高等数学知识点总结

合集下载

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高等数学知识点归纳

高等数学知识点归纳
(3)注意: 单调性 端点值 极值 凹凸性. (如: f (x) M f max (x) M ) 4. 函数的零点个数: 单调 介值
六. 凹凸与拐点(必求导!):
1. y " 表格; ( f "(x0 ) 0 )
2. 应用: (1)泰勒估计; (2) f ' 单调; (3)凹凸.
七. 罗尔定理与辅助函数: (注: 最值点必为驻点)
(1)区别: *单变量与双变量?
* x [a,b] 与 x [a, ), x (, ) ?
(2)类型: * f ' 0, f (a) 0 ;
* f ' 0, f (b) 0
5
* f " 0, f (a), f (b) 0 ; * f "(x) 0, f '(x0) 0, f (x0) 0
(5)隐式(方程): F (x, y) 0
x x(t)
(6)参式(数一,二):
y
y (t )
(7)变限积分函数:
F(x)
x
f (x,t)dt
a
(8)级数和函数(数一,三): S (x) anxn, x n0
2. 特征(几何):
(1)单调性与有界性(判别); ( f (x) 单调 x0 , (x x0 )( f (x) f (x0 )) 定号)
f
(x)
;
f
'(x0 )
lim
x x0
f (x) f (x0) x x0
(1) f '(0) lim f (x) f (0) (注: lim f (x) A( f 连续) f (0) 0, f '(0) A )
x0
x
x0 x
(2)左右导:

高等数学各项基础知识点总结

高等数学各项基础知识点总结

高等数学知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l =0,称f (x)是比g(x)高阶的无穷小,记以f (x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠0,称f (x)与g(x)是同阶无穷小。

(3)l =1,称f (x)与g(x)是等价无穷小,记以f (x)~g(x)2.常见的等价无穷小当x →0时sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x,1−cos x ~2/2^x ,x e −1~x ,)1ln(x +~x ,1)1(-+αx ~xα二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g (x )≤f (x )≤h (x )若A x h A x g ==)(lim ,)(lim ,则Ax f =)(lim 2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次233521211...()2!3!!sin ...(1)()3!5!(21)!n xn n n n x x x e x o x n x x x x x o x n ++=++++++=-+++-++)(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n n n x o nx x x x x +-++-=++)(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital)法则.∞∞型未定式定理2设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式1011lim ()()n n k k f f x dx n n →∞==∑⎰(如果存在)三.函数的间断点的分类)()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→函数的间断点分为两类:(1)第一类间断点设0x 是函数y =f (x )的间断点。

高等数学知识点总结

高等数学知识点总结

高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。

本文将对高等数学的知识点进行总结,以供参考。

一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。

极限的性质包括保号性、保序性等。

连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。

2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。

导数的计算方法包括定义法、导数法则和高阶导数等。

微分是导数的一种应用,主要研究函数在某一点的微小变化。

3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。

积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。

不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。

级数是数学分析中的重要部分,研究函数的和式。

常见的级数包括幂级数、泰勒级数和傅里叶级数等。

级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。

5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。

主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。

重积分是研究函数在空间区域上的累积变化。

重积分的计算方法包括一重积分、二重积分和三重积分等。

7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。

常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。

二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。

矩阵的运算包括加法、减法、数乘和矩阵乘法等。

矩阵的行列式用于判断线性方程组的解的情况。

2.线性方程组线性方程组是实际问题中常见的数学模型。

线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。

3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。

线性变换是从一个向量空间到另一个向量空间的线性映射。

4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。

高等数学知识点总结pdf

高等数学知识点总结pdf

高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。

高等数学 知识点总结

高等数学 知识点总结

高等数学知识点总结一、导数与微分1.导数的概念在数学中,导数是用来描述函数在某一点的变化率。

如果一个函数f(x)在点x处可导,那么f(x)在该点的导数记作f'(x),它表示函数f在x处的变化率。

2.导数的计算导数的计算可以通过极限的方法来求解。

例如,要计算函数f(x)在点x处的导数,可以计算f(x)在x+h处与x处函数值的差值与h的比值,当h趋向于0时的极限值即为f(x)在x 处的导数。

3.导数的性质导数具有一些重要的性质,如导数的线性性质、导数与函数的关系等。

4.微分的概念微分是导数的一个重要应用,在函数f(x)的某一点x处,函数值的微小增量与自变量的微小增量的比值称为函数f(x)在点x处的微分。

5.微分的计算微分可以通过导数来计算,函数f(x)在点x处的微分可以表示为dy=f'(x)dx。

这样,微分与导数的关系变得更加紧密。

6.微分的性质微分具有一些重要的性质,如微分的线性性质、微分的复合性质等。

二、多元函数的偏导数与全微分1.多元函数的概念多元函数是指具有多个自变量的函数,例如f(x,y)。

在多元函数中,每个自变量都是独立的,并且可以对每个自变量进行求导。

2.偏导数的概念多元函数对其中的某个自变量进行求导得到的导数称为偏导数,记作∂f/∂x,表示函数f对自变量x的偏导数。

3.偏导数的计算偏导数的计算可以通过极限的方法来求解,类似于一元函数的导数计算。

例如,对于函数f(x,y),其对x的偏导数可以表示为lim[(f(x+h,y)-f(x,y))/h],当h趋向于0时的极限值。

4.偏导数的性质偏导数具有一些重要的性质,如偏导数的线性性质、偏导数的交换性等。

5.全微分的概念在多元函数中,全微分是描述函数在某一点的微小增量与自变量的微小增量的比值。

6.全微分的计算全微分可以通过偏导数来计算,函数f(x,y)在点(x,y)处的全微分可以表示为df=∂f/∂xdx+∂f/∂ydy。

7.全微分的性质全微分具有一些重要的性质,如全微分的线性性质、全微分的复合性质等。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点汇总高等数学是大学理工科和经济类等专业的重要基础课程,它包含了丰富的知识体系,对于培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。

下面就为大家汇总一下高等数学中的一些主要知识点。

一、函数与极限函数是高等数学研究的基本对象之一。

函数的概念包括定义域、值域和对应法则。

常见的函数类型有初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)以及由这些初等函数经过有限次四则运算和复合运算得到的函数。

极限是高等数学中的一个重要概念,它用于描述函数在某个过程中的变化趋势。

例如,当自变量趋于某个值时,函数值的趋近情况。

极限的计算方法有很多,如代入法、有理化法、等价无穷小替换法、洛必达法则等。

二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化速度。

导数的定义是函数的增量与自变量增量之比的极限。

通过求导公式和求导法则可以求出函数的导数,常见的求导公式有基本初等函数的求导公式,求导法则包括四则运算求导法则、复合函数求导法则等。

微分是函数增量的线性主部,它与导数密切相关。

函数在某一点处的微分可以表示为 dy = f'(x)dx 。

三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔中值定理、拉格朗日中值定理和柯西中值定理。

这些定理在证明等式和不等式、研究函数的性质等方面有着广泛的应用。

导数的应用非常广泛,例如利用导数判断函数的单调性、极值和最值;利用导数研究函数的凹凸性和拐点;利用导数解决优化问题,如求最大利润、最小成本等。

四、不定积分不定积分是求导的逆运算,它是求一个函数的原函数的过程。

不定积分的基本公式包括基本初等函数的不定积分公式,不定积分的计算方法有换元积分法(包括第一类换元法和第二类换元法)和分部积分法。

五、定积分定积分表示的是一个数值,它是由函数在某个区间上的积分和所定义的。

定积分的几何意义可以是曲边梯形的面积。

定积分的计算方法有牛顿莱布尼茨公式,即如果函数 F(x) 是 f(x) 的一个原函数,则∫a,bf(x)dx = F(b) F(a) 。

高等数学高数知识点总结

高等数学高数知识点总结

高数重点总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 1031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。

例如:||x y =连续但不可导。

6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df ∙= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y x y yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ∙∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→ 斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

高等数学知识点

高等数学知识点

高等数学知识点关键信息项1、函数与极限函数的概念与性质极限的定义与计算方法无穷小与无穷大2、导数与微分导数的定义与几何意义基本函数的导数公式微分的定义与运算3、中值定理与导数的应用罗尔定理、拉格朗日中值定理、柯西中值定理函数的单调性与极值曲线的凹凸性与拐点函数的最值问题4、不定积分不定积分的概念与性质基本积分公式换元积分法与分部积分法5、定积分定积分的定义与性质牛顿莱布尼茨公式定积分的计算与应用反常积分6、多元函数微分学多元函数的概念与极限偏导数与全微分多元函数的极值与最值7、重积分二重积分的概念与性质二重积分的计算方法三重积分8、曲线积分与曲面积分对弧长的曲线积分对坐标的曲线积分格林公式对面积的曲面积分对坐标的曲面积分高斯公式与斯托克斯公式9、无穷级数数项级数的概念与性质正项级数的审敛法任意项级数的审敛法幂级数函数展开成幂级数11 函数与极限111 函数的概念函数是数学中的一个基本概念,设集合 D 是实数集的子集,如果对于 D 中的每个实数 x ,按照某种确定的对应关系 f ,都有唯一确定的实数 y 与之对应,则称变量 y 是变量 x 的函数,记作 y = f(x) ,其中 x称为自变量,y 称为因变量,D 称为函数的定义域,值域是函数值的集合。

112 函数的性质函数具有单调性、奇偶性、周期性等性质。

单调性是指函数在某个区间上的增减性;奇偶性是指函数关于原点或 y 轴对称的性质;周期性是指函数在一定区间上重复出现的性质。

12 极限的定义极限是高等数学中的一个重要概念。

当自变量无限趋近于某个值时,函数值无限趋近于一个确定的常数,这个常数就是函数在该点的极限。

13 极限的计算方法极限的计算方法包括利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。

14 无穷小与无穷大无穷小是以 0 为极限的变量,无穷大是绝对值无限增大的变量。

无穷小与无穷大之间存在着密切的关系。

21 导数与微分211 导数的定义导数是函数在某一点的变化率,它反映了函数在该点处的瞬时变化趋势。

高等数学知识点大全

高等数学知识点大全

高等数学知识点大全高考高等数学知识点篇一极限1、知识范围(1)数列极限的概念数列、数列极限的定义(2)数列极限的性质性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义(4)函数极限的性质性、四则运算法则、夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶(6)两个重要极限2、要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

篇二高考数学解答题部分主要考查七大主干知识:第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >=()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0<x<兀 p="" 兀<<12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为m,最小值为m则m(b-a)<= <=m(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2a.function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换b.limit and continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理c.derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数d.application of derivative导数的应用(1)微分中值定理(d-mvt)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值e.indefinite integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)u换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分f.definite integral 定积分(1)riemann sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)accumulation function求导数(4)反常函数求积分h.application of integral定积分的应用(1)积分中值定理(i-mvt)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用i.differential equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场j.infinite series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、p级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

高数知识点总结

高数知识点总结

高数知识点总结高等数学是大学必修课程,也是各个理工科专业的基础课程。

在学习高等数学的过程中,我们需要掌握和理解一些重要的知识点。

下面将对一些常见的高数知识点进行总结。

一. 极限与连续1. 极限的定义和性质:极限是函数在某点逼近的结果,可以通过函数的左右极限来判断。

常用的极限性质有极限的唯一性、四则运算法则、夹逼准则等。

2. 连续与不连续:连续是指函数在某点和周围的点都存在极限并且这些极限相等。

常见的不连续点有可去间断点、跳跃间断点和无穷间断点。

二. 导数与微分1. 导数的定义和性质:导数是函数在某点处的变化率,可以描述函数曲线的陡峭程度。

导数的性质包括可导的充分必要条件、导数与函数连续的关系、导数的四则运算法则等。

2. 微分与高阶导数:微分是导数的一种表示形式,通过微分可以求得函数值的近似值。

高阶导数表示导数的导数,可以描述更加复杂的曲线变化。

三. 积分与定积分1. 不定积分和定积分的定义:不定积分是求导的逆运算,可以得到函数的原函数。

定积分是求函数在一定区间上的累积值,可以计算曲线下的面积或弧长。

2. 积分的性质和计算方法:积分的性质包括线性性质、区间可加性等。

计算积分可以通过换元法、分部积分法、定积分的几何应用等方法。

四. 一元函数的应用1. 函数的最值和极值点:函数的最值是函数在定义域上的最大值和最小值,极值点是函数的导数等于零或不存在的点。

通过求函数的导数可以找到函数的极值点。

2. 函数的图像与曲线的特性:函数的图像可以通过绘制函数的曲线来了解其性质。

常见的曲线特性有单调性、凹凸性、拐点等。

五. 多元函数的极限、偏导数与全微分1. 多元函数的极限:多元函数的极限是指在多元空间中某点的邻域内,函数值无限接近于某个值。

可以通过多元极限的定义和性质进行计算和推导。

2. 偏导数和全导数:偏导数是多元函数对于某个自变量的导数,全导数是多元函数所有自变量的偏导数的集合。

可以通过偏导数和全导数来分析多元函数的性质和曲线变化。

高等数学上重要知识点归纳

高等数学上重要知识点归纳

高等数学上重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义以数列为例,,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质1 )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小; 2保号性若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f ; 3无穷小乘以有界函数仍为无穷小; 二、求极限的主要方法与工具 1、两个重要极限公式 11sin lim=∆∆→∆ 2e =◊+◊∞→◊)11(lim 2、两个准则 1 夹逼准则 2单调有界准则 3、等价无穷小替换法 常用替换:当0→∆时(1)∆∆~sin 2∆∆~tan 3∆∆~arcsin 4∆∆~arctan (5)∆∆+~)1ln( 6∆-∆~1e (7)221~cos 1∆∆- 8nn ∆-∆+~11 4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义)(x f 在a 点连续2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义 2、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(0 3、导数的几何意义 4、导数的物理意义5、可导与连续的关系: 连续,反之不然。

高数总结知识点

高数总结知识点

高数总结知识点一、函数与极限函数的概念、性质及其图像。

函数的极限定义、性质及其运算。

无穷小与无穷大的概念及关系。

极限存在准则(夹逼准则、单调有界准则等)。

二、导数与微分导数的定义、性质及几何意义。

导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。

高阶导数的概念及计算。

微分的定义、性质及运算。

三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。

洛必达法则及其应用。

函数的单调性、极值、最值及凹凸性的判定。

曲线的渐近线、拐点及图形的描绘。

四、不定积分与定积分不定积分的概念、性质及基本积分公式。

不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。

定积分的概念、性质及计算。

定积分的应用(如面积、体积、弧长、功、平均值等的计算)。

五、向量代数与空间解析几何向量的概念、性质及运算。

空间直角坐标系及点的坐标表示。

向量的坐标表示及运算。

平面与直线的方程及其位置关系。

六、多元函数微分学多元函数的概念、性质及极限与连续。

偏导数的定义、计算及几何意义。

全微分的概念及计算。

多元函数的极值与最值问题。

七、多元函数积分学二重积分的概念、性质及计算。

三重积分的概念及计算。

曲线积分与曲面积分的概念及计算。

八、无穷级数常数项级数的概念、性质及收敛判别法。

函数项级数的概念及一致收敛性。

幂级数的概念、性质及运算。

傅里叶级数及其应用。

九、微分方程微分方程的概念及分类。

一阶微分方程的解法(分离变量法、凑微分法等)。

高阶微分方程的解法(降阶法、幂级数解法等)。

微分方程的应用(如物理、化学、生物等领域中的实际问题)。

以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。

(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集,记作N。

⑶、全体整数组成的集合叫做整数集,记作Z。

⑷、全体有理数组成的集合叫做有理数集,记作Q。

⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。

记作A∪B。

(在求并集时,它们的公共元素在并集中只能出现一次。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。

每个部分都需要深入学习并通过大量的练习来掌握。

这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。

高等数学之高中知识点总结

高等数学之高中知识点总结

高等数学之高中知识点总结一、微积分微积分是高等数学中最基础也是最重要的内容之一。

微积分包括微分学和积分学两部分内容,主要研究函数的变化规律和面积、长度、体积等问题。

1. 函数及其性质函数的基本概念:自变量、因变量、变量域、值域等。

初等函数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数等。

函数的性质:单调性、奇偶性、周期性等。

极限与连续:函数极限的概念、极限性质、无穷小与无穷大、函数连续性及其判别法。

2. 微分学导数的定义及其几何意义:导数的定义、导数的几何意义、导数的性质。

常用函数的导数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数。

高阶导数、隐函数与参数方程的导数、导数的运算法则。

微分:微分的概念、微分的性质、高阶微分、微分的应用。

泰勒公式与洛必达法则。

3. 积分学不定积分:不定积分的概念、基本积分、换元积分法、分部积分法、有理分式的积分、反常积分等。

定积分:定积分的概念、定积分的性质、定积分的计算法、变限积分的导数公式和积分公式。

定积分的应用:定积分的几何应用、物理应用、概率统计应用等。

二、线性代数线性代数是研究多维空间中向量、矩阵、线性方程组及其相关概念和理论的数学学科。

1. 线性方程组与矩阵线性方程组:线性方程组的概念、线性方程组的解的判别法、线性方程组的解的结构。

矩阵与矩阵的运算:矩阵的概念、矩阵的运算、矩阵的初等变换、矩阵的秩与逆。

2. 向量空间向量的概念、向量的线性运算和向量空间的性质。

向量空间的基与维数:线性无关组、向量组的秩、向量空间的基、维数。

3. 线性变换与矩阵的相似性线性变换的概念、线性变换的矩阵表示、线性变换与矩阵的相似性。

特征值与特征向量:特征值与特征向量的概念、求特征值与特征向量的方法。

4. 线性空间的结构内积、内积空间、正交向量组。

正交矩阵、正交变换。

三、数学分析数学分析是数学的一个重要分支,主要研究实数系统上的连续函数和变量的极限等问题。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学是大学教育中的重要一门课程,其内容涵盖了微积分、线性代数、数学分析等多个方面。

本文将从绪论、微积分、线性代数和数学分析四个方面进行总结,并列举相关题目进行分析和解答。

一、绪论1. 集合论:集合的概念、包含关系、交集、并集、补集等基本运算。

2. 映射与函数:函数的概念、映射的性质、复合函数、反函数、一一映射等基本概念。

3. 极限与连续:数列极限、函数极限、无穷小与无穷大、连续函数等概念。

4. 导数与微分:导数的定义、求导法则、高阶导数、隐函数及参数方程的导数等。

二、微积分1. 反函数与隐函数:反函数定义、隐函数的导数、求反函数的导数等。

题目:已知函数$f(x)=e^{2x}+x\sin{(\frac{\pi}{2}+x)}$,求其反函数$f^{-1}(x)$的导数表达式。

2. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。

题目:判断函数$f(x)=\frac{x^4}{4}-x^3+2x^2-4x$在闭区间[-2,2]上是否满足罗尔中值定理,并给出证明。

3. 泰勒公式与应用:泰勒展开、泰勒公式、常用泰勒公式推导等。

题目:设$f(x)=\ln{(1+\frac{x}{a})}$,求其在$x=0$处的Talor展开式,并写出其带有佩亚诺余项的n阶展开式。

三、线性代数1. 行列式与矩阵:行列式的定义、行列式运算、矩阵的基本运算、逆矩阵、伴随矩阵等。

题目:已知矩阵$A=\begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -3 \\3 & 1 & 2 \end{pmatrix}$,求其逆矩阵$A^{-1}$并验证。

2. 线性方程组与矩阵:线性方程组的解、矩阵运算、矩阵的秩、可逆矩阵、特征值与特征向量等。

题目:已知线性方程组$\begin{pmatrix} 2 & 3 \\ 4 & 5\end{pmatrix} \begin{pmatrix} x \\ y\end{pmatrix}=\begin{pmatrix} 1 \\ 3 \end{pmatrix}$,求其解。

高等数学知识点

高等数学知识点

第一章函数与极限第一节映射与函数一、集合一般的所谓集合(简称集)是指具有某种性质的事物的从总体,组成这个集合的事物称为该集合的元素(简称元)。

二、集合的运算集合的基本运算有:并、交、差。

并A∪B=﹛x│x∈A或x∈B﹜交差A\B=﹛x│x∈A且x¢B﹜四项法则(1)交换律(2)结合律(3)分配律(4)对偶律(A∪B)C =A C∪B C注:在两个集合之间还可以定义直积或笛卡儿乘积。

设A、B是任意两个集合,在集合A 中任取一个元素x,在集合B中任取一个元素y,组成一个有序对(x,y)把这样的有序对作为新的元素,它们全体组成的集合称为集合A与集合B的直积,记A×B,既A×B=﹛﹙x,y﹚│x∈A且y∈B﹜3、区间和邻域二、映射概念定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每一个元素 x,按法则f,在Y中有唯一确定的元素y与之相对应,则称f为从X到Yf :X Y三、函数1、定义设数集D属于R,则称映射f:D R为定义在D上的函数,通常简记为y=f(x),x ∈D其中x 成为自变量,y成为因变量,D成为定义域,记作D f,既D f=D.2、几种特性:有界性单调性奇偶性周期性3、反函数与复合函数4、函数的运算和(差)积商5、初等函数幂函数:y=x a指数函数对数函数三角函数反三角函数双曲正弦 sh x=(e x-e -x)/2双曲余弦 ch x= (e x+e -x)/2双曲正切 th x= (e x-e -x)/ (e x-e -x)第二节数列的极限定义设{x n}为一数列,如果存在常数a,对于任意给定的正数µ (不论它多么小),总存在正整数N,使得 n﹥N时,不等式│x n │<µ都成立,那么就称常数a是数列{x n}的极限,或者称数列{x n}收敛于a,记为X a (n ∞)二、收敛数列的性质定理 1 (极限的唯一性)如果数列{ x n }收敛,那么他的极限唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学知识点总结
高等数学是学习数学的一个重要分支,它包括微积分,线性代数,数学分析等多个学科的内容。

在大学阶段,高等数学是理工科学生必修的一门课程,它为学生提供了深入掌握数学知识的基础。

下面将对高等数学中的主要知识点进行总结。

微积分
微积分是高等数学的重要内容,它包括微分学和积分学两个部分。

微分学
微分学探讨的是函数的变化趋势,它通过导数定义函数的切线和函数在某一点的波动情况。

常用的微分运算有:
1、导数的定义和求导法则
导数的定义:对于函数f(x),当x的增量越来越小时,函数在x处的导数为:
f'(x)=lim(f(x+h)-f(x))/h(h→0)
导数的求导法则:
常数乘积法则:(cf(x))'=cf'(x)
和差法则:(f(x)±g(x))'=f'(x)±g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(f(x)/g(x))'=[f'(x)g(x)-
g'(x)f(x)]/g(x)^2
2、高阶导数
高阶导数定义: 给予函数f(x),可以通过反复求导得到f(x)的高阶导数。

f'(x),f''(x),f'''(x)...
3、微分中值定理和Taylor公式
微分中值定理:对于函数f(x),和它的两个不同点
a,b(a<b),则在f(a)和f(b)之间至少存在一个点c将f(b)-f(a)和f′(c)联系起来。

f(b)-f(a)=f′(c)(b-a)
Taylor公式: 它用多项式函数来描述函数局部的变化特征。

f(x)=f(a)+f'(a)(x-a)+f''(a)(x-
a)^2/2+...+f(n)(a)(x-a)^n/n!+o((x-a)^n)
其中o((x-a)^n)表示x→a时比(x-a)^n对应的函数趋近于0到一个高阶无穷小量。

积分学
积分学是微积分的另一个重要部分,其主要涉及曲线下面的面积和函数的反函数问题。

常用的积分运算有:
1、不定积分和定积分
不定积分:关于x的函数F(x)的导数为f(x),则f(x)等于F(x)的不定积分。

定积分:表示区间[a,b]上的函数f(x)在x轴下的面积。

∫_[a]^[b]▒f(x)dx=F(b)-F(a)
2、定积分的基本性质
定积分的基本性质:
首先:f(x)在[a,b]上连续,则其可积。

其次:
∫_[a]^[b]▒f(x)dx=∫_[a]^[c]▒f(x)dx+∫_[c]^[b]▒f(x)dx
其中c属于[a,b]。

3、变限积分和换元积分
变限积分:表示f(x)在区间[a,b]上的面积,如:
∫_[a]^[b]▒f(x)dx=F(b)-F(a)
换元积分:先用变量替换法,将积分中被积函数的自变量部分更换成另外的变量,从而将原积分转变成另外一个指定的简单积分。

数学分析
数学分析是研究数列、函数和极限理论的学科,其中涉及到的主要内容有:
1、数列极限
定义:
如果序列{a_n}中的任何一个数都不超过一个常数M,且对于任意给定的正数ε,总存在一个正整数 N,使得当n>N 时有|a_n-L|<ε,则称数列{a_n}收敛于L,记作
lim_(n→∞)⁡[a_n]=L
2、函数极限
定义:
设函数f(x)在x0的某一去心邻域内有定义,如果对于任何一个正数ε(任意小),总存在与x0的距离在一定范围内的x,使得当x->x0时,f(x)-A<ε,则称A是f(x)当x->x0时的极限,记作lim_(x→x0)⁡〖f(x)=A〗。

3、导数和微分
导数和微分是微积分中的重要概念,它们分别描述了函数在某一点的局部和整体变化情况。

微分是导数的作用,导数
则是由函数某一点的变化率增加所得到的极限。

4、一元函数积分学
一元函数积分学是微积分的重要分支,它提供了函数在一定区间内面积的计算方法。

可以用定积分来计算曲线下面的面积,这里的积分是对函数自变量的积分,被积函数是函数在区间中各个点上的函数值与坐标轴间的面积。

线性代数
线性代数是研究向量空间和线性方程组的理论,其主要涉及到的知识点有:
1、向量和向量空间
定义:
向量是有方向、大小和起点的量,通常表示为箭头。

其中有多种向量表达方式,如坐标表示法、行向量和列向量表示法等。

向量空间定义:
向量空间指的是由若干个向量组成的线性空间,其中包括了两个基本运算: 加法和标量乘法。

向量空间分为有限维和无限维向量空间,具体的描述需要依据对线性代数知识的深度掌握程度来决定。

2、矩阵和行列式
矩阵和行列式是线性代数中最重要的概念之一,也是许多应用的核心。

矩阵定义:
矩阵是一个数表(即在一个方块里填好若干数字的一种表现形式),其中行和列分别代表矩阵中的行和列,矩阵通常用大写字母来表示。

行列式定义:
行列式是一个集合中一个n*n的矩阵的值,其中各元素的下标对应于矩阵中所出现的行和列的标号。

行列式的值是一个指定矩阵行列式中各元素的代数加权和,其中权值可以为正或负。

总之,高等数学是学习数学的重要分支,以下重点考虑的知识点有:微积分、数学分析和线性代数,其中微积分涉及微分学和积分学,包括导数的法则、高阶导数、微分中值定理和Taylor公式等;数学分析主要涉及数列、函数和极限理论等;线性代数则主要涉及向量和向量空间、矩阵和行列式等内容。

掌握这些知识点可以为学生的数学学习和专业技能的提高提供较为扎实的基础。

相关文档
最新文档