自动控制原理公式
自动控制原理第二章梅森公式-信号流图课件
ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
自动控制原理重要公式
扰动信号的误差传递函数
H.静态误差系数
单位
输入形式
稳态误差ess
0型
Ⅱ型
Ⅲ型
阶跃1(t)
1/1+Kp
0
0
斜坡t·1(t)
∞
1/Kv
0
加速度·1﹙t﹚
∞
∞
1/Ka
I.二阶系统的时域响应:
其闭环传递函数为
或
系统的特征方程为
特征根为
上升时间tr
其中
峰值时间tp
最大超调量Mp
调整时间ts
a.误差带范围为±5%
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角,称为系统的相开环传递函数G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
的关系
二阶系统的闭环传递函数为
系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为
sna0a2a4a6……
sn-1a1a3a5a7……
sn-2b1b2b3b4……
sn-3c1c2c3c4……
… … …
s2f1f2
s1g1
s0h1
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
惯性环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
对数相频特性:
3.微分环节
纯微分环节的传递函数G(s)=s
频率特性:
幅频特性:
自动控制原理 第二章 梅森公式-信号流图
已知系统信号流图, 例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。 。
∑L
则
a
= − d − eg − bcg
有两个互不接触回路 ∑ Lb Lc = deg
∆ = 1 + d + eg + bcg + deg
f
1. X 1 → X 4 , p1 = aef , p2 = abcf ∆1 = 1 + d , ∆ 2 = 1
G4 G1 H1 G4 G1 H1 H1 G2 G2
作用分解
G3 H3
G3 H3 H3
梅逊公式介绍 R-C :
C(s) = R(s)
∑Pk△k △
其中: 其中
△称为系统特征式 △= 1 - ∑La + ∑LbLc -∑LdLeLf+…
所有单独回路增益之和 所有单独回路增益之和 回路增益 ∑LbLc—所有两两互不接触回路增益乘积之和 —所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和 所有三个互不接触回路增益乘积之和
R(s) 1
e
g
a f
b
c
h
d
C(s)
前向通路两条
四个单独回路, 四个单独回路,两个回路互不接触 ab c d + e d (1 – b g) C(s) = – a – bg – c – R(s) 1 f h e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图是由节点和支路组成的一种信号传递网络 是由节点和支路组成的一种信号传递网络。 信号流图的基本性质 基本性质: 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 节点标志系统的变量 标志系统的变量, 号的代数和, 表示; 号的代数和,用“O”表示; 表示 2) 信号在支路上沿箭头单向传递; 信号在支路上沿箭头单向传递 在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 支路相当于乘法器 信号流经支路时, 相当于乘法器, 成另一信号; 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): 源节点(输入节点): x2 x3 x7 I(s) x4 o在源节点上,只有信号输出 在源节点上, 在源节点上 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 支路而没有信号输入的支路, 它一般代表系统的输入变量。 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 阱节点( 阱节点 输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路, 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。 一般代表系统的输出变量。
自动控制原理公式
自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。
对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。
2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。
3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。
对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。
4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。
例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。
5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。
零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。
6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。
PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。
这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。
自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。
自动控制原理超调量公式
自动控制原理超调量公式在自动控制系统中,超调量这个词听起来可能有点高深,但其实它跟我们的日常生活息息相关,简直就是控制系统中的“小调皮”。
别着急,我这就带你一起捋一捋这个概念,让你轻松搞懂它的来龙去脉。
1. 什么是超调量?1.1 定义首先,超调量就是指在系统响应过程中,输出值超出期望值的那部分。
想象一下,你等公交车,刚走到站台,公交车来了,你兴冲冲地挥手,结果一不小心,超出了站台边缘,哎呀,差点摔个四脚朝天!这个“超出”的感觉,就是超调量。
1.2 举个例子再说个生活中的例子,你家里的空调是不是会在你设定温度时,先把温度降得比你想要的低一点,然后再慢慢调回去?这就是超调量的一个体现!空调觉得“哎呀,我得快点让你凉快”,于是就先使劲儿降温,然后再“慢慢来”。
这样一来,虽然你最终是凉快了,但那一瞬间的“冷”可真是让人受不了,感觉像是走进了冰箱。
2. 超调量的公式2.1 公式介绍说到公式,这里得提一下控制理论中的一个重要公式:超调量一般用百分比来表示,计算公式是:。
M_p = frac{y_{max y_{ss{y_{ss times 100% 。
这里的 ( y_{max ) 是系统输出的最大值,而 ( y_{ss ) 是稳态值。
简单来说,就是你最高点和最终目标之间的差距,再用这个差距除以目标值,乘以100就得到了超调量。
2.2 公式应用当你把这个公式运用到实际中去时,就像是给你的超调量穿上了一件“外套”,让它看起来更加高大上。
想象一下,假设你设定的温度是25度,但空调调到的最高温度是30度,那么你的超调量就是:。
M_p = frac{30 25{25 times 100% = 20% 。
哇,20%的超调量!这意味着空调在调整过程中,真是“火力全开”,给你来了个“冰火两重天”!3. 超调量的重要性3.1 控制系统的影响那么,超调量到底有什么重要性呢?首先,它影响着系统的稳定性和响应速度。
就像你在追求一份目标时,假如你总是走得太快,结果反而可能会摔倒,反而慢下来会更稳妥。
自动控制原理第二章2-2
Uc(s)
超前校正装置
4
“由内而外”化简
R(s)
-
-
G1 H1
G2
H4
G3 H2 H3
G4
C(s)
思考:是否能用基本等效法则进行简化? H3 R(s) C(s) G1 G2 G3 G4 -
-
H1 H4
“支路交错”
H2
5
H2(s)
R(s) G1(s) G2(s) G3(s) G4(s) C(s)
H3(s)
E ( s) 1 Ger ( s ) = = R( s ) 1 + G1 ( s )G2 ( s ) H ( s)
- G2 ( s ) H ( s ) E( s) Gen ( s ) = = N ( s ) 1+ G1 ( s )G2 ( s ) H ( s )
24
第二章
d = s dt
小结
微分方程
干扰信号下的闭环传递函数 【令R(s)=0】
G2 ( s ) C ( s) GBN ( s ) = = N ( s ) 1 + G1 ( s )G2 ( s ) H ( s )
22
N(s) R(s) E(s)
G1(s) H(s)
C(s)
N
G2(s)
R
1
1 E
G1
1
G2
1
C
-H
二、系统误差传递函数
G2(s)
1
R 1
G1
G2
1
C
-H
E
一、系统开环传递函数
GK ( s) = G1( s)G2 ( s) H ( s)
21
N(s) R(s) E(s)
N C(s) 1 R 1
自动控制原理阻尼比计算公式
自动控制原理阻尼比计算公式在自动控制领域,阻尼比是一个非常重要的概念。
阻尼比是指系统的阻尼与临界阻尼的比值。
它是一个无量纲的参数,通常用ζ表示。
阻尼比的大小与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
因此,阻尼比的计算是自动控制中的一个重要问题。
在本文中,我们将介绍阻尼比的定义、计算公式及其应用。
首先,我们来看看阻尼比的定义。
阻尼比的定义阻尼比是指系统的阻尼与临界阻尼的比值。
临界阻尼是指系统在达到稳态时,振动的幅值最小的阻尼。
当阻尼比为1时,称为临界阻尼。
当阻尼比小于1时,称为欠阻尼;当阻尼比大于1时,称为过阻尼。
阻尼比的计算公式阻尼比的计算公式如下:ζ = c / c_c其中,ζ表示阻尼比,c表示系统的阻尼,c_c表示临界阻尼。
系统的阻尼可以通过测量系统的阻尼系数来得到。
阻尼系数是指系统在受到外力作用后,系统所受到的阻力与其速度之比。
阻尼系数可以通过实验测量来得到。
一般来说,阻尼系数与系统的阻尼成正比。
因此,我们可以通过测量系统的阻尼系数来得到系统的阻尼。
临界阻尼可以通过系统的固有频率来计算。
固有频率是指系统在无外力作用下,自由振动的频率。
当系统的阻尼等于临界阻尼时,系统的固有频率就等于系统的自然频率。
因此,我们可以通过测量系统的固有频率来计算系统的临界阻尼。
阻尼比的应用阻尼比是自动控制中的一个重要参数,它与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
在控制系统的设计中,我们需要根据实际情况来选择合适的阻尼比。
当阻尼比小于1时,系统处于欠阻尼状态。
在这种情况下,系统的振幅会不断增大,直到系统失稳。
因此,我们需要加大系统的阻尼,以提高系统的稳定性。
当阻尼比大于1时,系统处于过阻尼状态。
在这种情况下,系统的响应速度会变慢,因为阻尼会抑制系统的振荡。
因此,我们需要适当减小系统的阻尼,以提高系统的响应速度。
当阻尼比等于1时,系统处于临界阻尼状态。
在这种情况下,系统的响应速度和稳定性都达到了最优值。
自动控制原理第三章3_劳斯公式
3
要使系统稳定,必须 k 0 ①系数皆大于0, ②劳斯阵第一列皆大于0 120 k 0 k 120 有 8 0 k 120 k 0
所以,临界放大系数 k p 120 确定系统的相对稳定性(稳定裕度) 利用劳斯和胡尔维茨稳定性判据确定的是系统稳定或不稳 定,即绝对稳定性。在实际系统中,往往需要知道系统离临界 稳定有多少裕量,这就是相对稳定性或稳定裕量问题。
a3 a2 a2 a1 a3 a0 a2 a0 a1 a0 0 0
s2 s
1
s0
稳定的充要条件为: a3 , a2 , a1 , a0 均大于零
且a1a2 a3a0 0
劳斯判据特殊情况
特殊情况下劳斯阵列的列写及结论: 用一个正数去乘或除某整行,不会改变系统的稳定性结论; 劳斯阵第一列所有系数均不为零,但也不全为正数,则系统不 稳定。表示s右半平面上有极点,极点个数等于劳斯阵列第一列 系数符号改变的次数。 [例]:系统的特征方程为: s 5 2s 4 s 3 3s 2 4s 5 0
现以sx1代入上式得要使系统稳定必须系数皆大于0劳斯阵第一列皆大于018线性系统稳定的充要条件劳斯代数稳定性判据劳斯阵各种特殊情况下劳斯阵的排列和判稳方法劳斯稳定性判据的应用系统参数变化对稳定性的影响系统的相对稳定性
系统的稳定性和代数稳定判据
稳定的充要条件和属性
一、稳定的基本概念和线性系统稳定的充要条件 稳定是控制系统的重要性能,也是系统能够正常运行的首要条 件。控制系统在实际运行过程中,总会受到外界和内部一些因 素的扰动,例如负载和能源的波动、系统参数的变化、环境条 件的改变等。如果系统不稳定,就会在任何微小的扰动作用下 偏离原来的平衡状态,并随时间的推移而发散。因此,如何分 析系统的稳定性并提出保证系统稳定的措施,是自动控制理论 的基本任务之一。
自动控制原理_第3章_4
Φ( s) =
Ts 2 + ( K p K 0τ + 1) s + K p K 0
K p K 0 (τ s + 1)
K p K 0τ =
T T K p K 0τ + 1 K p K0 2 s + s+ T T
K p K 0τ + 1 T K p K0
s+
K p K0
2ζωn =
求得
ωn =
T
ζ =
【例3-4】 二阶系统的方块图如下 】
R( s )
E ( s)
K0
-
10 s ( s + 1)
Y ( s)
τs
要求闭环系统的超调量 σ p = 16.3% , 峰值时间为
tp = 1s ,求放大器的放大倍数和速度反馈系数。
6
【解】 系统的开环传递函数为
10 K 0 G (s) = 2 s + (1 + 10τ ) s
an an − 2 an − 4 an −1 an −3 an −5 b1 b2 b3
b1an −3 − an −1b2 c1 = b1 b1an −5 − an −1b3 c2 = b1
an −6 an −7 b4
L L L
s
n−2
35
劳斯列表的性质
1 在计算劳斯列表时,某一行各元同时乘以或除以 同一个正数, 不影响稳定性的判断结果, 这种乘除 往往可简化后续的运算。 2
+ ∑ Ck e
k =1
−ζ k ωnk t
ห้องสมุดไป่ตู้
( sin (ω
2 k
nk
1− ζ
2 k
自动控制原理
1.闭环控制系统的基本组成是什么?控制器、执行器、被控对象、反馈环节2.自动控制系统的分类是什么?开环控制、闭环控制、复合控制3.传递函数、系统动态结构图、信号流程图和脉冲响应函数;传递函数定义:在零初始条件下,线性定常系统输出量的拉普拉斯变换与系统输入量的拉普拉斯变换之比。
G(S)=C(S)/R(S)性质:(1)传递函数只适应于线性定常系统(2)传递函数只取决于系统的结构和参数,而与系统的输入、输出无关。
它表示系统的固有性质,是一种在复数域描述系统的数学模型(3)传递函数是在零初始条件下定义的,因而不能反映非零初始条件下系统的运动过程(4)传递函数是复变量S的有理分式,其分子分母的各项系数均为实数,传递函数分母中S的最高次n即为系统的阶次4.控制系统的时域分析法(一阶系统分析)5.控制系统的频率特性分析法(代数解析法和图形表示法)模电数电1.常用半导体器件及应用二极管:二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。
特性:单向导电性。
二极管的特性曲线与PN结一样,二极管具有单向导电性。
硅二极管典型伏安特性曲线(图)。
在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律增大,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。
对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。
类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。
根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。
晶闸管:晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门极;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
自动控制原理第07 讲 梅逊公式
※比较点与节点的对应关系
◇梅逊公式
式中,P—系统总传递函数 Pk—第k条前向通路的传递函 数(通路增益) Δ—流图特征式
ΣLa —所有不同回路的传递函数之和; ΣLbLc—每两个互不接触回路传递函数乘积 之和; ΣLdLeLf—每三个互不接触回路传递函数乘 积之和;
Δk—第k条前向通路特征式的余因子,即对于 流图的特征式Δ,将与第k条前向通路相接触 的回路传递函数代以零值,余下的Δ即为Δk。
◇闭环系统的开环传递函数
将闭环控制系统主反馈通道的输出断开, 即H(s)的输出通道断开,此时,前向通道传 递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环 传递函数。记为Gk(s)。 闭环系统的开环传递函数也可定义为反馈 信号B(s)和偏差信号ε(s)之间的传递函数, 即:
□输入节点(源节点) 只有输出的节点,代表系统的输入变量。
□输出节点(阱节点、汇点) 只有输入的节点,代表系统的输出变量。
□混合节点
即有输入又有输出的节点。若从混合节点 引出一条具有单位增益的支路,可将混合 节点变为输出节点。
□通路 沿支路箭头方向穿过各相连支路的路径。
□前向通路
从输入节点到输出节点的通路上通过任何节点 不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示
□回路 起点与终点重合且通过任何节点不多于一 次的闭合通路。回路中所有支路增益之乘 积称为回路增益,用La表示。
□不接触回路:相互间没有任何公共节点的回路
◇信号流图的绘制 两种方法: √由系统微分方程绘制信号流图 根据微分方程绘制信号流图的步骤与绘制 方 框图的步骤类似。 √由系统方框图绘制信号流图
●信号流图和梅逊公式
自动控制原理03信号流图,梅逊公式
2 1 P2 2
abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)
。
解:首先进行分析
G1
X2
X3
G2 H1
G3
X4
G4
C(s)
R
1
X1
G1
X2
G2 X3 -1 -H1
G3
X4
G4
C
2.4 信号流图与梅森公式
2.4.2 梅逊增益公式
P G (s) 1
n
k 1
Pk
--特征式
k
1
La
Lb Lc
Ld Le L f
{
例题1:已知系统的信号流图,求系统的传递函数
C (s) R (s)
。
h a b -1 c d -1 e f -1
g
R(s)
C(s)
解:首先对信号流图进行分析,找到梅逊公式中的相关信息 系统有:2条前向通道,3个闭合回路,3组两两互不接触回 路, 1组三三互不接触回路 然后写出各项的取值:
2.4.2 梅逊增益公式 例题1:P1
3 1
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H
自动控制原理第6章
Z=P–N=0
1 0
Re
0
例4
Gk
s
K
s 2 Ts
1
判断稳定性。
Im
0
0
1 0
Re
P=0
N= -2(2次负穿越)
Z=P–N=2
Gb(s) 有两个极点在右半平面,系统不稳定。
5.4.4 已知开环伯德图时稳定判据 将伯德图转为奈氏曲线再判断。
5.5.1 最小相位系统的稳定裕量
20 lg150 20 lg 2 40 lg10 40 lg 2 20 lg c 20 lg10
20 lg150 20 lg 2 20 lg10 20 lg c
150 10c
2
得
c 30 rad/ s
Gk j
1500.1 j 1 j0.5 j 10.02 j 10.005 j 1
2、由于 f(s )的幅角改变量为 f s 2 P Z ,如果
P Z 0 ,则 f(s ) 一定围绕原点绕行。
我们是要用幅角原理来判断系统的稳定性,即 Gb(s) 极点的分 布情况,而且要用 Gk(s) 来判断,因此一定要涉及Gb(s) 的特征
多项式,不妨设 f s 1 Gk s
特点: 1. f(s ) 的零点是 Gb(s) 的极点,即 1+ Gk(s) 的 Z 是 Gb(s) 的极 点 P , f(s ) 的 Z 未知。
闭环系统不稳定时的情况:
c
1
1
Im 0, h 1
0 Re
0
Gk ( j1)
Gk ( jc )
当 c 对应的交点在Ⅲ象限时,
Gk jc
0
当 c 对应的交点在Ⅱ象限时,
Gk jc
自动控制原理重要公式
A.阶跃函数 斜坡函数 抛物线函数 脉冲函数 正弦函数B.典型环节的传递函数 比例环节 惯性环节(非周期环节) 积分环节微分环节 二阶振荡环节(二阶惯性环节) 延迟环节 C.环节间的连接串联并联反馈 开环传递函数=前向通道传递函数=负反馈闭环传递函数 正反馈闭环传递函数D.梅逊增益公式E.劳斯判据 劳斯表中第一列所有元素均大于零 s n a 0 a 2 a 4 a 6 …… s n-1a 1 a 3 a 5 a 7 ……s n-2 b 1 b 2 b 3 b 4 …… s n-3 c 1 c 2 c 3 c 4 …… … … …s 2 f 1 f 2s 1 g 1 s 0 h 1,,,,,,141713131512121311171603151402131201b b b a a c b b b a a c b b b a a c a a a a a b a a a a a b a a a a a b -=-=-=-=-=-=劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;劳斯表中某一行的元素全为零。
P(s)=2s 4+6s 2-8。
F.赫尔维茨判据 特征方程式的所有系数均大于零。
⎩⎨⎧≥<=000)(t A t t r ⎩⎨⎧≥<=000)(t At t t r ⎪⎩⎪⎨⎧≥<=02100)(2t At t t r ⎪⎩⎪⎨⎧>≤≤<=εεt t z At t r 0000)(⎩⎨⎧≥<=0sin 00)(t t A t t r ωKs R s C s G ==)()()(1)()()(+==Ts K s R s C s G sT s R s C s G i 1)()()(==sT s R s C s G d ==)()()(2222)(n n n s s K s G ωζωω++=se s R s C s G τ-==)()()()()()( )()()()()()()()()(211121s G s G s G s X s C s X s X s R s X s R s C s G n n =⋅==-)()()( )()()()()()()(2121s G s G s G s R s C s C s C s R s C s G n n +++=+++== )()()()(s H s G s E s B =)()()(s G s E s C =)()(1)()()()(s H s G s G s R s C s +==Φ)()(1)()()()(s H s G s G s R s C s -==Φ∆∆=∑kk P TG.误差传递函数扰动信号的误差传递函数单位 输入形式 稳态误差e ss 0型 Ⅱ型 Ⅲ型 阶跃1(t) 1/1+Kp 0 0 斜坡t ·1(t) ∞ 1/Kv 0 加速度0.5t 2·1﹙t ﹚∞ ∞ 1/Ka I.二阶系统的时域响应:其闭环传递函数为 或 系统的特征方程为2)(22=++=n n s s s D ωζω特征根为1,221`-±-=ζωζωn n s上升时间t r其中 峰值时间t p最大超调量M p调整时间t sa.误差带范围为 ±5%b.误差带范围为± 2%振荡次数NJ.频率特性:还可表示为:G (jω)=p (ω)+jθ(ω) 为G (jω)的实部,称为实频特性; θ(ω)——为G (jω)的虚部,称为虚频特性。
自动控制原理(3-2)
arccos 1.09(rad )
1 0.7
d n 1 2 3.14(rad / s)
0.65( s ) d
td
n
3.5
0.37( s )
tr
ts
n
4.4
2.15( s ) 0.05
ts
n
2.70( s)
对上式取拉氏反变换,求得单位阶跃响应为:
h(t ) 1 e sin d t cos d t 2 1 1 1 e nt 1 2 cos d t sin d t 1 2
n t
1
1 1 2
e nt sin( d t ) , t 0
式中, arctan( 1 2 ) ,或者
arccos
欠阻尼二阶系统的单位阶跃响应有两部分组成:
稳态分量为1,系统在单位阶跃函数作用下不存在
稳态位臵误差;
瞬态分量为阻尼正弦振荡项,其振荡频率为ωd,
故称为阻尼振荡频率。
t 0
系统的误差为:
e(t ) r (t ) c(t ) 2
n
2
n
1 2 e nt sin 1 2 n t 2arctg 1 2 1
1 2
e t T1 e t T2 h(t ) 1 , t0 T2 T1 1 T1 T2 1
4.无阻尼(ζ=0)二阶系统的单位阶跃响应
h(t ) 1 cos nt , t 0
可见,这是一条平均值为1的正、余弦形式的等幅振 荡,其振荡频率为ωn,故可称为无阻尼振动频率。 实际的控制系统通常都有一定的阻尼比,因此不可能 通过实验方法测得ωn,而只能测得ωd,且小于ωn。
自动控制原理 梅森公式求系统传递函数
1 2 3 1 4
1 2 H1 2 3 H2 1 2 3
L1 G1G2H1 L2 G2G3H 2 L3 G1G2G3
P1 G1G2G3 P2 G1G4
4 H2 1 4
L4 G4H2 L5 G1G4
8
R(s)
-
G4
A
G1
G2
-B
H1
P
1
2
Pk k
k 1
G1G2G3 G3G4 G1G3G4 H1
1 G1H1 G3H 2 G1G2G3H1H 2 G1G3H1H 2
6
G4
求 E(s) R(s)
R
E
-
G1
G2
+
-
G3
C
+
H1
H2
P1 1, 1 1 G3H2
P2 G3G4H1H2 , 2 1
△2=1
△3=1+G2(s)H1(s)
Cs N s
P11
P2 2
P33
1 Gn sG1sG2 s Gn sG1sG3s Gn sG1sG2 sG3sH1s]
23
练习
已知系统的结构如图,求传递函数 Y , Y , Y
9
练习 求传递函数
-
G1
R
Y
-
-
G2
GY
G2 G1 G1G2 G1G2
R 1 G2 G1 G1G2 G1G2 G1G2
G2 G1 2G1G2 1 G2 G1 3G1G2
10
2.3.5 闭环控制系统的传递函数
自动控制原理公式汇总松鼠学长
自动控制原理公式汇总松鼠学长自动控制原理涉及的公式有很多,以下列举一些常见的公式:1.控制器传递函数:H(s) = Kp + Ki/s + Kds其中,Kp为比例增益,Ki为积分增益,Kd为微分增益,s为Laplace变量。
2.开环传递函数:G(s) = H(s) * P(s)其中,G(s)为开环传递函数,P(s)为系统传递函数。
3.闭环传递函数:T(s) = G(s) / (1 + G(s) * H(s))其中,T(s)为闭环传递函数。
4.稳态误差公式:e_ss = 1 / (1 + G(0))其中,e_ss为稳态误差,G(0)为开环传递函数的静态增益。
5.频率响应公式:G(jω) = |G(jω)| * exp(jθ)其中,G(jω)为频率响应,|G(jω)|为增益,θ为相位。
此外,控制系统还有一些特殊情况下的公式,如1.一阶惯性环节的传递函数:P(s) = K / (Ts + 1)其中,K为增益,T为时间常数。
2.二阶惯性环节的传递函数:P(s) = K / (T^2s^2 + 2ζTs + 1)其中,K为增益,T为时间常数,ζ为阻尼比。
以上只是一些常见的公式,实际上,自动控制原理还涉及到了更多的公式和理论,如PID控制算法的具体公式等等。
在不同的控制问题和应用中,还会涉及到更多的特定公式。
补充拓展:自动控制原理还包括了许多其他重要的概念和原理,如采样定理、校正方法、反馈控制系统等。
此外,还有针对不同类型系统的特定控制方法,如模糊控制、自适应控制、最优控制等。
这些方法也涉及到特定的公式和算法。
总之,自动控制原理是一个复杂而庞大的学科,其公式和理论涉及到多个方面。
在应用中,需要根据具体的问题和系统来选择适当的公式和方法。
自动控制原理 传递函数计算
四、传递函数举例说明
例1.
如图所示的RLC无源
L
网络,图中电感为L
(亨利),电阻为R (欧姆),电容为C
ui
(法),试求输入电 压ui(t)与输出电压 uo(t)之间的传递函数。
R
i C uc
解:为了改善系统的性能,常引入图示的无源网络 作为校正元件。无源网络通常由电阻、电容、电感 组成,利用电路理论可方便地求出其动态方程,对 其进行拉氏变换即可求出传递函数。这里用直接求 的方法。因为电阻、电容、电感的复阻抗分别为R、 1∕Cs、Ls,它们的串并联运算关系类同电阻。
C R=1
北京航空航天大学
L1
L2
P11 P22
L3 L4 L2 L4
L3 L4
Ui (s) = Ls R 1/ sC I (s)
Uo(s) = 1/ sCI(s)
则传递函数为
Uo (s) = 1/ sC =
1
Ui (s) Ls R 1/ sC LCs2 RCs 1
五、用梅森(S.J.Mason) 公式求传递函数
• 梅森公式的一般式为:
n
PK K
G(s) = K =1
利用梅森公式求传递函数(2)
2. 求 Pk ,k
P1 = G1G2G3G4G5G6
1 = ?
R(s) G1
-
求余子式1
H4
4
-
G2
-
G3
G4
-
G5
2
H2
3
H3
H1
C(s) G6
1
将第一条前向通道从图上除掉后的图,再用特
征式的求法,计算 1
求余式1
R(s) G1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理公式
自动控制系统最常用的数学描述是利用控制工程中的数学模型。
数学模型是通过分析和建立系统的动态行为方程、传输函数或状态空间方程来描述系统的数学形式。
以下是一些常用的控制原理公式:
1.闭环系统传递函数公式
闭环系统传递函数是表示控制器输出信号C(s)与参考输入信号R(s)之间的关系的函数。
通常表示为T(s)或G(s)。
2.开环传递函数公式
开环传递函数是表示控制器输出信号和系统输入信号之间的关系的函数。
通常表示为G(s)。
3.比例控制器公式
比例控制器是最简单的控制器之一,其输出信号与误差信号之间的关系为:C(t)=Kp*e(t),其中Kp为比例增益,e(t)为误差信号。
4.积分控制器公式
积分控制器输出信号与误差信号的时间积分之间的关系为:C(t) = Ki * ∫e(t)dt,其中Ki为积分增益。
5.微分控制器公式
微分控制器输出信号与误差信号的时间微分之间的关系为:C(t) = Kd * de(t)/dt,其中Kd为微分增益。
6.传递函数的极点和零点公式
传递函数的极点和零点是指传递函数的分母和分子中令传递函数等于
零的根。
传递函数的极点和零点对系统的稳定性、阻尼比、过渡特性等有
重要影响。
7.控制系统稳定性判据公式
控制系统稳定性判据是通过判断传递函数的极点位置来评估系统的稳
定性。
例如,对于一阶系统,系统稳定的条件是极点实部小于零;对于二
阶系统,系统稳定的条件是极点实部均小于零。
8.级联控制系统公式
级联控制系统是由两个或多个控制回路组成的系统。
级联控制系统的
传递函数可以通过将各个回路的传递函数相乘来获得。
9.PID控制器公式
PID控制器是包含了比例控制器、积分控制器和微分控制器的三个组
成部分的控制器。
PID控制器的输出信号与误差信号的线性组合关系为:
C(t) = Kp*e(t) + Ki∫e(t)dt + Kd *de(t)/dt。
以上是一些常见的自动控制原理公式,用于描述和分析控制系统的特
性和行为。
在实际应用中,根据具体系统和控制要求,还会有其他补偿器、滤波器等的公式和方法。
自动控制理论在工业、交通、航天等领域中得到
广泛应用,对提高系统性能和效率有着重要作用。