数字增量式直接函数法插补算法
一、插补及其算法 插补:是指在一条已知起点和终点的曲线上进行数
插补: 插补:是指在一条已知起点和终点的曲线上进行 数据点的密化。 数据点的密化。 CNC系统插补功能:直线插补功能 系统插补功能: 系统插补功能 圆弧插补功能 抛物线插补功能 螺旋线插补功能
淮海工学院
8.1
插补原理
直线和圆弧插补功能插补算法: 直线和圆弧插补功能插补算法:
⑴逐点比较法直线插补的象限与坐标变换 线 G01 型 偏 差 判 别 F≥0 F<0 象 2 限 3
1
4
+X +Y
+Y - X
-X -Y
-Y +X
淮海工学院
8.1
插补原理
(2)逐点比较法圆弧插补象限与坐标变换 )
象 线 型 偏差判别 F≥0 G02 G03 F<0 F≥0 F<0 1 -Y +X -X +Y 2 +X +Y -Y -X 3 +Y -X +X -Y 限 4 -X -Y +Y +X
淮海工学院
或半闭环)CNC系统的加减速控制 二、闭环(或半闭环 闭环 或半闭环 系统的加减速控制
前加减速控制: 前加减速控制 (1)稳定速度和瞬时速度 ) (2)线性加减速处理 ①加速处理 )
②减速处理 ③终点判别处理
8.1
插补原理
图8-2 逐点比较法直线插补轨迹
淮海工学院
8.1
插补原理
2.逐点比较法圆弧插补 逐点比较法圆弧插补
(1)判别函数及判别条件 ) (2)进给方向判别 ) (3)迭代法偏差函数F的推导 )迭代法偏差函数 的推导 (4)逐点比较法圆弧插补终点判别 )
淮海工学院
8.1
插补原理
⒊ 坐标变换及自动过象限处理
数据插补的方法
数据插补的方法一、引言数据插补是一种常见的数据处理方法,用于填补缺失值或补全不完整的数据序列。
在实际应用中,由于各种原因(如传感器故障、网络异常等),数据可能会出现缺失或不完整的情况,这时候就需要使用数据插补方法来处理这些问题。
本文将介绍几种常见的数据插补方法,并对其优缺点进行分析和比较。
二、常见的数据插补方法1. 线性插值法线性插值法是最简单、最基础的数据插补方法之一。
它假设缺失值在两个已知数据点之间,且在这两个点之间变化是线性的。
具体地,设已知两个点 $(x_1, y_1), (x_2, y_2)$,则对于 $x_1 \leq x \leqx_2$ 的任意 $x$,可以通过以下公式计算其对应的 $y$ 值:$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$线性插值法简单易懂,计算速度快,但它假设变化是线性的,在某些情况下可能会产生较大误差。
2. 拉格朗日插值法拉格朗日插值法是一种多项式插值方法,它通过已知数据点构造一个多项式函数,再用该函数计算缺失值。
具体地,设已知 $n+1$ 个点$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$,则可以构造一个 $n$ 次多项式函数:$$L(x) = \sum_{i=0}^n y_i \prod_{j=0,j\neq i}^n \frac{x - x_j}{x_i - x_j}$$对于任意 $x$,都可以用 $L(x)$ 计算其对应的 $y$ 值。
拉格朗日插值法可以精确地拟合已知数据点,但当数据量较大时计算复杂度较高,并且容易产生龙格现象(即在插值区间两端出现震荡的现象)。
3. 样条插值法样条插值法是一种分段多项式插值方法,它将整个插值区间划分为若干小区间,在每个小区间内构造一个低次数的多项式函数。
具体地,在每个小区间内,设已知两个点 $(x_i, y_i), (x_{i+1}, y_{i+1})$,则可以构造一个三次样条函数:$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$要求 $S_i(x)$ 在 $[x_i, x_{i+1}]$ 上满足以下条件:- 在插值点处,$S_i(x_i) = y_i$,$S_{i}(x_{i+1})=y_{i+1}$;- 在插值点处,$S'_i(x_{i})=S'_{i-1}(x_{i})$,即两个相邻区间的导数相等;- 在插值点处,$S''_i(x_{i})=S''_{i-1}(x_{i})$,即两个相邻区间的二阶导数相等。
插补原理
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
数控原理的插补计算
max 1
0
0
三、插补方法分类
目前常用的各种插补算法大致分为两类:
1、脉冲增量插补
特点:
每次插补输出的是单个的行程增量,以一 个个脉冲的方式输出给步进电动机。 插补输出的进给速度主要受插补运算速度 的限制,因而进给速度指标难以提高。 脉冲增量插补算法较简单,通常仅有加法 和移位运算,因此比较容易用硬件来实现, 而且用硬件实现的这类插补运算速度很快。
小结:
1、插补的概念
根据给定轮廓轨迹的曲线方程和进给速度,在轮廓的起 点和终点中间,“插入或补上”轮廓轨迹各个中间点的坐 标,这个过程称为插补。
2、评价插补算法的指标
(1)实时性指标
(2)稳定性指标
(3)精度指标 (4)合成速度的均匀性指标
小结:
3、插补方法分类
(1)脉冲增量插补 (2)数字增量插补
为了确保轮廓精度的要求,实用的插补算法首先应该是 稳定的。否则,有可能由于近似误差和舍入误差的累积而使 插补误差不断增大,导致插补轨迹严重偏离给定轨迹,难以 加工出合格的零件。
二、评价插补算法的指标
3、精度指标
插补精度是指插补轨迹轮廓与编程给定 轮廓的符合程度,可用插补误差来评价。 插补误差包括:逼近误差(指用直线段 逼近曲线时产生的误差)、近似误差和舍入 误差,三者的综合效应应小于系统的最小运 动指令或脉冲当量值。其中,逼近误差和近 似误差与插补算法密切相关。因此,应尽量 采用逼近误差和近似误差小的插补算法。
二、评价插补算法的指标
4、合成速度的均匀性指标
合成速度的均匀性是指插补输出的各种进给速度 的合成进给速度与编程给定的进给速度的符合程度, 可用速度不均匀性系数来评价:
F FC 1000 0 F
数控机床插补原理
X轴实际位置 X轴位置
比较
X坐标轴的位置增量/本周期
插 补 程 序
X轴位置 跟踪误差
Y坐标轴的位置增量/本周期
Y轴位置
采样反馈
比较
Y轴位置 跟踪误差
Y轴实际位置
伺 服 位 置 控 制 软 件
X轴 速度
X 驱 动 Y 驱 动
Y轴 速度
2插补的分类
2.4数据采样插补算法分类
1、直接函数法
数 据 采 样 插 补 算 法
Σ =5
Σ =4 Σ =3
6
7 8
F5<0
F6>0 F7<0
+y
-x -x
F6=F5+2y5+1=4
F7=F6-2x6+1=1 F8=F7-2x7+1=0
x6=4, y6=0
x7=4, y7=0 x8=4, y8=0
Σ =2
Σ =1 Σ =0
四、总结
插补原理,就是根据加工要求,确定出起 点和终点坐标之间的中间点,进而控制刀具 沿规定的轨迹运动,以加工出规定的轮廓的 方法。
X i 1 X i 1 2 2 2 Fi 1 ( X i 1) Yi R Fi 2 X i 1
3.3.4终点判别
双向计数:Σ=|Xb-Xa|+|Yb-Ya|,Σ=0停止 单向计数:Σ=max{|Xb-Xa|,|Yb-Ya|},Σ=0停止 分别计数:Σ1=|Xb-Xa|,Σ2=|Yb-Ya|,Σ1&Σ2=0停止
y
4 2 2 3
E(4,2)
o
1 1
x
2.投影法(单向计数) 取X方向和Y方向最多的步数作为计 数长度,此方向每走一步减一,直 到减为0停止。 Σ=max{|Xe|,|Ye|} Σ=0插补停止
数控加工中两种插补原理及对应算法
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
什么是插补
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
插补方法的分类
插补方法的分类
1)基准脉冲插补(脉冲增量插补)
每次插补结束时向各运动坐标轴输出一个基准脉冲序列,驱动各坐标轴进给电机的运动。
每个脉冲使坐标轴产生1个脉冲当量的增量,代表刀具或工件的最小位移;脉冲数量代表刀具或工件移动的位移量;脉冲序列频率代表刀具或工件运动的速度。
基准脉冲插补特点:运算简洁,用硬件电路实现,运算速度快。
适用步进电机驱动的、中等精度或中等速度要求的开环数控系统。
有的数控系统将其用于数据采样插补中的精插补。
基准脉冲插补方法:逐点比较法、数字积分法、比较积分法、数字脉冲乘法器法、最小偏差法、矢量判别法、单步追踪法、直接函数法等。
应用较多的是逐点比较法和数字积分法。
2)数据采样插补(数据增量插补、时间分割法)
采纳时间分割思想,依据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段(又称轮廓步长)进行数据密化,以此来靠近轮廓曲线。
着重解决两个问题——
(1)如何选择插补周期T;
(2)如何计算在一个插补周期内各坐标轴的增量值△x或△y。
闭环、半闭环系统采纳数据采样插补方法。
数据采样插补方法:直线函数法、扩展数字积分法、二阶递归扩展数字积分法、双数字积分插补法等。
第四部分插补原理与速度控制
(3)迭代法偏差函数F的推导
①设加工点P在圆弧外侧或圆弧上,则加工偏差F≥0, 刀具需向X坐标负方向进给一步,即移动到新的加工点
P(Xi+1,Yi)。新加工点的偏差为: Fi+1,i = (Xi – 1)2 +Yi2 -(X02 + Y02)
=Xi2-2Xi+1-X02+Yi2-Y02 =F-2Xi+1 ②设加工点P在圆弧内侧,则加工偏差F<0,刀具需向
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
③偏差计算 计算新加工点相对直线的偏差,作为下一步 偏差判别的依据。
④终点判别 判断是否到达终点,未到达终点则返回第一 步,继续插补,到终点,则停止本程序段的插补。终 点判别可采用两种方法:一是每走一步判断Xi-Xe≥0及 Yi-Ye≥0是否成立,如成立,则插补结束否则继续。二 是把每个程序段中的总步数求出来,即n=|Xe | + | Ye | , 每走一步n-1,直到n=0为止。
线 型 偏差判别
象
1
2
限
3
4
F≥0
-Y
+X
+Y
-X
G02
F<0
+X
+Y
-X
-Y
F≥0
-X
-Y
+X
+Y
G03
F<0
+Y
-X
-Y
+X
(3)圆弧插补自动过象限处理
为了加工二个象限或二个以上象限的圆弧,圆弧插 补程序必须具有自动过象限功能。自动过象限程序包 括象限边界处理、过象限判断及数据处理等模块。
数控技术 第三章 插补
3.逐点比较法圆弧插补 3.逐点比较法圆弧插补
(1)偏差函数 任意加工点P ),偏差函数 偏差函数F 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为
Fi = X i2 + Yi 2 − R 2
=0,表示加工点位于圆上; 若Fi=0,表示加工点位于圆上; Y >0,表示加工点位于圆外; 若Fi>0,表示加工点位于圆外; <0, 若Fi<0,表示加工点位于圆内
Y Ae (Xe,Ye) F>0 Pi (Xi,Yi) F<0 X
为便于计算机计算) (2)偏差函数字的递推计算 (为便于计算机计算 为便于计算机计算 >=0,规定向+ 方向走一步(若坐标单位用脉冲当量表示) 若Fi>=0,规定向+X方向走一步(若坐标单位用脉冲当量表示)
Xi+1 = Xi +1 Fi+1 = XeYi −Ye (Xi +1) = Fi −Ye
2.逐点比较法直线插补 2.逐点比较法直线插补
(1)偏差函数构造 对于第一象限直线OA上任一点( OA上任一点 对于第一象限直线OA上任一点(X,Y) YX e − XYe = 0 若刀具加工点为Pi( ),则该点的偏差 若刀具加工点为Pi(Xi,Yi),则该点的偏差 Pi 函数F 函数Fi可表示为 Fi = Yi X e − X i Ye 若Fi=0,表示加工点位于直线上; 表示加工点位于直线上; 表示加工点位于直线上方; 若Fi>0,表示加工点位于直线上方; 表示加工点位于直线下方。 若Fi<0,表示加工点位于直线下方。
F=0 F<0 F>0 F<0 F>0 F=0 F<0 F>0 F<0 F>0
第六讲 插补的基本原理
yi − ∆yi −1 / 2 ∆xi = ∆L R xi +1 = xi + ∆xi yi +1 = R 2 − x 2 i +1 ∆yi = yi − yi +1
y ym (公式1) 公式1
A( x0 , y0 ) Pi ( xi , yi ) ∆xi
θi
D
β i ∆α i
d (∆yi ) = xi +1 / yi +1 d (∆xi )
d (∆xi ) = yi +1 / xi +1 d (∆yi )
当 xi ≤ y i 当 xi > yi
应选公式1 时,应选公式1。 应选公式2 时,应选公式2。
§2.5 刀具半径补偿
一、刀具补偿原理 数控系统对刀具的控制是以刀架参考点为基准 数控系统对刀具的控制是以刀架参考点为基准 刀架参考点 而零件加工程序给出的是零件轮廓轨迹 零件轮廓轨迹, 的,而零件加工程序给出的是零件轮廓轨迹,但实 际上是要用刀具的刀尖实现加工的, 刀尖实现加工的 际上是要用刀具的刀尖实现加工的,这样需要在刀 架的参考点与加工刀具的刀尖之间进行位置偏置 位置偏置。 架的参考点与加工刀具的刀尖之间进行位置偏置。 这种位置偏置由两部分组成: 这种位置偏置由两部分组成:刀具长度补偿及刀具 半径补偿。
Pi(xi,yi) x
∆xi = ∆L cos α ye ∆yi tan α = x = ∆x 任意T内 任意T e i xi +1 = xi + ∆xi xe 公式1 (公式1) cos α = 2 2 yi +1 = xi +1 tan α xe + ye ∆yi = yi +1 − yi
车床数控系统中的螺纹插补算法
L (C L H ; 给长度 减 1 D S R ),L 总进
L (C L 2 A D S R + ),
I NTR2: OR A
J R
OR OR
N , T ZI A N
L H
; 工未 完成, 续 下一次 中断 ; 加 继
第二 步 :偏 差 甬数 :F F R = + :初 始 偏 差 为 : : ;计 O 数 器 的设 置 分 以下 两种情 况 : 1 1 . ,F F R ) < 时 fT = + ,计 数 器以 I 为计 数 值 。 2 )当 F ≥丁 ,F F T 时 = - ,计数 器 以 I1 + 为计 数 值 。 采 用 以一插 补 算法 ,每 次计 数 器溢 出 中断 时 ,z轴 进 I : 给 一 步 ,而 不 必 每 个 主 轴脉 冲 到来 时 都 进 行插 补运 算 。 I
和进给步数 Z 应满足如下 比例关系 :
( 进给步数) ( : 主轴脉冲数1=( 螺纹导程) ( : 编码 器每转脉冲数)
即: ZP T / =/ -K
终点 因此,螺纹插朴町 归结于直线插补, 直线插补
的算法实现螺鼓插补 . .
3常用的螺纹 ( 直线)插补算法
目前数控 系统 采片 的插 补算法分为两大类 :脉 冲增 } j 1 射插补法 和数槲采样插补法 . 冲增量插补 的结粜 是输 出 脉
CM 便 是存这 种中 理指 导下 ,通 过生 产 、经营 各个环 IS 亍
业 ,带 动 产业 结构 优化 升 级” ( 十五 ”纲 要 ) ‘ ‘ ,让 信 息 化
带动T业化 ,广泛使用先进制造技术 ,将信息技术与现代 管理技术和制造技术相结合 ,应用于企业开发 、生产 、销 售和服务的全过程 ,通过信息集成 、过程优化以及资源优 化配置 ,实现物流 、信息流 、价值流的集成和优化 ,提高
第二讲 插补原理
不同象限,顺逆不同,插补公式也不一样。
例.用DDA法进行圆弧插补,半圆弧AE起点A(0,5),
终点E(5,0),半径r=5。 解:溢出基值
m=r=5
Δx=y0=5
y
A
x轴增量值
y轴增量值
Δy=x0=0 0
∑x=∑y=0
插补过程如下: E
x
三、提高积分法插补的精度
减小DDA圆弧插补轮廓误差的措施
以控制各轴从而形成要求的轮廓轨迹,这种“数据
密化”机能就称为“插补”。 插入 补充 数据点 得到具体控制方法 加密 数据点
零件程序 … N12 G00 X12 Y24 N13 G01 X24 Y56 …
y
56
24
0
12
24
x
二.软件插补算法 Ⅰ.脉冲增量插补
原理
产生的单个行程增量,以一个个脉冲
方式输入给伺服系统。
y
56
24
脉冲当量: 一个控制脉 冲所对应的 控制坐标轴 的移动量 (转动量)。
12
24
0
x
应用
步进电机为驱动装置的开环数控系统。
机 床
计算机 数控柜
步进电机 驱动电源
步进 电机 滚珠丝杆
Ⅱ.数字采样插补(时间标量插补)
插补程序每调用一次,算出坐标轴在一个周期 中的增长段(不是脉冲),得到坐标轴相应的指令 位置,与通过位置采样所获得的坐标轴的现时的实
0
Fi+1 = Fi -Ye
2.若沿+y向走一步,即
, yi1 yi 1 xi1 xi F x y x y i1 e i1 i1 e
于是有
y Pi+ 1
E(xe,ye)
数字积分插补法直线插补
数控原理与系统课程设计课题名称:数字积分插补法直线插补专业:班级:姓名:指导老师:数控原理与系统课程设计任务书班级姓名学号课程设计的目的1)了解连续轨迹控制数控系统的组成原理。
2) 掌握数字积分插补的基本原理。
3)掌握数字积分插补的软件实现方法。
二、课程设计的任务数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。
数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。
其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。
由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。
本次课程设计具体要求如下:1)数字积分插补法基本原理2)数字积分插补法插补软件流程图3)算法描述(逐点比较法算法在VB中的具体实现)4)编写算法程序清单5)软件运行仿真效果二、课程设计报告要求1)按课程设计任务5点要求为标题,编写课程设计报告,最后加一点:此次课程设计小结(包括设计过程中所碰到的问题、解决办法以及有关设计体会等)。
2)字数在3000字左右。
3)仿真软件一份。
三、学生分组学 生 姓 名数控原理与系统课程设计说明书一、数字积分法直线插补的基本原理数字积分法是利用数字积分的方法,计算刀具沿各坐标轴的位移,使得刀具沿着所加工的轮廓曲线运动利用数字积分原理构成的插补装置称为数字积分器,又称数字微分分析器(Digital Differential Analyzer ),简称DDA 。
数字积分器插补的最大优点在于容易实现多坐标轴的联动插补、能够描述空间直线及平面各种函数曲线等。
因此,数字积分法插补在轮廓数控系统中得到广泛的应用。
从几何角度来看,积分运算就是求出函数Y = f (t )曲线与横轴所围成的面积,从t =t 0到t n 时刻,函数Y= f (t )的积分值可表述为⎰⎰==n n tt t t dt )t (Ydt S 00f如果进一步将t ∈[t 0,t n ]的时间区划分为若干个等间隔Δt 的小区间,当Δt 足够小时,函数Y 的积分可用下式近似表示t Y Ydt S n i i tt n ∆∑⎰-=≈=1在几何上就是用一系列的小矩形面积之和来近似表示函数f (t )以下的积分面积。
5.3数字增量插补
将A、B两组计算公式设计成子程序,在程序的输入输出部分
进行引导坐标、实际坐标、进给方向的相互转换
§5.3 数字增量插补(三)时间分割圆弧插补算法
顺圆插补(G02)和逆圆插补(G03)在各象限采用公 式的情况如图所示:
BA
A
B
B A
A B
G02
AB
B
A
A
B
BA
G03
§5.3 数字增量插补(三)时间分割圆弧插补算法
dxi
xi1 yi1
d
xi
若 yi1 xi1,则dyi dxi
此时算法①对误差有收敛作用
若 xi1 yi1,则dyi dxi
此时算法①对误差有放大作用 ②
同理, 若 yi1 xi1,则dxi dyi
FT 2 4
4!
∴ FT2
8
F、 ρ一定时, T越小, δ越小 δ、ρ 一定时, T越小, F 越大
希望T越 小越好
T受插补运算时间、位置控制周期限制,不可能无限制小
在实际的 T是固定的,而F是用户给的
δ 有可能超差
CNC系统中: 为保证δ 在允许范围内 限制 F
§5.3 数字增量插补 (一)插补周期的选择
若 xe ye d(xi ) d(yi ) 此时算法②对误差有收敛作用
实质: 插补时总是先计算大的坐标增量
§5.3 数字增量插补 (二)时间分割直线插补算法
在第一象限,就有两组计算公式 再考虑不同的象限,插补公式一共有8组 为方便计算,引入“引导坐标”
在采样周期内,进给增量大的坐标定义为引导坐标G
δ ΔL
L1
ΔL= FT 插补周期内的合成进给量
5.3数字增量插补
先求xi ,再求yi
若 xe ye d
由①式得:由第一个增量求第二个增量的算法:
yi yi1 yi xi1tg yi (xi xi )tg yi
对上式以Δxi为自变量,其余为常数,
两边求微分,并取绝对值
d(yi ) tg d(xi )
插补时总是先计算大的坐标增量53数字增量插补二时间分割直线插补算法在第一象限就有两组计算公式再考虑不同的象限插补公式一共有8组为方便计算引入引导坐标在采样周期内进给增量大的坐标定义为引导坐标g进给增量小的坐标定义为非引导坐标n统一插补计算公式其中将计算公式设计成子程序在程序的输入输出部分进行引导坐标和实际坐标的相互转换53数字增量插补三时间分割圆弧插补算法加工第一象限顺圆弧半径为r用内接弦逼近圆弧逼近误差已知系统插补周期t现要求进给速度f插补周期内的合成进给量lft是本次插补周期内的合成位移量lftac直线段xiyiyiymyi1xixi1odyabccoscos未知要作近似处理l很小53数字增量插补xiyiymyi1xixi153数字增量插补三时间分割圆弧插补算法整理得
是本次插补周期内的 合成位移量ΔL=FT
由图示,在本次插补周期内,
X轴的位移增量 下一个插补点的坐标
Y轴的位移增量
xi L cos
xi1 xi xi
yi1 xi1tg
yi yi1 yi
其中:
① tg ye xe
cos xe
xe2 ye2
也可先求 yi , 再求xi 此时 sin i (xi xi1 2) R
Y轴的位移增量 yi L(xi xi1 2) R
下一个插补 yi1 yi yi
②
点的坐标
数据采样插补原理.
– 数据采样插补的最大进给速度不受计算机最大运算速 度的限制,而主要受圆弧弦线误差和伺服系统性能的 限制。 – 在直线插补中,插补形成的每个微小线段与给定的直 线重和,不会造成轨迹误差。但在圆弧插补中,通常 用内接弦线或内、外均差弦线来逼近圆弧,这种逼近 必然要造成轨迹误差。
(TF) eR R 8 8R
– 设指令进给速度为F,其单位为mm/min,插 补周期8ms,f的单位为μm/ms,l的单位为μm, 则:
F 1000 8 2 l f F 60 1000 15
– 无论进行直线插补还是圆弧插补,都要必须先 用上式计算出单位时间(插补周期)的进给量, 然后才能进行插补点的计算。
– 直线插补原理
数据采样插补原理
数据采样插补法又称数字增量插补法或时间标量 插补法,用在闭环、半闭环交直流伺服电机驱动 的控制系统中,插补结果输出的不是脉冲,而是 数据。计算机定时地对反馈回路采样,得到采样 数据与插补程序所产生的指令数据相比较后,以 误差信号输出,驱动伺服电动机。 数据采样插补可以划分两个阶段:粗插补和精插 补,其中粗插补是主要环节。粗插补是用微小的 直线段逼近给定的轮廓,该微小的直线段与指令 给定的速度有关,常用软件实现;精插补是在上 述微小的直线段上进行“数据点的密化”,这一 阶段其实就是对直线的脉冲增量插补,计算简单, 可以用硬件或软件实现。这种插补方法所产生的 最大速度不受计算机最大运算速度的限制,但插 补程序比较复杂。
100060100015直线插补原理直线插补原理tan圆弧插补原理圆弧插补原理圆弧插补计算就是以轮廓步长为圆弧上相邻两个圆弧插补计算就是以轮廓步长为圆弧上相邻两个插补点之间弦长由前一个插补点的坐标和圆弧半插补点之间弦长由前一个插补点的坐标和圆弧半径计算由前一插补点到后一插补点两个坐标轴的径计算由前一插补点到后一插补点两个坐标轴的进给量进给量x以第一象限顺圆圆弧为例讨论圆弧插补原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字增量式直接函数法插补算法
数字增量式直接函数法插补算法:
1、定义:数字增量式直接函数法插补是一种通过定义数增量函数来实现机床运动控制的插补算法。
它基于曲线点数据,转换为数增量,利用增量函数快速实现插补计算。
2、特点:
(1)数字增量式直接函数法插补算法具有算法精度高、运算量小、运行速度快的特点。
(2)在实现步进步伐和匀速插补的基础上,它可以快速实现任何曲线的插补算法。
(3)数字增量式插补方法具有柔和的过渡特性,可以有效降低对环境的振动。
3、实现原理:在数字增量式直接函数法插补中,定义函数将曲线平滑转换为相应的数增量,从而获取曲线需要的每个步伐数据。
在此过程中,还可以实现参数调节,以加快运算速度,提高插补精度。
4、应用:
(1)数字增量式直接函数法插补在工业机床控制系统中最广泛应用;(2)用于高速加工精度要求较高的电路板、玻璃、钢筋圆柱、五金、
塑胶等材料的裁切及铣、刨等加工技术的控制;
(3)在精确的工具机/窖机中,数字增量式插补方法可以实现较高的控制精度,以满足材料加工的要求。
5、发展:近年来,数字增量式直接函数法插补算法在工业应用中得到
了越来越广泛的应用。
随着计算机技术的发展,数字增量式插补方法
不断性的发展,算法的小巧、轻量化得到了极大的改观,实现了更加
快速节能的加工控制,为工业智能与自动化的发展奠定了坚实的基础。