4-10mm 矫直机毕业设计说明书(加翻译)
矫直机的设计
目录第一章绪论 ............................................................. - 1 -1.1课题研究的背景和意义............................................. - 1 -1.1.1金属板材矫直技术概况....................................... - 1 -1.1.2平行多辊薄板矫直机国内外概况............................... - 2 -1.1.3国内外实际生产中矫直技术概况举例........................... - 3 -1.1.4课题研究的提出及意义....................................... - 4 -1.2本课题的研究内容................................................. - 4 - 第二章液压矫直机的工作原理和系统构成.................................... - 5 -2.1 矫直原理 ........................................................ - 5 -2.2液压矫直机的设备机构及用途概述................................... - 5 -2.2.1矫直机本体................................................. - 5 -2.2.2换辊装置................................................... - 8 -2.2.3主传动装置................................................. - 8 -2.3液压矫直机的液压伺服控制系统设备................................. - 9 -2.3.1液压泵站................................................... - 9 -2.3.2主AGC液压缸............................................... - 9 -2.3.3液压伺服阀台............................................... - 9 -2.4液压矫直机电气控制系统........................................... - 9 -2.4.1电气控制系统的方案........................................ - 10 -2.4.2自动控制系统的功能........................................ - 10 -2.5本章小结........................................................ - 10 - 第三章计算元件的参数和选型.............................................. - 11 -3.1选择系统供油压力................................................ - 11 -3.2求液压缸相关参数................................................ - 11 -3.3确定伺服阀规格.................................................. - 13 -3.4 液压泵计算及选型液压泵的选择.................................... - 14 -3.5 电动机计算及选型................................................ - 15 -3.6油管的计算...................................................... - 16 -3.6.1直径的计算................................................ - 16 -3.6.2壁厚的计算................................................ - 16 -3.7油箱计算及选型.................................................. - 17 -3.7.1油箱的选型................................................ - 17 -3.7.2 热平衡计算................................................ - 18 -3.8压力传感器选型.................................................. - 18 - 第四章液压伺服系统设计................................................. - 20 -4.1 拟定系统原理图.................................................. - 20 -4.2电液伺服阀传递函数.............................................. - 20 -4.3液压缸传递函数.................................................. - 20 -4.4 确定闭环函数的传递函数及建立数学模型............................ - 21 -4.5 绘制系统开环伯德图并根据稳定性确定开环增益...................... - 22 -4.6 求闭环系统的频宽................................................ - 23 - 第五章结论与展望 ...................................................... - 25 -5.1 论文总结 ....................................................... - 25 -5.2 存在问题及工作展望.............................................. - 25 - 参考文献 ............................................................... - 27 - 对本课程的意见 ......................................................... - 28 -第一章绪论1.1课题研究的背景和意义1.1.1金属板材矫直技术概况随着我国板材生产规模的不断扩大,各厂家日益认识到板形在生产与市场销售中的重要性。
校直机设计说明书 2
长江大学毕业设计(论文)题目:钢丝校直机传动及控制设计专业:机电一体化技术姓名:指导教师:王世春院系站点:沙市职业大学长江大学继续教育学院2010年5月钢丝校直机传动及控制设计学生:班级:指导老师: 王世春评阅人:完成日期:2010年1月7日至2010年5月20日毕业设计任务书一、设计题目钢丝校直机传动及控制设计二、设计条件本机采用两台三相异步电动机传动,普通电器元件控制,具有校直、拖动、定长切断、落料等功能。
本机可切断钢丝直径1.5~2 mm ;校直、切断最大速度为25m/min ;校直轴转速为4568 m/min ;拉轮转速为227.5 m/min ;校直长度为:蒸发器 300~500 mm ;冷凝器 500~1000 mm切断长度误差≤3.0mm ;最大切断行程 8 mm ;气源压力 0.4~0.6 MPa ;工作电源 AC 380V 50HZ ;三联体工作压力 4.5~5Kg ;三、设计内容1、设计计算说明书一份2、校直箱装配图一张1号图3、传动箱装配图一张1号图4、电气控制原理图一张1号图摘要本本钢丝校直、切断机是为了适应社会主义市场经济的需要,针对目前制冷行业的发展状况——采用丝管式冷凝器取代散热效果差的百叶窗式冷凝器后,结合工厂的实际生产要求而设计、研制的。
本机采用两台三相异步电动机传动,普通电器元件控制,具有校直、拖动、定长切断、落料等功能。
设备稳定性好、生产效率高、成本低廉、应用范围广。
本设计中,包括:总体方案的设计,校直箱部分的设计,传动箱部分的设计,定长、切断、落料部分的设计,机架,丝架,电气控制部分的设计。
同时也对带轮、齿轮、轴承、键等零件的强度进行了分析计算。
关键词:钢丝校直部分钢丝拖动部分电气控制部分设备的操作使用与维修交流接触器三联体继电器熔断器三相异步电动机前言现代科技技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。
在机械工程领域,由于微电子技术、单片机技术和计算机技术的迅速发展,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业产业由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
矫直机说明书
2.1矫直机类型KRM30.1250/21T入口宽度1250mm零件厚度0.4-3.0mm辊直径30mm矫直辊号:21pcs进给方向:从左到右零件入口:右速度:5-12m/min矫直驱动:交流电动机测量手段:数字测量指示:米制辊构架调整:机动入口:手保护入口辊台出口:出口辊台驱动:矫直驱动:1pce. 交流驱动,功率5.5kw, 转速1450r/min油润总箱:1pce. 交流驱动,功率0,09kw, 转速1500r/min辊构架调整:2pcs. 正齿轮传动, 功率0,55kw, 转速56r/min2.2宽带研磨机类型GR-2200-900WB/1622-72(Messrs. Grindingmaster )进给高度:950mm(从工件顶部测量)产品宽度:930mm研磨带尺寸(长*宽)1900*960mm(参见Grindingmaster操作说明)2.2.1 湿法除尘部件类型THORNE W120/5.5KW(参见Grindingmaster操作说明)4.0 操作说明与命令4.1 各组成部分的描述4.2 操作模式,机器的启动与制动4.1 各组成部分的描述4.1.1矫直机的视图部分4.1.2辊构架设置4.1.3矫直机驱动4.1.4矫直机超载4.1.5入口出口辊台4.1.1矫直机的视图部分手保护控制台开关箱入口辊台油润总箱(在后部)出口辊台4.1.2辊构架设置设置矫直机以使材料厚度被拉直所需设置由将要拉直的材料质量决定,包括强度、延伸率、横截面积、通过拉直试验确定合适的设置。
总体原则如下:根据金属薄板的厚度调整机器出口。
机器入口数值应当小于金属薄板厚度。
例如:板厚=1.0mm入口:00.70 出口:01.00材料进料时应当使弯曲面朝上,如果第一次拉直后,材料仍然存在向上的曲面(欠拉直),则入口调整需更改,例如改为0.6mm,相反,如果薄板在第一次拉直后向下弯曲(过拉直),则入口缝隙太小而应增加。
,如调至0.80mm.调整是由控制台相应的PUSH按钮实施。
校直机说明书
1. 校直机工作原理 MACHINE OPERATION当检查一个圆形工件的弯曲度时,需要旋转工件,通过传感放大器检测与两个基准传感器之间差值。
这项操作称作“检测TEST”。
注释:为了容易区别,在本文中,把基准传感器称作Ro 和 Rt, 在配有8个传感器的机床上,通常称为“0”和“7”;在配有15个传感器的机床上,通常称为“0”和“15”。
在下面的图形中,测量传感器在位置1,基准传感器是 Ro 和 Rt。
实际测量值 (M) 是两倍的铉高 "X"。
Figure 1假如工件是刚性的,它可以在空间内任何方向转动,但重要的是工件相对于Ro - Rt 至少必须旋转一整圈。
在任何测量情况下,千禧数控系统将自动描绘出Ro – Rt轴线间的理论电子基准线并检测出弯曲的铉高"X"。
为了这个目的,必须:1) 所有的运动必须在传感器的量程之内。
2) 在千禧数控系统内,每个测量都带有一个 K 常数。
K 常数是 Ro - 1 和 Ro - Rt 区间的比例系数,通过它可以程序自动计算出从Ro到其他测量传感器的距离。
Figure 图 2实际上,采用两种测量方法:- 曲率测量。
在工件轴线部分区段测量。
- 偏心度测量。
当基准测量点Ro - Rt 接近两端或处于工件几何中心地方。
偏心测量用来更大范围的曲率测量并被称作车间生产的稳定测量值。
在千禧系统中,上述测量方法被称为“标准方式STANDARD”,另外还可以通过选择传感器1到8和常数“K”,来编制“特殊方式SPECIAL”。
区别轴的弯曲及截面形状误差校直圆形工件达不到绝对圆形,这是因为工件具有形状误差errors of form "F",如椭圆,毛边等。
用手动量规测量工件时,由于跳动与所有的形状误差混在一起,所以测量值(M)不能代表纯跳动误差。
例如:椭圆形工件,其轴线为a和b,即使工件完全校直,其跳动测量值X仍为X=2ba.采用弯曲工作原理的校直机,像高达比尼机床,只能消除轴的弯曲误差,但不能消除工件的形状误差(形状误差只能通过变形的方法消除)。
矫直机毕业论文中英文资料外文翻译文献
矫直机论文中英文资料外文翻译文献外文翻译原文:AUTOMATING THE CONTROL OF MODERN EQUIPMENT FOR STRAIGHTENING FLAT-ROLLED PRODUCTS The company Severstal’ completed the successful introduction of new in-line plate-straightening machines (PSMs) on its 2800 and 5000 mills in August 2003 [1, 2, 3]. The main design features of the machines are as follows:●each machine is equipped with hydraulic hold-down mechanisms (toimprove the dynamics and accuracy of the machine adjustments and more reliably maintain a constant gap);●the machines have mechanisms to individually adjust each work roller with theaid of hydraulic cylinders (this broadens the range of straightening regimes that can be realized by providing a measure of control over the change in the curvature of the plate);●each work roller is provided with its own adjustable drive (to eliminate rigidkinematic constraints between the spindles);●the system of rollers of the PSM is enclosed in cassettes (to facilitate repairs andreduce roller replacement costs);●the PSM has a system that can be used to adjust the machine from a nine-rollerstraightening scheme to a five-●roller scheme in which the distance between the rollers is doubled (this is doneto widen the range of plate thick-nesses that the machine can accomodate).Thus, the new straightening machine is a sophisticated multi-function system of mechanisms that includes a wide range of hydraulically and electrically driven components controlled by digital and analog signals. The entire complex of PSM mechanisms can be divided into two functional groups: the main group, which includes the mechanisms that partici-pate directly in the straightening operation (the hold-down mechanisms, the mechanisms that individually adjust the rollers,the mechanisms that adjust the components fordifferent straightening regimes, the mechanism that moves the top roller of the feeder, and the main drive); the auxiliary group (which includes the cassette replacement mechanism, the spindle-lock-ing mechanism, and the equipment that cools the system of rollers). Although the PSM has a large number of mechanisms,the use of modern hydraulic and electric drives has made it possible to almost completely automate the main and auxiliary operations performed on the PSM and the units that operate with it.Described below are the features and the automatic control systems for the most important mechanisms of the plate-straightening machine.The operating regimes of those mechanisms are also discussed.The hydraulic hold-down mechanisms (HHMs) of the sheet-straightening machine function in two main regimes:the adjustment regime;the regime in which the specified positions are maintained.There are certain requirements for the control system and certain efficiency criteria for each regime.In the adjustment regime, the control system for the hydraulic hold-down mechanisms must do the following:●synchronize the movements of the hydraulic cylinders and keep the angulardeeflection within prescribed limits;●maximize speed in adjusting the machine for a new plate size;●maintain a high degree of accuracy in positioning the mechanisms;Fig. 1. Block diagram of the control system of the hydraulic cylinder.The control system has the following requirements when operating in the maintenance regime:●stabilize the coordinates of the top cassette and the top roller of the feeder with ahigh degree of accuracy;●minimize the time needed to return the equipment to the prescribed coordinateswhen deviations occur (such as due to the force exerted by a plate being straightened).Need for synchronization. Experience in operating the plate-straightening machine in plate shop No. 3 at Severstal’ has shown that the most problematic factor in adjusting the machineis the nonuniformity of the forces applied to the hydraulic cylinders. This nonuniformity is due to the asymmetric distribution of the masses of the moving parts of the PSM (in particular, the effect of the weight of the spindle assembly). Displacement of the “hydraulic zero point” relative to the “electrical zero point” in the servo valves is also a contributing factor.The latter reason is more significant, the smaller the volume of the hydraulic cylinder.Thus, the HHM of the top roller of the feeder is the most sensitive to drift of the zero point.There are also other factors that affect the dynamism,simultaneousness,and synchronism of the operation of the hold-down mechanisms:●differentiation of the frictional forces on parts of the hydraulic cylinders due todifferent combinations of deviations in the dimensions of the mated parts, despitethe narrow tolerances;●differences in the “springing” characteristics and the indices characterizing theinertia of the hydraulic supply channels (due to differences in the lengths of thepipes leading from the servo valves to the hydraulic cylinders).Thus, since the PSM is not equipped with devices to mechanically synchronize the operation of the cylinders, the ransmission of signals of the same amplitude to the inputs of the servo valves inevitably results in a speed difference that can seriously damage the mechanisms.To minimize and eliminate the effects of the above-mentioned factors, we developed an algorithm for electrical synchronization of the hold-down mechanisms.The HHM of the top cassette, composed of four hold-down cylinders and four balancing cylinders, is designed to ensuremobile adjustment of the machine to set the required size of straightening gap (in accordance with the thickness of the plate) andmaintain that gap with a specified accuracy in the presence .and absence of a load on the housings from the straightening force.The hydraulic system of the hold-down mechanism is designed in such a way that only one chamber of the hydraulic cylinders is used as the working chamber.The second chamber is always connected to the discharge channel.The top cassette is lowered when the balancing forces are overcome by the hold-down cylinders.The cassette is raised only by the action of the balancing cylinders.This arrangement has made it possible to eliminate gaps in the positioning of the equipment.The HHM of the top roller of the feeder consists of two hydraulic cylinders. Hydraulic fluid is fed into the plunger chamber when the roller is to be lowered and is fed into the rodchamber when it is to be raised.Control Principles. Individual circuits have been provided (Fig.1) to control the hydraulic cylinders of the hold-down mechanisms.The control signal (Xctl) sent to the input of the servo valve is formed by a proportional-integral (PI) controller (to improve the sensitivity of the system, we chose to use valves with “zero” overlap).The signal sent to the input of the controller (the error signal Xerr) is formed as the difference between the control-point signal for position (Xcpt) and the feedback signal (Xf.b).The latter signal is received from the linear displacement gage (G) of the given hydraulic cylinder.The gages of the HHM for the top cassette are built into the balancing hydraulic cylinders (HCs).The cylinders are installed in such a way that their movements can be considered to be equal to the displacements of the corresponding cylinder rods, with allowance for certain coefficients.The gages in the HHM for the top roller of the feeder are incorporated directly into the hold-down cylinders.The integral part of the controller is activated only during the final adjustment stage and during stabilization of the prescribed coordinate.When the displacements exceed a certain threshold value, the functions of the PI controller are taken over by a proportional (P) controller with the transfer function W(s) = k.Thus, Xctl(t) = kXerr(t).When there are significant differences between the displacements of the working rollers,the difference (error)between the control point and the feedback signal from the linear displacement gage reaches values great enough so that the output signal which controls the operation of the servo valve reaches the saturation zone.In this case, further regulation of the displacement rate and,thus synchronization of the movements of the cylinders becomes impossible as long as the error exceeds the value at which Xctl is greater than the boundary value for the saturation zone (Xsat).The limiting error–the largest error for which Xctldoes not reach saturation–is inversely proportional to the gain of the controller k: Xerr< Xsat/ k. Solving the given problem by decreasing k leads to a loss of speed in the adjustment of the PSM and a decrease in control accuracy during the straightening operation.Thus, to keep the control signal from reaching the saturation zone when there are substantial displacements, the system was designed so that the input of the controller is fed not the actual required value (Xrq) but an increment (∆X) of a magnitude such that the condition k∆X < Xsat is satisfied.The control point is increased by the amount ∆X after the position of the cylinder has been changed by the amount corresponding to the increment having the largest lag relative to the cylinder’s direction of motion. The adjustment of the control point is continued until the difference between the required value and the actual position of the mechanism becomes lessthan the increment:Xrq –Xf.b < ∆X.Then the input of the controller is fed the value Xcpt, which is equal to the required adjustment: Xcpt= Xrq.The adjustment is thus completed.Use of the principle of a stepped increase in the control point makes it possible synchronize the movements of the cylinders and set the control point with a high degree of accuracy for almost any ideal repetition factor.Mechanisms for Individual Adjustment of the Working Rollers.The plate-straightening machine is designed so that each working roller can be moved vertically, which is done by means of a hydraulic cylinder acting in concert with a V-belt drive.The cylinders are supplied with power from servo valves operated with proportional control.A linear displacement gage is built into each cylinder to obtain a feedback signal on the position of the roller.Since these gages are actually transmitinginformation on the position of the cylinder rods rather than the working rollers themselves, the following conversion is performed to obtain the rollers’ coordinates:Xrol= kredXf.b,where kred is the gear ratio of the drive;Xf.b is the position of the cylinder rod measured by the linear displacement transducers.Thus, a position feedback circuit is provided to control the position of each working roller. Figure 1 presents a diagram of one of the circuits.The control signals are generated by means of the PI controllere, which has made it possible to achieve a high degree of accuracy in adjusting the system without sacrificing speed.The individual drive of the rollers. The above-described design is based on the use of individual ac drives with motors of different powers fed from frequency converters. Each individual drive offers the following advantages over a group drive:●greater reliability thanks to the absence of additional loads on the components ofthe mechanisms due to differences between the linear velocities of the working rollers and the speed of the plate;●the possibility that the machine could continue to operate if one or even severaldrives malfunction;in this case,the corresponding rollers would be removed from the straightening zone;●the possibility that the linear velocities of the rollers could be individuallycorrected in accordance with the actual speed of the plate;such a correction could be made either as a preliminary measure (on the basis of measured and calculatedvalues) or during the straightening operation (on the basis of the data obtained from the frequency converters, which employ artificial intelligence).The main drive of the straightening machine rotates nine straightening rollers and two housing rollers.This drive must be highly reliable in operation, since the fact that the PSM is installed in the mill line means that sizable production losses can be incurred if the drive fails to work properly even for a short period of time.The requirements that must be satisfied by the drive are determined by the operational and design features of the machine as a whole:●the plate being straightened must create a rigid kinematic coupling between thestraightening rollers, the rollers of the housing, and the adjacent sections of the roller conveyors;●the plate should undergo elongation during the straightening operation as a resultof plastic deformation, with the increments in length being different on each working roller due to the differentiation of the bending radii;this situation leads to a nonuniform increase in the speed of the plate as it moves toward the end of the PSM;●it must be possible to use working rollers of different diameters (this being done,for example, due to nonuniform wear or regrinding);●the loads on the rollers should be differentiated in accordance with the chosenstraightening regime;●reverse straightening should be possible.In light of the above factors and the actual operating regimes of the plate-straightening machine being discussed here, the following requirements can be established for the electric drive:●regulation of speed within broad limits, including startup of the motors underload;●operation in the reverse regime;● a rigid characteristic ω = ƒ(M);●high degree of accuracy in maintaining the prescribed speed;●fully synchronous operation.The element base. The drive of the rollers was built with the use of asynchronous three-phase motors having a short-circuit rotor.The motors were designed by the German company VEM.They can continue to function under severe overloads and are reliable in operation.The motors are controlled by SIMOVERT frequency converters made by the German firm Siemens.Their modular design facilitates maintenance and repair, and the presence of a built-in microprocessor block makes it possible to execute most of the functions involved in controlling the operation of the drive (maintain the prescribed speed with a high degree of stability, recalculate the frequency of rotation in accordance with the actual diameters of the rollers, diagnose the condition o f the drive, control the drive’s operation, and exchange information on the PROFIBUS network).Motors of different powers are used in the system because of the differentiated distribution of the moments between the working ing different motors has made it possible to significantly reduce the cost of the electrical equipment and improve the performance characteristics of the machine as a whole.The machine has three main operating regimes: the working regime (semi-automatic and automatic), the transport regime, and the cassette replacement regime.Figure 2 shows a block diagram of the operations connected with realization of the working regime.In the semi-automatic variant of this regime, the operator controls the PSM from a control panel.In this case, the operator can do the following: choose the straightening regime from a database;correct the chosen regime;adjust the regime manually, which requires that the operator indicate the desired position of the bottom cassette (for five- or nine-roll straightening);adjust the gap between the top and bottom cassettes; set the coordinates for individual adjustment of the working rollers; choose the straightening speed and direction;generate a command to begin adjusting the machine to the specified regime.Fig. 2. Block diagram of the working regime of the PSM.The machine is adjusted to the chosen regime automatically.After the adjustment is completed, a signal is sent to the control panel indicating that the coordinates of the mechanisms have been changed and that the rollers have reached their prescribed working speeds.In the automatic variant of the working regime, the plate-straigthening machine isadjusted on the basis of data sent through a data network from a higher-level system. These data include the following information:●the thickness of the plate being straightened;●the group of steels (information on the properties of the material);●the temperature of the plate at the inlet to the PSM.The PSM is adjusted in several stages:●preliminary adjustment based on the plate thickness and steel group, for cold-rolledplates (t = 20°C);●further adjustment on the basis of data obtained from a pyrometer installed roughly50 m from the PSM;●final adjustment on the basis of data obtained from a pyrometer installed at theentrance to the machine.In the automatic variant, control over the roller conveyors adjacent to the machine is switched over to the control system of the PSM as the next plate approaches the machine.In this case, the plate cannot enter the working zone of the machine until the adjustment is completed.If it is necessary to pass a plate through the machine without straightening it, the machine is changed over to the transport regime.In this case, the top crossarm and the cassette are elevated a prescribed amount and the speed of the rollers is changed so that it is equal to the speed of the adjacent roller conveyors.The cassette replacement regime is used in the event of breakage of a roller or when it is necessary to regrind the working and backup rollers.In this case, the operator can control the operation of the auxiliary mechanisms:the spindle-locking mechanism, the roll-out cart, the mechanism that locks the bottom cassette and the cart in position, and the hydraulic cylinder that moves the cart.The mechanisms are fixed in position by means of noncontact transducers.PSM Control System. Control of the plate-straightening machine required the development of a powerful, high-capacity system that could provide the desired control accuracy in combination with rapid operation.The control system that was created is divided into two levels: the base level, and an upper level.The diagnostic system was created as a separate system.A second controller was also provided, to control the pump station of the PSM.The base level of the control system employs a SIMATIC S7 industrial programmable controller, while the upper level and the diagnostic system were built on the basis of standardcomputers.The computer used for the upper-level system also serves as the control panel for the PSM.Fig. 3. Network structure of the PSM control system.The different elements of the control system are linked by two loops of a PROFIBUS network (Fig.3).The first loop functions as the communications link between the controller, the upper-level computer, the diagnostics station, and the pump-station controller.The second loop links the PSM controller with the functional elements of the system (the frequency converters, linear displacement gages, and remote input/output module).The functions of the control system were divided between the base level and the upper level on the basis of the following principle: the base level was assigned all of the operations that involve receiving data from the sensors installed on the mechanisms, obtaining information from the automated process control system on the plate being straightened, and generating and transmitting control signals for the executive mechanisms (actuators); the upper level was assigned the functions of archiving the control points and monitoring the operation of the control panel.The following specific functions are performed by the base level of the automation system:obtaining the assigned straightening parameters (roller speeds, the coordinates of the top crossarm, and the coordinates of the rollers relative to the crossarm) from the upper-level system;●processing the parameters and sending corresponding control signals to the actuators;●obtaining information from the sensors installed on the mechanisms to determinewhether or not the PSM is properly set and ready for the straightening operation;●obtaining information from the feedback transducers installed on the mechanisms tocalculate the control actions;●analyzing the readings of the sensors to determine the accuracy of the data;TABLE 1. Specifications of the Plate-Straightening Machines●exchanging data with the pump-battery station (PBS) of the PSM and transmittingthe station’s operating parameters to the upper-level system for display;●receiving signals from the upper-level system for manual control of the machine andthe PBS;●obtaining initial data from the upper-level system for automatic correction andtransmission of the data in order to make the appropriate adjustments.The functions of the upper-level automation system are as follows:●entering data on the straightening regimes for subsequent selection of the regime andrecording that information in a database;●manually choosing the straightening regime from the database for the correspondingplate (this is done by the operator);●automatically choosing the straightening regime from the database on the basis ofinformation obtained from the upper-level system;●manually controlling the machine in the straightening and cassette-replacementregimes;●indicating the positions of the mechanisms based on readings from the sensors andthe positions of the limit switches;●indicating the presence of a plate in the working zone of the PSM;●indicating the temperature of the plate measured by the pyrometer;●visually representing the straightening regimes and machine adjustments;visually representing the state of the machine’s mechanisms and the PBS for diagnostic purposes.Remote input-output module ET200 is used to supply power to the unregulated drives.The cabinet containing the relays and contacts for these drives is located a considerable distance from the e of the module has made it possible to significantly shorten the connecting cables.Diagnostic System. The heavy concentration of electrical and hydraulic equipment included as part of the PSM–equipment which is located an appreciable distance from the machine itself and is often in hard-to-reach places–makes it more difficult to service the machine and locate the source of problems.To facilitate maintenance of the PSM and shorten repair time, it was necessary to build an advanced diagnostic system.The system is based on an industrial computer installed at the control post.It diagnoses the state of various mechanisms of the PSM, as well as its hydraulic and electrical equipment.The system can be used to evaluate the condition of the automatic switches, the temperature sensors of the motors, the linear displacement gages, terminals of the local PROFIBUS network, the currents, speeds, and direction of rotation of the motors, and other equipment and parameters.The diagnostic system can also be used to establish the operating protocol of the PSM.Its archives contains data on the time and types of errors and equipment failures that occur, the coordinates of the mechanisms, motor currents and speeds, and other information.To make the control system more reliable, the software and hardware of the diagnostics station are identical to the corresponding components of the control system’s upper level.When problems occur with the operation of the control computer, the PSM control functions can be transferred to the computer of the diagnostic system.Conclusions.The NKMZ has worked with its original partners in the Commonwealth of Independent States (CIS) to successfully introduce plate-straightening machines equipped with a modern automated control system. Use of the machines makes it possible to minimize and almost completely eliminate the dependence of the quality of the finished plates on the skill of the machine operator.The control system, together with its convenient user interface,allows even personnel with no special training to quickly master the operation of the machine.The production of high-quality products is assured as a result of the exact movements of the machine’s mechanisms and the accuracy with which their positions are maintained, which owes to the use of precision equipment with proportional control and special controlalgorithms.In addition, the machine is equipped with a sophisticated diagnostic system which also records its key operating parameters.The availability of the system facilitates maintenance and repair of the machine’s many complex components.译文:现代化矫直轧制薄品设备的自动化控制谢韦尔钢铁公司在2003年8月成功完成了新引进的规格为2800—5000米尔的直线式钢板矫直机(平台相关模型)。
矫直机操作规程
热矫直机技术操作规程沙景宽厚板厂热轧工段一、设备简介热矫直机采用了目前世界上现代化的全液压9辊式热矫直机,冷矫直机为四重11辊全液压可逆式型式,矫直机主要特点是高刚度、由4个主压下液压缸构成的全液压调节及先进的自动化系统。
液压辊缝自动调节系统在矫直过程中响应时间快,对于矫直全过程进行位置调节。
矫直机压力框架为对半剖分结构,可以对上矫直辊组进行弯辊调节补偿上框架变形并纠正钢板的浪形。
利用模型进行预设定实现矫直过程的全面自动控制。
上矫直辊组由液压过载保护可以快速打开。
入/出口的下矫直辊可以单独进行升降调节。
同时还设有氧化铁皮收集和除尘装置。
二、技术参数及结构特点1、主要技术参数型式:四重9辊全液压可逆式热矫直机钢板规格:厚度5~100mm宽度∶ Max.4900mm长度∶ Max.52000mm钢板屈服强度∶ 150N/mm2~1000N/mm2钢板温度: 450~1000︒C矫直力: 35000~40000kN矫直机工作辊:数量9根(上4下5)工作辊尺寸:Φ360/350×5100mm工作辊辊距: 380mm工作辊材质:合金锻钢辊,表面硬化处理工作辊辊面硬度: HRC54矫直机支撑辊:数量62个(上32下30)支撑辊尺寸:Φ360×390~1000mm支撑辊辊距: 380mm支撑辊材质:合金锻钢辊,表面硬化处理支撑辊辊面硬度: HRC46矫直机开口度:MAX300mm主电动机:2×AC850kW×0/750/1500r/min矫直速度:0/60/120m/min辊缝控制:液压压下(AGC),4个液压缸液压缸尺寸680×330mm液压缸压力Max. 25~27.5MPa矫直辊辊盒:2个(上1下1),焊接结构钢预紧杆和螺栓:4个,调质结构钢分离式压力框架:2部分,焊接结构钢弯辊缸1-250/170×700mm拉回缸2-100/50×50mm平衡缸4-280/190×680mm辊盒夹紧缸 8-170×50mm连杆旋转缸 4-40/28×170mm惰辊:2个 400×5100mm的惰辊(入口、出口各1)换辊装置:下辊盒可单独更换或上下辊盒同时更换主框架: 2部分,焊接结构钢矫直辊及上压力框架:内部水冷2、设备组成及其结构型式1)、矫直机矫直的目的:对钢板进行轧后矫直,提高钢板平直度。
矫直机毕业设计
矫直机毕业设计矫直机毕业设计随着现代工业的发展,机械设备在生产过程中起到了至关重要的作用。
其中,矫直机作为一种常见的机械设备,被广泛应用于金属加工、汽车制造等领域。
本文将围绕矫直机的毕业设计展开讨论,探究其设计原理、技术要点以及未来发展趋势。
一、设计原理矫直机的设计原理主要基于材料力学和机械原理。
其基本原理是通过对金属材料的弯曲变形进行逆向力学分析,从而实现材料的矫正。
矫直机通常由上、下两个辊轮组成,通过辊轮的旋转和压力调节,对金属材料进行弯曲矫正。
在设计中,需要考虑材料的性质、工件的尺寸和形状等因素。
通过对这些因素的分析和计算,可以确定矫直机的结构参数、工作方式以及控制系统等设计要点。
二、技术要点1. 结构设计:矫直机的结构设计是整个毕业设计的核心。
需要考虑矫直机的稳定性、刚度和精度等因素。
合理的结构设计可以提高矫直机的工作效率和矫直质量。
2. 辊轮设计:辊轮是矫直机的核心部件,直接影响到矫直效果。
辊轮的材料选择、表面处理以及尺寸设计都需要进行详细的分析和计算。
3. 控制系统设计:矫直机的控制系统需要实现对辊轮的旋转速度、压力和位置等参数的精确控制。
控制系统的设计涉及到传感器的选择、电气元件的布置以及控制算法的优化等方面。
4. 安全设计:矫直机在工作过程中存在一定的危险性,因此安全设计至关重要。
需要考虑到紧急停机、过载保护以及防护装置等方面,确保操作人员的安全。
三、未来发展趋势随着科技的不断进步,矫直机也在不断发展和改进。
未来,矫直机的发展趋势主要体现在以下几个方面:1. 自动化:随着工业自动化水平的提高,矫直机将更加智能化和自动化。
通过引入机器学习和人工智能等技术,可以实现矫直过程的自动控制和优化,提高生产效率和产品质量。
2. 精确度和稳定性:随着对产品质量要求的不断提高,矫直机的精确度和稳定性也将成为关注的焦点。
未来的矫直机将更加注重精确度的控制和稳定性的提升,以满足高精度加工的需求。
3. 多功能性:矫直机在不同行业中的应用需求也在不断增加,因此未来的矫直机可能会具备更多的功能和适应性。
矫直机
太原科技大学课程设计任务书专业班级机自112212H班设计人刘强同组人翟震设计题目:小型矫直机的设计设计参数:1、矫直机主电机参数:功率P=3KW, 转速n= 0.267r/s ;2、主减速机传动比:2.6 ;3、工作辊数目:19个;4、工作辊辊距:10mm ;5、工作辊直径:9.5mm ;6、工作辊辊长:170 mm ;7、板坯宽度厚度:115mm 、0.1~1.6mm ;设计要求:[1] 辊式矫正机基本参数的确定[2] 矫直功率的计算和电机功率的选择[3] 主要零部件校核计算[4] 压下机构的设计计算[5] 撰写设计说明书。
设计时间:2014年12月17日至2014年12月28 日摘要轧钢生产已经成为冶金生产行业中把钢坯轧制成钢材的重要生产环节,具有产量大、品种齐全,生产过程机械化自动化程度高等许多优点,是满足国民生产需要的重要技术。
并且随着科学的发展,轧钢生产行业与传统机械业进一步紧密的结合在一起。
利用轧钢生产技术,提高轧制产品的质量,减少轧制生产时间,提高成材率,降低生产成本和材料的利用率已经成为轧钢机械设计的主要目标。
而矫直技术是提高板带钢产品表面质量和平坦度的重要环节。
本文是依据板带矫直机的生产过程和工作原理,经过现场实习,首先从二十一辊板带矫直机的总体方案评述开始,依次进行了主电机的选择计算,主传动系统的设计,工作辊与支承辊设计,矫直机压下与压上装置的设计与校核;并对矫直机的某些零件和基本结构进行了设计;并且研究了矫直机的发展方向。
关键词:轧钢生产、表面质量、矫直机、平坦度AbstractThe product of steelrolling has become an importanct tache of rolling billet to be steels in the metallurgy produce industry. The stongpoint of this industry is have great output of the production is the variety production.and the produce process is very mechanization and automatization.The steelrolling is a importanct technonlogy to fulfill the country need.Also with the development of steelrolling industry the industry integrate very well with the tration mechanism industry. How to make use of the steelrolling manufacture technology, enhance the rolling quality of the production, decrease the product of rolling time,enhance the rate of product useful rolled steel .The straighting techology is a important tache to enhance the surface quality and flatness of the production .This article design basis on the boardstrip straighting machine produce process and the working principle in the steel metallurgy. With practice in scene. The design is begin with the designing of the main transmission and the machine roller in the straighting machine .This article first begine with the scheme review of the collectively. Then go along with choice of the main electromotor, the design of work roller and the support roller , press down equipment and press up equipment .Following designed the local assessory and the over all structure. Besides researched the development direction of the straighting machine .Keywords: Product of steelrolling、Straighting machine、Surfacequality、Mechanization .目录1 绪论 (5)1.1 轧钢生产的国内外发展情况 (5)1.1.1 轧钢生产及产品种类 (5)1.1.2 轧钢机械的分类 (6)1.2 矫直机在轧钢生产中的作用及发展情况 (6)1.3 现场十九辊板带矫直机的工作原理 (7)2 总体方案评述 (8)2.1轿直机的调整形式 (8)2.2 机座形式 (8)2.3 支承辊的布置形式 (9)2.4 辊的材质 (9)2.5 传动系统的形式 (9)2.6 轴承选择 (10)2.7 压下机构的形式 (10)2.8 矫直辊列的布置形式与驱动形式 (11)3矫直机力能参数的计算 (11)3.1二十一辊矫直机的技术性能及矫直工艺参数 (11)3.2辊式矫正机基本参数的确定: (12)3.4矫直功率的计算和电机功率的选择 (15)4主要零部件校核计算 (16)4.1矫直辊的校核计算 (16)4.1.1 矫直机矫直扭矩的计算 (16)4.1.2 工作辊的强度校核和轴承校核 (18)5 压下机构的设计计算 (20)5.1 压下螺丝直径 (19)5.2 压下螺纹牙的强度校核........................................................ (20)参考文献 (22)1 绪论1.1 轧钢生产的国内外发展情况1.1.1 轧钢生产及产品种类在20世纪末,世界轧钢技术发展迅速。
矫直机设计-任务书
1、掌握机械装置的创新设计方法和要求。
2、掌握AOTOCAD电子图版软件的使用方法,正确画出总装图。
3、所设计的矫直机应具有的技术性能:
1)圆管规格:50×2.5mm;材料:Q235
2)矫直效果≤3°;
3)产品电压:380V。
2、对毕业设计(论文)成果要求
1、完成总装配图一张,主要零部件图(不少于三张);
本科毕业设计(论文)任务书
(由指导教师填写)
题目名称
脚手架钢管矫直机设计
题目性质
□基础
□应用
□设计
□其它
题目来源
□科研课题
□生产社会实际
□其他
1、课题研究的主要内容及基本要求
主要内容:
设计一台脚手架钢管矫直机。完成该机械的总体方案设计和各机构的原理方案设计,画出总装图、控制系统原理图及主要零件的工作图。通过本设计,使学生掌握机电一体化装置的设计构思、设计方案和工作图的绘制,在机械创新设计能力和机械产品开发技能上得到综合的训练,为今后的专业工作奠定基础。
2014.11.16~2014.11.30
2
实施调研/实验阶段
3
完成初稿
2015.03.27
4
修改定稿
2015.05.04
5
答辩
2015.05.05~2015.05.16指导教师日期源自年月日2、控制系统原理图一张;
3、开题报告;
4、文献综述
5、撰写不少于10000字的设计说明书。要求计算合理、数据可靠。说明书内容包括:课题的目的、意义;研究的主要内容;整体方案的确定;主要零部件的选择和设计;矫直过程的分析和计算;重要零部件的计算和校核;参考文献和鸣谢。
所有成果需提供纸质文档和电子文档。
中厚板矫正机压下机构毕业设计指导书
中厚板矫正机压下机构设计摘要轧钢生产已经成为冶金生产行业中把钢坯轧制成钢材的重要生产环节,具有产量大、品种齐全,生产过程机械化自动化程度高等许多优点,是满足国民生产需要的重要技术。
并且随着科学的发展,轧钢生产行业与传统机械业进一步紧密的结合在一起。
利用轧钢生产技术,提高轧制产品的质量,减少轧制生产时间,提高成材率,降低生产成本和材料的利用率已经成为轧钢机械设计的主要目标。
而矫直技术是提高板带钢产品表面质量和平坦度的重要环节。
本文介绍了中厚板产生不平直度的原因,中厚板矫直机的种类,中厚板矫直机基本参数、力能参数的确定,中厚板矫直技术的发展。
依据板带矫直机的生产过程和工作原理,经过现场实习,首先从中板矫直机的总体方案评述开始,依次进行了压下电机的选择计算,压下螺丝、压下螺母的的设计及校核,蜗轮蜗杆的设计及校核,轴承的设计及寿命校核,并且研究了矫直机的发展方向。
关键词:压下系统;矫正力 ;矫正机;Type Plate Straightening Machine Pressure SystemDesignAbstractThe product of steeling has become an important tache of rolling billet to be steels in the metallurgy produce industry. The strongpoint of this industry is have great output of the production is the variety production. and the produce process is very mechanization and automatization.The steeling is a important technology to fulfill the country need.Also with the development of steeling industry the industry integrate very well with the traditional mechanism industry. How to make use of the steeling manufacture technology, enhance the rolling quality of the production, decrease the product of rolling time,enhance the rate of product useful rolled steel .The straighting technology is a important tache to enhance the surface quality and flatness of the production .This article describes the reasons inflatedness occurred on medium and heavy plate.The type of levelers,the determination of basic parameters,energetic date for 2600 plate leveler,the decision for complete structure and design,the development of plate leveling technology .This article design basis on the board-strip straighting machine produce process and the working principle in the steel metallurgy. This article first begin with the scheme review of the energetic date for 2600. Then go along with choice of the pressure electromotor, the design and checking of pressing the nut and the pressure screw, Worm and worm gear equipment.than design and checking the life of the bearing.Following designed the local assessor and the over all structure. Besides researched the development direction of the straighting machine .Keywords:Pressure system; Correction force; flatness目录1. 绪论 (1)1.1 矫正机现状 (1)1.2辊式矫正机的发展趋势 (1)1.3辊式矫正机的分类 (2)1.4矫正机压下系统 (2)1.5辊式矫正机原理 (3)1.6国内外概况和预测 (3)1.7矫正机压下机构的研究内容 (3)2.总体方案 (5)2.1矫正机压下方案 (5)2.2矫正工艺 (6)2.2.1上排工作辊整体平行调整 (6)2.3总体结构设计 (6)2.3.1压下装置的组成 (6)2.3.2电动机 (7)2.3.3减速机 (7)2.3.4联轴器 (7)3.压下电机选择 (9)3.1矫正机结构参数的确定 (9)M的确定 (10)3.2矫正扭矩k3.3各辊矫直力P的计算 (11)3.4 压下螺丝主要参数计算 (11)3.5电机的选择 (13)3.6传动比的分配 (13)4.蜗杆传动的设计 (15)4.1材料的选择 (15)4.2 蜗轮蜗杆的参数计算 (15)4.3 蜗杆的校核 (17)4.3.1校核齿根弯曲疲劳强度 (17)4.3.2蜗杆刚度的校核 (18)5.压下螺母的设计及强度校核 (20)5.1 螺母的尺寸计算 (20)5.2 螺母的强度校核 (20)6.圆锥滚子轴承寿命计算 (22)7. 润滑方式的选择 (25)8.经济可行性分析 (26)8.1 设备的可靠性分析 (27)8.2 投资回收期 (28)结论 (30)致谢 (31)参考文献 (32)1. 绪论1.1 矫正机现状随着科学技术的发展,钢铁行业的发展日趋完善。
矫直机毕业设计工艺参数
1. 17辊矫直机传动装配设计
主要设计参数
带钢厚度:0.8-3mm
带钢宽度:700-1530mm
带钢屈服极限:Max .280 Mpa
带钢强度极限:Max.420 Mpa
矫直速度:30m/min(厚度<1.8mm)
18m/min(厚度≥1.8mm)矫直辊辊距:52mm
矫直机辊数:17
矫直辊直径:50mm
矫直辊辊身长度:1776mm
支承辊辊距:104mm
支承辊直径:∅100mm
压下行程:+35mm ~ -4.5mm
压下速度:70.5mm/min
2. 入口钢卷小车
主要设计参数
钢卷厚度:0.35~0.65mm;
钢卷宽度:700~1275mm;
钢卷内径:∅508mm;
钢卷外径:∅1000~∅2100mm;
最大卷重:25000kg;
升降行程:1200mm
行走行程: 5000mm
3. 升降辊道
主要设计参数
辊道速度:~13.4m/min
板垛长度:1500~2000mm
板垛宽度:750~1250mm
板垛质量:max.5000kg
棍子直径:∅130mm
棍子长度:300mm
升降行程:580mm
4. 夹送辊机架及压下装配设计主要设计参数
穿带速度:10m/min
牵引张力:1KN
上辊行程: 50mm
辊径:∅200mm
辊长:650mm。
20-40mm板材矫直机设计毕业设计(论文)手册
毕业设计(论文)任务书毕业设计(论文)题目:20-40mm板材矫直机设计设计(论文)的基本内容:1、矫直机主机总装图(A0×1)2、辊系装配图(A0×1)3、机架零件图(A0×1)4、夹送辊轴承透盖、工作辊、下工作辊辊座、主动夹送辊轴(A2×4)5、编写设计说明书6、外文科技文献翻译毕业设计(论文)专题部分:题目:设计(论文)专题的基本内容:学生接受毕业设计(论文)题目日期第 1 周指导教师签字:2011年3月2 日工作计划毕业实习(调研)10月1日——3月1日(包括寒假期间)校外实习单位:沈阳机床厂任务:1.了解各机床的传动特性2.了解机床零件的加工类型3.了解整机设计的流程所需参考资料目录1.孙志礼,马星国,黄秋波,闫玉涛等.机械设计[M],北京:科学出版社,2008,247-266.2.崔甫矫,直原理与矫直机械(第2版),冶金工业出版社,20053.傅作宝,冷轧薄钢板生产(第2版),冶金工业出版社,20054.邹家祥轧钢机械.冶金工业出版社,20005.黄庆学,申光宪,梁爱生等轧机轴承与轧辊寿命研究及应用.冶金工业出版社,20036.史跃强.四重式辊式矫直机初探.鞍钢技术,1994(12)7.王廷溥.板带材生产原理与工艺.冶金工业出版社,19958.俞慧,裴瑞琳.宝钢5m宽厚板热矫直机新工艺.宽厚板,2005(3)拟定设计(实验)方案、论文选题2010年3月8日—2010年3月21日(第1 周—第2周)设计方案论证(论文开题报告,外文文献翻译)3月22日—3月29日(第3周)设计工作与图纸绘制(实验研究、论文工作)3月29日—5月31日(第4周—第12周)撰写说明书(论文)5月31日—6月7日(第13周)毕业设计(论文)主题部分6月8日—6月14日(第14周)毕业设计(论文)送交评阅人日期6月20日(第15周)答辩日期2010年6月21日(第16周)指导教师审批签字:2011年6月17日毕业实习(调研)3月8日—3月21日(第1 周—第2周)单位:东北大学图书馆完成任务情况:1、通过在图书馆查阅相关书籍文献,并做好读书记录和文献出处,对本课题的设计任务明了化;2、在检索数据库中进行本课题的相关检索任务,保存检索文献,进行吸收学习后,了解到本课题的相关前沿知识,对本课题的设计有了基本框架;3、在课余时间去工厂对各种机械进行熟悉,了解了机械产品设计的多样化。
拉矫机说明书讲解
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学工商学院毕业设计(论文)说明书专业机械设计及其自动化班级机械1042班姓名高雷学号101841076指导教师苏荭二○一四年六月四日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学工商学院毕业设计(论文)任务书课题名称方坯连铸机拉矫机的设计计算学院安徽工业大学工商学院专业班级机械设计制造及其自动化姓名高雷学号101841076毕业设计(论文)的主要内容及要求:1.资料收集、整理2.方坯连铸机总体设计及计算3.方坯连铸机拉矫机性能参数计算及结构设计4.针对某些问题分析原因,提出改进措施5.图纸要求:拉矫机总装图2张,部装图2张,零件图若干。
要求出图量为4张A1,其中手工绘制一张部装图6.说明书正文1万字以上7.外文资料的译文不少于3000汉字指导教师签字:日期:年月日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要连铸即为连续铸钢的简称。
在钢铁厂生产各类钢铁产品过程中,使用钢水凝固成型有两种方法:传统的模铸法和连续铸钢法。
而在二十世纪五十年代在欧美国家出现的连铸技术是一项把钢水直接浇注成形的先进技术,连铸技术具有大幅提高金属收得率和铸坯质量,节约能源等显著优势。
本文主要介绍了方坯连铸机的优越性以及发展状况,并对方坯连铸拉矫设备的种类进行了描述。
本文主要的研究对象是方坯连铸机拉矫机,如果要确定其工艺参数,必须要先确定方坯连铸机在工作过程中的相关工艺参数,因此本文首先研究了方坯连铸机的相关工艺参数。
在确定了方坯连铸机的相关参数后,为接下来研究拉矫设备提供了许多理论依据。
对于方坯连铸拉矫设备的研究主要是根据连铸设备中的各部分所受的力以及拉矫机在工作过程中的力能参数,对其进行结构设计,对主要的零部件进行受力分析和强度计算校核,并针对原设备制造、维护方面的薄弱环节加以改进。
钢筋校直机的设计说明书
钢筋校直机的设计摘要钢筋加工机械是建筑施工中不可缺少的机械设备。
钢筋校直机减少了施工时间,加快生产速度,代替了人工校直所存在的不足。
提高了生产率。
为工程建设缩短了工期,钢筋校直机起了很大的作用。
我设计的钢筋校直机采用了轮辊式,它的作用实质是施加频率较高的周期性交变应力,是材料产生超过其弹性限度的变形.交替变形达一定程度后,原来的弯曲即被抵消,达到校直的目的.本次设计了钢筋校直机的传动系统,校直机构,机架等主要部件。
它具有结构简单、效率高等特点,符合当今生产要求。
关键词钢筋校直机;传动;设计外文摘要design on Steel straightening machineAbstractSteel processing machinery is indispensable to the construction machinery and equipment。
Steel bar straightening machine reduce construction time,speed up production speed,instead of artificial straightening's deficiency. Higher productivity。
For engineering construction shorten project period,and the steel bar straightening machine plays a large role.I design of reinforced straightening machine adopts the wheel of roller of, the role of the essence is imposed higher frequency periodic alternating stress ismaterial,produced the elastic deformation of the limit over. To a certain degree of alternate deformation, the original bending is offset, achieve the purpose of the alignment.The design of the reinforced straightening machine transmission system,straightening institutions,such as the major components。
毕业设计说明书
1绪论1.1矫直设备的发展1.1.1矫直设备的发展概况矫直技术多用于金属条材加工的后部工序,在很大程度上决定着产、成品的质量水平。
20世纪初已经有矫直圆材的二辊式矫直机。
20世纪30年代中期发明222型六辊式矫直机,显著提高了管材矫直质量。
20世纪60年代中期,为了解决大直径管材的矫直问题,美国萨顿公司研制成功313型七辊式矫直机。
20世纪70年代我国改革开放以后接触到大量的国外设计研制成果,有小到φ1.6mm金属丝矫直机和大到φ600mm管材矫直机。
有速度达到300m/min的高速矫直机和精度达到0.038mm/m的高精度矫直机。
同时也引进许多先进的矫直设备。
进入90年代我国在赶超世界先进水平方面又迈出了一大步,一些新研制的矫直机获得了国家的发明专利;一些新成果获得了市、省及部级科技成果进步奖;有的获得了国家发明奖。
近年来我国在反弯辊形七斜辊矫直机,多斜辊薄壁转毂式矫直机,平行辊异辊距矫直机及矫直液压自动切料机等研制方面相继取得成功,1.1.2矫直作用轧制和热处理后的管材有一系列的缺陷,其中主要的是纵向弯曲和横断面的椭圆度。
为了消除这些缺陷,需设置斜辊式钢管矫直机,在矫直过程中,钢管在矫直辊间作直线前进的同时还进行旋转运动,通过钢管在矫直辊中反复多次弹性弯曲使钢管达到矫直的目的。
1.2矫直设备分类1.2.1矫直机的分类按工作原理不同划分为五大类。
第一类称为反复弯曲矫直机,它们是靠压头或辊子在同一平面内对工件进行反复压弯并逐渐减小压弯量,直到压弯量与弹复量相等而变直。
第二类称为旋转弯曲式矫直机,是工件在塑性弯曲状态下以旋转变形方式从大的等弯矩区向小的等弯矩区过渡,在走出塑性区时弹复变直。
第三类称为拉伸矫直机,它依靠拉伸变形把原来长短不一的纵向纤维拉成等长度并进入塑性变形后经卸载及弹复而变直。
第四类称为拉弯矫直机。
它是把拉伸与弯曲变形合成起来使工件两个表层的较大拉伸及全截面的拉伸变形三者不在同一时间发生,全断面各层纤维的弹复变形也不是同时发生的,既防止了板带的断裂,又提高了矫直质量。
矫直机的设计计算参考
1、矫直机的设计在板材的成型剪裁加工中,剪切下的余料尺寸大小不一,其中尺寸较宽者往往变形不太大,而且由于尺寸较大,故一般总是收起堆放以留作后用。
而其中尺寸较小者,尤其是宽度在200ram 以下者,往往产生不同程度的弯曲、瓢曲、浪型及镰刀弯,没有专业设备将其矫平矫直(现有矫直机都是大型和中型尺寸的,最小矫直宽度在lO00rnm 以上),大多作为废料处理,造成很大浪费。
笔者诃查了这一生产现状,并应有关企业的要求设计了一种专门矫直矫平小尺寸边角余料的小型矫直机。
投入使用后.这些余料又可作它用,减小了材料的大量浪费,为企业节省了开支,大大降低了生产成本。
1.1 矫直原理分析板材在辊式矫直机上的矫直过程,实质上是板材通过娇直辊时,产生弹塑性变形的过程,1假设有原始曲率为1的板材通过如图1所示的三个矫直辊,,由于上排的矫辊的下压作r0 用,使板材向其相反的方向弯曲,此时板材产生的曲率称为反弯曲率1.而板材离开1矫辊后经弹性变形恢复后的曲率1称为,残余曲率,显然,弹性恢复曲率(简称弹复曲r率)1应为反弯曲率和残余曲率的代数差。
1 1 1即1 = 1一1(1)p r由上式可见, y y r0要使原始曲率为1的板村通过这三个矫直辊矫平(即使残余曲率1 =0 。
),必须使所r0 r0选择的反弯曲率等于弹复曲率。
即1 = 1(2)图1 板材在矫辊作用下的曲率变化y这就是板材矫直的基本原则。
弹复曲率1与材尺寸、材质丑原始曲率有关。
具有单值y原始曲率的板材, 当由矫辊施加适量反弯曲率反向弯曲后,1 1 12M 3 12 1对于矩型断面的板材可以由(3)式算出: =Ehh 3 2 2 h/(r 0 式中^ M 2v —— 纯弹性弯曲力矩E —— 材料弹性模量 b —— 板料宽度 h —— 板料厚度s——板材的塑性应变求出式中 1的值,即为所需的反弯曲率。
在上文所说的边角余料板材中,其形状缺陷 大多具有多值原始曲率 一般对其先采用多辊矫直加压,使之产生交变弯曲变形,以消 琮其原始曲率的不均匀率,再逐渐矫平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-10mm板材矫直机的设计作者姓名:******指导教师:********单位名称:机械工程与自动化专业名称:机械工程及自动化东北大学2011年6月The 4-10 mm Straightening-Machine`s designby Zhang GangSupervisor: Associate Professor Yang Hui LinNortheastern UniversityJune 2011毕业设计(论文)任务书机械工程与自动化学院班级姓名东北大学毕业设计(论文)摘要4-10mm板材矫直机的设计摘要矫直机在冶金工业中用途非常广泛,它是冶金工业生产中常用的矫直设备。
随着科学的发展,轧钢生产行业与传统机械业进一步紧密的结合在一起。
利用轧钢生产技术,提高轧制产品的质量,减少轧制生产的时间,提高成品率,降低生产成本和提高材料的利用率已经成为轧钢机械设计的主要目标。
而矫直技术是提高板带钢产品表面质量和平坦度的重要环节。
在现代化程度较高的连铸生产线中,连铸坯的矫直设备是必不可少的;在型钢、钢板、钢管等轧钢厂的精整车间,矫直机则更是必备的设备之一。
平直度是评价金属板带质量的重要指标之一,随着用户对板带质量要求的不断提高,板带平直度的控制和改善显得日益重要。
板材矫直机是消除板材平直度缺陷,改善板形的关键设备。
本文介绍了板材矫直机的结构特点,原理分析和功能,并对矫直原理做了详细具体的阐述,对其主要零部件做了准确的计算设计和校核,对矫直机的力能参数和结构参数做了计算,同时对矫直机的发展趋势和实际生产中存在的问题做了简单的阐述。
关键词:板材矫直机,力能参数,结构参数,平衡液压缸The 4-10 mm Straightening-Machine`s designAbstractThe straightening machine are Very widely used in the metallurgical industry .It is commonly used in metallurgical industry .With the development of steel-rolling industry, the steel-rolling production industry has been integrated very well with the Traditional mechanical industry. Use the Steel-rolling production technology to enhance the Rolling products` quality , to reduce the time of rolling , to enhance the rate of good-products .to reduce the production cost and enhance the material`s utilization has become the main aim of the steel rolling machine design. However, the straighting techology is the important part of how to enhance the surface quality and flatness. In the modernization of high degree of continuous casting production line,The continuous casting slab of straightening equipment is indispensable。
In the steel, steel plates, steel rolling`s finishing workshop, Straightening machine is one of the necessary equipment. Straightness is one of the important indexes with quality. As the users` demand for the quality requirements enhances unceasingly, the steel`s straightness control and improvement is becoming more and more important. The straightening machine is the key equipment to eliminate straightness` defects.This article introduces the structure`s characteristics of the straightening machine, theory analysis and function, a straightening theory in detail. Accurate calculation design and check of it`s main parts. The Power Parameter of straighter and structure parameters are calculated.At the same time, there is a simple elaboration of the development trend of straighter and the problems of actual production.Keywords: straightening machine,Power Parameter,structure parameters,Balance hydraulic cylinder目录任务书.......................................................................................................................................i中文摘要...............................................................................................................................i i ABSTRACT......................................................................................................................i i i 第1章绪论.. (1)1.1 矫直设备简述 (1)1.1.1矫直机的种类 (1)1.1.2板材矫直设备的布置及结构特点 (4)1.1.3辊式矫直机传动形式特点 (5)1.2 板材矫直技术 (5)1.3 板材矫直机工艺理论及矫直原理分析 (7)1.3.1板材矫直机工艺理论 (7)1.3.2板材矫直机的矫直原理分析 (8)1.4 矫直机在轧钢生产中的作用及发展情况 (9)1.5 板材矫直机的国内外发展情况 (10)1.5.1国内发展情况 (10)1.5.2国外发展情况 (11)第2章总体方案评述 (13)2.1 轿直机的调整形式 (13)2.2 机架结构 (14)2.3 工作辊的装置 (14)2.4 上下支撑辊及调整装置 (14)2.5 换辊装置 (14)2.6 辊的材质选择 (14)2.7 干油、稀油润滑系统 (15)2.8 传动系统的形式 (15)2.9 轴承的选择 (16)2.10压下结构的形式 (16)2.11矫直辊列的布置形式与驱动形式 (17)第3章矫直机结构参数与力能参数的计算 (18)3.1矫直机的技术性能及矫直工艺参数··········································································错误!未定义书签。
3.2矫直机基本结构参数的确定························································································错误!未定义书签。
3.2.1辊距P (18)3.2.2辊径D (19)3.2.3辊身长度L (19)3.2.4辊数N (19)3.2.5矫直速度V (20)3.3 矫直机力能参数的计算 (20)3.4 矫直功率的计算和电机的选择 (23)第4章主要零部件校核计算 (25)4.1矫直辊的校核计算 (25)4.1.1矫直机矫直扭矩的计算 (25)4.1.2第三辊弯曲力矩的计算 (26)4.1.3支反力的确定 (30)4.2矫直辊强度的计算 (32)4.3轴承寿命的校核 (33)4.3.1工作辊轴承寿命的校核 (33)4.3.2支承辊轴承寿命的校核 (33)第5章压下装置的计算及校核 (35)5.1平衡液压缸的选择 (35)5.2压下电机功率的选择 (36)5.2.1压下丝杠的设计 (36)5.2.2输出功率的计算 (36)5.2.3压下电机功率的计算··································································································-37-5.3压上装置的校核计算 (37)5.3.1压上丝杠及压下螺母的强度校核 (37)5.3.2机架与螺母端面间挤压应力校核 (38)第6章润滑方式的选择 (39)第7章技术经济性分析 (40)第8章结论与评价 (42)参考文献 (43)致谢 (44)附录英文资料及译文 (45)第1章绪论1 .1矫直设备简述1.1.1矫直机种类根据矫直方法和结构特点,矫直机可以分为(如图1.1所示):1:压力矫直机;2:辊式矫直机; 3:管、棒材矫直机;4:张力矫直; 5:拉伸弯曲矫直机等。