面的比较好理解,这里就不讨论了。

我们来研究下面的PI 电路。

如何来读懂这个电路呢,似乎与图1差别很大,好下面来计算一下传递函数图2如图2 箭头表示电流的方向,取电压与电流关联参考方向。

根据运放“虚短“可知运放反向输入端基本保持零电位。

则I=Vi÷R1-------------------------(1)由“虚断断”可得I直接流过R2 C1路径,Ur2 Uc1 分别表示R2 C1上的压降则Ur2=I×R2可得Ur2= Vi×(R2÷R1)---(2)由1/C1×(dUc1/dt)=I两边积分可得1/C×∫I=Uc1=>1/C1×∫(Vi÷R1)dt--------(3)综合2 3两式的,我们就可以华丽的得出以下Vo=-Vi×R2/R1-1/C1×∫(Vi÷R1)dt 稍微整理一下可以看到更清楚一点V o=﹣(R2/R1) ×Vi-1/( C1×R1) ×∫Vidt------—(4)令Kp=﹣(R2/R1) Ki=-1/( C1×R1)V o=Kp×Vi+Ki×∫Vidt这其实就是个PI调节的标准表达式。

V o通过某种方式去控制外设,常用方法如三角波比较进行脉宽调试。

我们再对上面的图进行简单的变形得到下图图3采用上面的计算方法可以很方便的计算出输出表达式其中I=(Vi/R1+Vref/R3)在实际系统中Vi作为实际采集的目标值Vref就是设定的目标值。

PI调节器的工作原理(共5张PPT)

PI调节器的工作原理(共5张PPT)
随着电容C的充电,输出电压按积分规律逐渐上升,又具有积分调节器的性质;
于Uomax的某一数值。 时如同一个比例调节器,其放大倍数为
适用的PI调节器如图3所示。 由此可见,PI调节器的输出电压Uo由比例和积分两个部分相加而成。
▏Uo ▏
如果由于某种原因使电机转速下降,则反馈信号Ui2减小,使Ui2<Ui1,PI调节器的作用会使Uo增大,电机转速上升。
0 t
图2.5.2 PI调节器对阶跃信号的响应
第三页,共5页。
电力电子技术
适用的PI调节器如图3所示。Uo通常是变频器的给定信号,在直流
电机双闭环调速系统中Uo是可控硅触发电路的给定信号,一般Uo为
0~+10V,对应最低速到最高速。输入信号Ui1(正值)从运放的反相端
输入,因此前面加负号。Ui2为反馈信号,根据需要可以取电机的转速信号
电力电子技术
在恒转速调速系统,稳态时,对于确定的Ui1,对应确定的
Ui2,电机有确定的转速,如果由于某种原因使电机转速上升,
则反馈信号Ui2增大,使Ui2>Ui1,PI调节器的作用就会使Uo 减小,电机转速下降;如果由于某种原因使电机转速下降,则 反馈信号Ui2减小,使Ui2<Ui1,PI调节器的作用会使Uo增大,
时如同一个比例调节器,其放大倍数为
Rf R
第一页,共5页。
电力电子技术
Ui
R


1 PI调节器
输出端得到立即响应的Байду номын сангаас压
Rf R
Ui
,加快了系统的调节过程,
发挥了比例调节器的长处;随着电容C的充电,输出电压按积
分规律逐渐上升,又具有积分调节器的性质;
第二页,共5页。
电力电子技术

永磁同步电机pi参数调节

永磁同步电机pi参数调节

永磁同步电机pi参数调节一、引言永磁同步电机是现代电动机领域中的一项重要技术,它具有高效率、高功密度和高控制精度等优势,在工业自动化和电动车辆等领域得到广泛应用。

电机控制中的PI参数调节是实现电机运行稳定性和性能优化的关键步骤。

本文将深入探讨永磁同步电机PI参数调节的相关内容,包括调节方法、调节原理以及调节过程中需要注意的问题。

二、永磁同步电机PI参数调节的目标永磁同步电机的PI参数调节的目标是通过调节电流环和速度环的PI控制器的参数,使电机的控制系统能够快速响应、稳定运行并具备良好的抗干扰能力。

在实际应用中,PI参数调节的目标可以具体表述为以下几点: 1. 提高电机的响应速度和稳定性; 2. 减小电机在转矩变化和负载扰动下的误差; 3. 实现电机控制系统的抗干扰能力; 4. 改善电机的能耗效率。

三、永磁同步电机PI参数调节方法永磁同步电机PI参数调节方法主要包括经验调节法和自适应调节法。

3.1 经验调节法经验调节法是根据经验和实践来确定PI参数的调节方法。

该方法常常用于初期参数的设定,经过调试和实验验证后可以得到较为合理的参数。

经验调节法的步骤如下: 1. 初始参数选择:根据电机的基本参数和系统的要求,选择合适的初始参数; 2. 手动调试:通过实验和调试,逐步调节PI参数直至满足控制系统的性能指标; 3. 实时监测和调整:根据电机工作状态的变化,实时监测电机的控制性能,并根据需要进行参数调整。

经验调节法的优点是简单易行,但缺点是对操作人员的经验要求较高,并且无法应对系统参数变化和负载扰动等实时变化的情况。

3.2 自适应调节法自适应调节法是根据电机系统的实时状态和反馈信息,自动调节PI参数的方法。

该方法通过建立电机动态模型和参数辨识方法,实现对PI参数的实时调节。

自适应调节法的步骤如下: 1. 建立电机动态模型:根据电机的物理特性和控制要求,建立准确的电机动态模型; 2. 参数辨识:利用实时反馈信号和参数辨识算法,辨识当前工作状态下的电机参数; 3. 参数调节:根据辨识得到的参数,实时调节PI控制器的参数; 4. 控制性能评估和优化:通过实时监测和系统性能评估,优化调节参数,提高电机的控制性能。

pi原理说明

pi原理说明

pi原理说明
PI原理即比例-积分调节原理,它广泛应用于控制系统,以快速消除偏差。

它既考虑了当前偏差,也考虑了过去的偏差,通过将这两种偏差结合起来,能够更好地预测未来的偏差。

在PI调节器中,输出信号的变化与输入误差信号的对数成正比。

当输入误差信号增大时,输出信号也会相应增大,以减小误差;反之,当输入误差信号减小时,输出信号也会相应减小。

这种调节方式可以快速响应误差信号的变化,并对其进行调整。

此外,PI调节器还具有积分作用,可以对误差进行积分,从而计算出误差的历史记录。

当误差增大时,积分项也会增大,使得调节器更加敏感;反之,当误差减小时,积分项也会减小,使得调节器逐渐恢复到正常状态。

在实际应用中,PI调节器可以通过比例和积分两个参数进行调节,以达到更好的控制效果。

这两个参数的整定非常重要,需要根据具体的控制系统进行试凑和调整。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业人士。

PI调节

PI调节

P参数越大比例作用越强,动态响应越快,消除误差的能力越强。

但实际系统是有惯性的,控制输出变化后,实际PV值变化还需等待一段时间才会缓慢变化。

由于实际系统是有惯性的,比例作用不宜太强,比例作用太强会引起系统振荡不稳定。

比例作用的输出与误差的大小成正比,误差越大,输出越大,误差越小,输出越小,误差为零,输出为零。

由于没有误差时输出为零,因此比例调节不可能完全消除误差,不可能使被控的PV值达到给定值。

必须存在一个稳定的误差,以维持一个稳定的输出,才能使系统的PV值保持稳定。

这就是通常所说的比例作用是有差调节,是有静差的,加强比例作用只能减少静差,不能消除静差(静差:即静态误差,也称稳态误差)。

为了消除静差必须引入积分作用,积分作用可以消除静差,以使被控的PV值最后与给定值一致。

引进积分作用的目的也就是为了消除静差,使PV值达到给定值,并保持一致。

积分作用消除静差的原理是,只要有误差存在,就对误差进行积分,使输出继续增大或减小,一直到误差为零,积分停止,输出不再变化,系统的PV值保持稳定,PV值等于SP值,达到无差调节的效果。

但由于实际系统是有惯性的,输出变化后,PV值不会马上变化,须等待一段时间才缓慢变化,因此积分的快慢必须与实际系统的惯性相匹配,惯性大、积分作用就应该弱,积分时间I就应该大些,反之而然。

如果积分作用太强,积分输出变化过快,就会引起积分过头的现象,产生积分超调和振荡。

通常I参数也是由大往小调,即积分作用由小往大调,观察系统响应以能达到快速消除误差,达到给定值,又不引起振荡为准。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3对于流量系统:P(%)40--100,I(分)0.1--1对于压力系统:P(%)30--70,I(分)0.4--3对于液位系统:P(%)20--80,I(分)1--5参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

pi调节饱和限制

pi调节饱和限制

PI(比例积分)调节是控制系统中常用的一种调节器,它结合了比例(P)和积分(I)两个控制部分,以更好地满足系统对于快速响应和稳态性能的需求。

饱和限制是在一些工业实际系统中常常遇到的问题,特别是在控制执行机构的输出存在范围限制的情况下。

在这种情况下,PI调节器的设计需要考虑如何有效地处理输出饱和问题,以提高系统的性能和稳定性。

### PI调节器概述PI调节器是一种经典的比例-积分控制器,其输出由比例部分和积分部分的线性组合构成。

比例部分对系统的当前误差进行调节,积分部分对系统的历史误差进行调节,从而改善系统的稳态性能。

PI调节器的数学表达式如下:PI调节器通过调节\(K_p\) 和\(K_i\) 的值,可以实现对系统动态响应和稳态性能的调节。

### 输出饱和问题在实际应用中,控制系统的执行机构(比如电机、阀门)的输出通常会受到物理限制,不能无限制地增大。

这就引入了输出饱和问题,即当控制器输出达到执行机构的极限时,无法再继续增大,导致系统的响应出现偏差。

### 处理输出饱和的方法为了处理输出饱和问题,可以采取一些有效的方法,尤其是对于PI调节器:#### 1. **积分分离**在输出饱和问题中,积分部分是一个关键因素。

在输出饱和的情况下,积分部分会继续累积误差,导致系统的偏差。

为了避免这个问题,可以采用积分分离的方法,即在饱和时停止积分。

这可以通过在积分项前面引入饱和函数来实现。

#### 2. **饱和模型**将输出饱和考虑为控制系统的一部分,建立饱和模型。

通过建立饱和模型,可以更准确地预测系统在饱和时的行为,并相应地调整控制器参数。

这样可以在系统设计阶段更好地考虑到饱和问题。

#### 3. **反馈线性化**使用反馈线性化技术,将饱和系统的非线性特性转换为线性特性。

这可以通过在控制器中引入非线性函数,将输出饱和的特性线性化,从而更好地处理饱和问题。

### PI调节器的参数整定在处理输出饱和问题时,PI调节器的参数整定变得更为重要。

PI调节规律

PI调节规律

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差, 则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error )。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分( D )控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”即,在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”它,能预测误差变化的趋势,这样,具有比例+微分的控制器就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID 控制器的参数整定PID 控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID 控制器的比例系数、积分时间和微分时间的大小。

PID 控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

pi调节器原理_pi调节器电路图_pi调节器参数作用

pi调节器原理_pi调节器电路图_pi调节器参数作用

pi调节器原理_pi调节器电路图_pi调节器参数作用PI调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制,下面就跟小编一起来了解下PI调节器的原理,电路以及其它pi调节器的知识吧。

什么是PI调节器PI调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例(P)和积分(I)通过线性组合构成控制量,对被控对象进行控制。

比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决于积分时间常数TI,TI越小,积分作用就越强。

反之TI大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

PI调节器原理P是比例,I是积分,积分的作用是基于偏差量的,比例的作用是加快收敛速度的。

从自控原理上讲,PI调节不会带来右半平面的特征值,所以不会导致系统震荡,但是PI 调节是基于偏差的比例放大,所以偏差消失后,PI调节失去作用,导致PI调节不是无差调节系统,精度有限。

pi调节器作用(1)比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

(2)积分调节作用:使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决于积分时间常数TI,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性。

PI调节规律知识分享

PI调节规律知识分享

P I调节规律比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

pi调节器名词解释

pi调节器名词解释

pi调节器名词解释
PI调节器是一种常用的控制系统组件,它用于调整或稳定系统的输出,以使其与期望的输入保持一致。

PI是比例-积分的缩写,指的是该调节器具有比例和积分两个控制动作。

比例(P)控制动作是根据当前的误差(实际输出与期望输入之间的差异)来调整控制信号。

比例动作会与误差成正比,以使控制信号的变化量与误差的变化量成一定的比例关系。

积分(I)控制动作则是根据误差的总和来调整控制信号。

积分动作会累积误差并进行补偿,以消除系统的稳态误差(系统在稳定状态下与期望输入仍有差异)。

通过调节比例和积分参数,PI调节器可以平衡系统的稳态和动态性能,并提高系统的响应速度和稳定性。

它通常用于控制温度、速度、位置等过程变量,并在自动化控制系统中广泛应用。

分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路今天来介绍一个自动控制上常用的一个调节电路:PI调节电路,也就是比例积分电路。

当然作为PID调节电路,会有很多种形式,这可是最简单的由单运放构成的PI电路。

你也可以通过三个运放来构成,U2构成积分器,U1做比例运算,U3构成加法器。

如图1:图1上面的比较好理解,这里就不讨论了。

我们来研究下面的PI 电路。

如何来读懂这个电路呢,似乎与图1差别很大,好下面来计算一下传递函数图2如图2 箭头表示电流的方向,取电压与电流关联参考方向。

根据运放“虚短“可知运放反向输入端基本保持零电位。

则I=Vi÷R1-------------------------(1)由“虚断断”可得I直接流过R2 C1路径,Ur2 Uc1 分别表示R2 C1上的压降则Ur2=I×R2可得Ur2= Vi×(R2÷R1)---(2)由1/C1×(dUc1/dt)=I两边积分可得1/C×∫I=Uc1=>1/C1×∫(Vi÷R1)dt--------(3)综合2 3两式的,我们就可以华丽的得出以下Vo=-Vi×R2/R1-1/C1×∫(Vi÷R1)dt 稍微整理一下可以看到更清楚一点V o=﹣(R2/R1) ×Vi-1/( C1×R1) ×∫Vidt------—(4)令Kp=﹣(R2/R1) Ki=-1/( C1×R1)V o=Kp×Vi+Ki×∫Vidt这其实就是个PI调节的标准表达式。

V o通过某种方式去控制外设,常用方法如三角波比较进行脉宽调试。

我们再对上面的图进行简单的变形得到下图图3采用上面的计算方法可以很方便的计算出输出表达式其中I=(Vi/R1+Vref/R3)在实际系统中Vi作为实际采集的目标值Vref就是设定的目标值。

PI调节规律

PI调节规律

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

电机转速pi调节公式

电机转速pi调节公式

电机转速pi调节公式电机转速PI调节公式一、引言电机转速调节是工业控制领域中常见且重要的问题之一。

在许多应用中,精确控制电机的转速对于保证系统的稳定性和性能至关重要。

本文将介绍一种常用的电机转速PI调节公式,旨在提供一种有效的方法来实现电机转速的精确控制。

二、电机转速PI调节公式电机转速PI调节公式通常由两个部分组成:比例控制和积分控制。

比例控制用于根据转速误差的大小调整输出信号的幅度,而积分控制则用于根据转速误差的持续时间调整输出信号的持续时间。

1. 比例控制比例控制的目标是根据转速误差的大小来调整输出信号的幅度,以使转速误差逐渐减小。

比例控制公式如下:输出信号 = Kp × 转速误差其中,Kp为比例系数,用于确定输出信号的幅度大小。

较大的Kp 值将导致较大的输出信号,从而更快地减小转速误差,但也可能引发系统的不稳定性。

2. 积分控制积分控制的目标是根据转速误差的持续时间来调整输出信号的持续时间,以使转速误差逐渐趋于零。

积分控制公式如下:输出信号= Ki × ∫转速误差 dt其中,Ki为积分系数,用于确定输出信号的持续时间。

较大的Ki 值将导致较长的输出信号持续时间,从而更快地减小转速误差,但也可能引发系统的震荡和超调。

3. PI调节公式将比例控制和积分控制结合起来,即可得到电机转速PI调节公式:输出信号 = Kp × 转速误差+ Ki × ∫转速误差 dt通过调整比例系数Kp和积分系数Ki的数值,可以实现对电机转速的精确控制。

较小的Kp和Ki值将导致较慢的响应速度,但可以提高系统的稳定性;较大的Kp和Ki值则可以实现更快的响应速度,但可能导致系统的不稳定性和震荡。

三、结论电机转速PI调节公式是一种常用且有效的方法,可用于实现电机转速的精确控制。

通过调整比例系数Kp和积分系数Ki的数值,可以根据实际需求来平衡系统的响应速度和稳定性。

在实际应用中,需要根据具体情况进行参数调整和实时监控,以保证系统的稳定性和性能。

pi调节饱和限制

pi调节饱和限制

pi调节饱和限制
Pi调节饱和限制是一种常用的控制策略,用于限制控制系统的输出在预定范围内,以避免控制设备过载或超出限制。

Pi调节是比例-积分控制的一种形式,可以用于调节饱和限制。

在Pi调节饱和限制中,比例控制和积分控制是两个关键参数。

比例控制通过根据误差大小调整控制信号的幅度来控制系统输出,而
积分控制通过积累误差信号的总量来调整控制信号的幅度。

饱和限制
是指当输出超过给定范围时,限制输出在该范围内。

具体的调节过程如下:
1. 根据控制系统的需求和指标,确定所需的输出范围。

2. 使用比例控制来调整系统输出,当误差大于零时增加输出,当误差
小于零时减小输出,直到输出接近所需范围的上限。

3. 使用积分控制来进一步微调输出,通过累积误差信号来调整输出直
到输出达到所需范围的下限。

4. 实施饱和限制,当输出超过预定范围时,将输出限制在这个范围内。

Pi调节饱和限制可以应用于各种控制系统,特别是在温度控制、液位控制和压力控制等需要避免设备过载或超出限制的应用中。

流量,压力调节系统的调节规律

流量,压力调节系统的调节规律

流量,压力调节系统的调节规律
流量压力调节系统是一种用来控制流体流量和压力的装置或系统,其调节规律主要取决于具体的工作原理和设计要求。

以下是几种常见的流量压力调节系统的调节规律:
1. 比例调节:该系统将输入信号与输出量之间的关系保持为一个比例关系。

调节器根据输入信号的变化,以相应的幅度调节流量或压力。

2. PI调节:该系统结合了比例和积分控制。

比例控制用于快速响应输入信号的变化,而积分控制用于稳定输出量并消除偏差。

3. PID调节:该系统除了比例和积分控制外,还加入了微分控制。

微分控制可以进一步提高系统的响应速度和稳定性,尤其适用于需要快速响应和减小过渡过程抖动的应用。

4. 自适应控制:该系统根据实时反馈信息自动调整控制参数,以适应不同工况下的流量和压力要求。

通常使用专门的算法和模型来实现自适应控制。

调节系统的具体调节规律可能因系统的复杂性和应用需求而有所不同。

在实际应用中,需要根据具体情况选择适合的调节方法和调节参数,以达到稳定、高效的流量和压力调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论坛上有一个帖子问:“pi d参数工程整定法里,资料介绍常用的是临界比例度法......。

疑问有二:1. 比例系数如何调整?变化的频度和幅度如何选取?2. 如何判断已经达到了临界振荡呢?判断的数学模型是什么?”。

临界比例度整定法又称为“闭环振荡法”,它的特点是:不需要求得控制对象的特性,而直接在闭合的控制系统中进行整定。

但在某些生产过程中不允许振荡的场合,此整定法就不适用了。

我们先看一下,用临界比例度整定法时,怎样来得到临界比例度PB和临界周期Tk。

1.被控系统稳定后,把控制器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2.通过外界干扰或使控制器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3.从大到小的,逐步把控制器的比例度减小,看测量值振荡的变化是发散的还是衰减的?如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4.连续重复2、3步,直至测量值按恒定幅度和周期发生振荡,即持续4--5次等幅振荡为止。

此时的比例度示值就是临界比例度PB。

5.从振荡波形图来看,来回振荡一次的时间就是临界周期Tk,即从振荡波的第一个顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰--峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk。

得到了临界比例度PB和临界周期Tk后,就可根据经验公式求出控制器的P.Ti.Td参数,然后进行整定了。

经验公式及整定方法,许多书上都有介绍,不再赘述。

所谓比例度就是使控制器输出变化全范围时,输入偏差改变了满量程的百分数。

比例控制器实际上就是一个放大倍数可调的放大器,其既可以起放大作用,也可以起缩小作用。

比例度与控制器的放大器倍数的倒数成比例,也就是说控制器的比例度示值越小,它的放大倍数就越大,它把偏差放大的能力越大,反之亦然。

知道了以上关系,用临界比例度整定法时,比例度如何调整?就清楚了,变化的频度以持续4--5次等幅振荡即可;变化的幅度当然是越大越好观察,但有个前提是不能超过工艺允许的最大偏差。

在我的博文《浅谈PID控制系统的质量指标》一文曾说,当系统的输入为阶跃变化时,系统的过渡过程大多表现形式为振荡过程,如:发散振荡、等幅振荡、衰减振荡.....。

大多数情况下都希望得到4:1衰减振荡过渡过程。

可以说等幅振荡实质还是属于1:1衰减振荡过渡过程;系统产生等幅振荡并能稳定的保持时,即可判断已达到了临界振荡(即不出现不衰减或发散的振荡过程)。

关于判断的数学模型,我们先看产生等幅振荡过程的条件,这与电子振荡电路的原理是一样的,即开环条件下相位差为180度,幅值比等于1是产生等幅振荡过程的条件,也是过程稳定与否的临界条件;这两个条件也适用于自动控制过程。

选择比例度时,通常总希望尽可能的小一些,这样最大偏差较小,在单独用比例作用时余差较小,但还要保证稳定裕度的要求。

取稳定裕度为0.5,并达到临界(等幅振荡)时,也就是过程稳定与不稳定的边界情况时,其幅值及相角的关系如下:KoKc│G(ωk)│=1Ф(ωk)=-180度式中: Ko------广义对象的放大系数,Kc------控制器放大倍数,│G│----幅值,Ф------相角,ωk-----临界频率。

PID调节概念及基本原理目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

(1)比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

(2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

(3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID 控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

1、选择合适的采样周期T,调节器做纯比例Kp控制2、逐渐加大比例控制Kp,使系统出现临界振荡,由振荡过程求相应的临界振荡周期Ts3、根据一定的约束条件,例如取T=0.1Ts,ti=0.5Ts,td=0.125Ts由此差分方程可表示为delta_u(kT)=Kp[2.45e(kT)-3.5e(kT-T)+1.25e(kT-2T)]参考资料:《交流电机的数字控制系统》,李永东电流环节的有一个规律。

以dq模型的PMSM为例.无论是d 还是q 的电流环节,都是P=omega*R, I=omega*L*tsomega是额定电气角速度,R是相电阻,L是电感。

相关文档
最新文档