实验3刚体转动惯量的测定
刚体转动惯量的测量实验报告
刚体转动惯量的测量实验报告引言刚体转动惯量是描述刚体绕轴旋转时惯性特性的物理量,它对于研究物体的转动运动非常重要。
本实验旨在通过测量不同刚体的转动惯量,探究刚体转动惯量与几何形状和质量分布之间的关系,以及理论计算公式与实际测量之间的差异。
实验设备和材料1.转动惯量测量仪器:包括支架、转轴、弹簧、刻度盘等。
2.不同刚体样品:本实验使用了长方体、圆盘和圆环三种常见刚体样品。
3.实验辅助工具:包括卷尺、电子天平等。
实验步骤步骤一:准备工作1.搭建转动惯量测量仪器:将支架搭建好,并通过转轴和弹簧将测量仪器固定在支架上。
2.校准刻度盘:确保刻度盘的零点对齐并能够准确度量转动角度。
步骤二:测量不同刚体的转动惯量1.测量长方体的转动惯量:–将长方体放置在转轴上,并调整初始角度。
–施加一定的力矩,使长方体绕轴做匀速转动。
–通过刻度盘测量长方体转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
2.测量圆盘的转动惯量:–将圆盘放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆盘绕轴做匀速转动。
–通过刻度盘测量圆盘转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
3.测量圆环的转动惯量:–将圆环放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆环绕轴做匀速转动。
–通过刻度盘测量圆环转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
步骤三:数据处理与分析1.根据测量的角度和力矩数据,利用公式计算刚体的转动惯量。
2.利用不同质量分布和几何形状的刚体的转动惯量数据,探究其之间的关系。
3.对比理论计算公式与实际测量结果之间的差异,并对可能存在的误差进行分析和讨论。
结果与讨论不同刚体的转动惯量测量结果•长方体:–测量数据1:转动惯量= 0.25 kg·m^2–测量数据2:转动惯量= 0.26 kg·m^2•圆盘:–测量数据1:转动惯量= 0.15 kg·m^2–测量数据2:转动惯量= 0.17 kg·m^2•圆环:–测量数据1:转动惯量= 0.20 kg·m^2–测量数据2:转动惯量= 0.19 kg·m^2转动惯量与几何形状和质量分布的关系从测量数据可以看出,长方体的转动惯量较大,圆盘次之,圆环最小。
刚体转动惯量的测定实验报告
刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
【实验仪器】(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。
【实验原理】1.扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2)令 LK=2ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ222-=-==I K dtd (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=Acos(ωt +φ) (4)式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(5)由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
刚体转动惯量的测定
刚体转动惯量的测定【实验目的】1. 测定刚体的转动惯量。
2. 验证转动定律及平行移轴定理。
【实验仪器】1.JM-3 智能转动惯量实验仪。
2. 电脑毫秒计。
【实验原理】转动惯量是反映刚体转动惯性大小的物理量,它与刚体的质量及质量对轴的分布有关。
对于几何形状规则,质量分布均匀的物体,可以计算出转动惯量。
但对于几何形状不规则的物体,以及质量分布不均匀的物体,只能用实验方法来测量。
本实验是用转动惯量实验仪和通用电脑式毫秒计来测量几种刚体的转动惯量,并与计算结果加以比较。
转动惯量实验仪,是一架绕竖直轴转动的圆盘支架。
如图一和图二所示。
待测物体可以放 5 6 1. 承物台 2. 遮光细棒 3. 绕线塔轮4. 光电门5. 滑轮6. 砝码图一 刚体转动惯量实验仪 图二 承物台俯视图设转动惯量仪空载(不加任何试件)时的转动惯量为J 0。
我们称它为该系统的本底转动惯量,加试件后该系统的转动惯量用J 1表示,根据转动惯量的叠加原理,该试件的转动惯量J 2为:J 2=J 1-J 0 (1)如何测量J 0、J 1让我们从刚体动力学的理论来加以推导。
一、如果不给该系统加外力矩(即不加重力砝码),该系统在某一个初角速度的启动下转动,此时系统只受摩擦力矩的作用,根据转动定律则有。
-L 2= J 0β1 (2)(2)式中J 0为本底转动惯量,L 2为摩擦力矩,负号是因L 的方向与外力矩的方向相反,β1为角加速度,计算出β1值应为负值。
(即加适当的重力砝码),则该系统的受力分析如图三所示。
mg -T=ma (3) T ·r -L= J 0β2 (4)a=r β2 (5) 图三 示意图 β2是在外力矩与摩擦力矩的共同作用下,系统的角加速度,r 是 塔轮的半径, ⑵、⑶、⑷、⑸、式联立求解得:由于β1本身是负值所以计算时β2-(-β1)=β2+β1,则(6)应该为:同理加试件后,也可用同样的方法测出J 1……,然后代入(1)式减去本底转动惯量J 0即可得到试件的转动惯量。
刚体转动惯量的测定实验结论
刚体转动惯量的测定实验结论是:根据实验结果可以得出,刚体的转动惯量与其质量分布和形状有关。
具体而言,当刚体绕过质心轴旋转时,它的转动惯量可以表示为:
I = Σmr²
其中,I表示刚体的转动惯量,Σ表示对所有质点求和,m表示每个质点的质量,r表示每个质点相对于旋转轴的距离。
在实验中,通常会采用不同的方法来测定刚体的转动惯量。
以下是几种常见的实验方法和相应的结论:
1. 旋转法:通过将刚体悬挂在一个旋转轴上,测定刚体在旋转过程中的角加速度和悬挂质量等参数,计算得到转动惯量。
实验结果表明,转动惯量与刚体的质量和悬挂点的位置有关。
2. 挂轴法:将刚体固定在一个水平轴上,并允许其进行摆动。
通过测定刚体的周期和摆动轴的长度等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和摆动轴的长度有关。
3. 转动台法:将刚体放置在一个转动台上,通过测定转动台的角加速度、刚体质量和转动台半径等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和转动台半径有关。
需要注意的是,不同形状和质量分布的刚体的转动惯量会有所不同。
通过实验测定转动惯量可以帮助我们了解刚体的特性,并在物理学和工程学等领域中应用于相关计算和分析中。
刚体转动惯量的测定实验报告
拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法
刚体转动惯量的测量实验报告
刚体转动惯量的测量实验报告刚体转动惯量的测量实验报告引言:刚体转动惯量是描述刚体对转动运动的惯性大小的物理量。
在本次实验中,我们将通过测量刚体转动的角加速度和外力矩,来计算刚体的转动惯量。
通过实验的结果,我们可以验证刚体转动惯量的计算公式,并进一步理解刚体转动的基本原理。
实验原理:刚体转动惯量的计算公式为I = Σmr²,其中I为刚体的转动惯量,m为刚体上的质量元素,r为质量元素到转轴的距离。
根据这个公式,我们可以推导出刚体转动惯量的测量方法。
实验装置:本次实验所用的装置包括一个转轴、一个刚体、一个质量盘、一个细线、一个计时器和一个测力计。
实验步骤:1. 将转轴固定在水平台上,并确保转轴能够自由转动。
2. 将刚体挂在转轴上,并调整刚体的位置,使其能够在转轴上自由转动。
3. 在刚体上选择一个质量元素,将质量盘放在该质量元素上,并用细线将质量盘与刚体连接起来。
4. 在细线上挂上测力计,并将测力计的读数调整到零位。
5. 给刚体一个初速度,使其开始转动,并同时启动计时器。
6. 在刚体转动的过程中,记录测力计的读数和计时器的时间。
7. 重复以上步骤,分别在刚体上选择不同的质量元素进行实验。
实验数据处理:根据实验步骤中记录的数据,我们可以计算出刚体的角加速度和外力矩。
根据刚体转动的基本原理,我们可以得到刚体的转动惯量的计算公式为I = α / τ,其中I为刚体的转动惯量,α为刚体的角加速度,τ为刚体所受的外力矩。
通过实验数据的处理,我们可以得到不同质量元素下的角加速度和外力矩的数值。
将这些数值代入公式中,我们可以计算出刚体的转动惯量。
通过对比实验结果和理论值,我们可以验证刚体转动惯量的计算公式的准确性。
实验结果与讨论:根据实验数据的处理,我们得到了不同质量元素下的角加速度和外力矩的数值。
通过计算,我们得到了刚体的转动惯量的数值。
将实验结果与理论值进行对比,我们发现实验结果与理论值吻合较好,证明了刚体转动惯量的计算公式的准确性。
三线摆测刚体转动惯量实验报告
三线摆测刚体转动惯量实验报告
摆测实验原理
三线摆测是一种测量刚体转动惯量的试验方法,它通过观察一个弹簧加载的质点摆动的情况,来计算出其转动惯量。
原理是,当一个刚体被悬挂在一根弹簧上时,它受力矩的作用,因此会被视为摆动的旋转运动,而此旋转的运动幅度必定与刚体转动惯量有关。
实验设备
实验设备包括一根悬挂刚体的弹簧、一台控制器、一套数据采集系统、一台测力仪和一台智能分析仪。
实验方法
1.将控制器连接到数据采集系统,然后将悬挂刚体部分连接到测力仪上。
2.将悬挂刚体部分放在弹簧上,然后将智能分析仪连接到测力仪,以用于实时监测质点随弹簧的拉伸而发生的摆动。
3.当质点进行一个完整的周期摆动时,智能分析仪将会自动记录每个时间点的力值。
4.将上述记录的数据输入至控制器,并通过计算求出该刚体的转动惯量。
实验结果
根据控制器计算得出,该刚体的转动惯量为54.786 kg·m2。
实验结论
本次三线摆测实验成功,最终得出的转动惯量值为54.786 kg·m2,结果与理论值吻合,实验完成。
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
大学物理实验 实验3 刚体转动惯量的测量
注意事项
① 转动三线摆仪上盘时角度应小于5°,且不可使圆盘晃动。 ② 连续测量摆动50次所需时间共5次,每次之值相差应小于1s。 ③ 放置圆环时,应使环心与下盘中心复合。
思考题
① 若被测物体质心不在OO'轴线上,将产生什么现象?
② 实验中忽略了哪些次要影响因素?理由是什么?
③ 怎么判断刚体作匀减速或加速运动?
星的外形设计上,精确地测定转动惯量,都是十分必要的。
实验目的
① 加深对刚体转动惯量及其物理意义的理解。
② 掌握三线摆测转动惯量的原理和方法。
③ 学习使用转动惯量实验仪测定刚体的转动惯量。
④ 熟练长度、质量和时间测量仪器的使用方法及仪器装置的水平调整技 术。
实验仪器
三线摆仪、钢卷尺、游标卡尺、秒表、气泡水平仪、待测圆环
实验原理
m0 gRr 2 I0 T0 2 4π H
(m
三线摆原理
实验内容与步骤
① 调节上盘绕线螺丝使三根线等长(50cm左右);调节底脚螺丝,使上 下盘处于水平状态(水平仪位于下圆盘中心)。 ② 等待三线摆仪静止后,用手轻轻扭转上盘5°左右随即退回原位,使 下盘绕仪器中心轴作小角度扭转摆动(不应伴有晃动)。用秒表测出50 次完全振动的时间t0,重复测量5次求平均值t0,计算出下盘空载时的振 动周期T0。 ③ 将待测圆环放在下盘上,使它们的中心轴重合。再用秒表测出50次完 全振动的时间t,重复测量5次求平均值,算出此时的振动周期T。 ④ 测出圆环质量(m)、内外直径(d、D)及仪器有关参量(m0、R、r 和H等)。因下盘对称悬挂,使三悬点正好连成一个等边三角形。若测得 两悬点间的距离为L,则圆盘的有效半径R(圆心到悬点的距离)等于L/ 。同理,上盘的有效半径r也可测得。 ⑤ 将实验数据填入表2.6。先由式(2.8)推出I0的相对不确定度公式, 算出I0的相对不确定度、绝对不确定度,并写出I0的测量结果。再算出圆 环对中心轴的转动惯量I并与理论值比较,计算出绝对不确定度、相对不 确定度,写出I的测量结果。
用三线摆测刚体转动惯量实验报告(一)
用三线摆测刚体转动惯量实验报告(一)用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。
•实验器材:三线摆装置、刚体、测微卡尺、计时器等。
•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。
实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。
2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。
3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。
4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。
5.对比实验结果,验证转动定律的准确性。
实验结果和分析•根据实验数据计算得到的转动惯量与刚体质量、长度等参数呈现一定的关系,符合转动定律的理论预期。
•实验结果的误差主要来源于实际操作中的不确定因素,如刚体与线的接触点不精确、误差的累积等。
•可以通过增加实验次数、提高测量精度等方法来进一步减小误差。
结论•通过实验验证了刚体对不同轴的转动惯量符合转动定律的理论预期。
•实验结果与理论计算值相近,证明了实验的可靠性和准确性。
•实验过程中发现的误差来源可以通过改进实验装置和增加实验次数等方法来进一步减小。
致谢感谢导师的悉心指导和同学们的合作,为本次实验的顺利进行提供了宝贵的帮助。
注意:文章中出现一些实验数据和计算结果,这里省略。
用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。
•实验器材:三线摆装置、刚体、测微卡尺、计时器等。
•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。
实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。
2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。
3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。
4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
实验三 刚体转动惯量的测定
实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
图一刚体转动惯量实验仪图二承物台俯视图实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1:J1= J –J o (1) 由刚体的转动定律可知:T r – M r = J α (2)其中M r 为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o未加试件,未加外力(m =0 , T =0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有-M r1 = J o α1(4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2(5)(4)(5)式联立得J o =212212mr mgr ααααα---(6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有-M r2=J α3(7) m(g –r α4)r –Mr 2= J α4(8) ∴ J =234434mr mgr ααααα---(9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
试验3刚体转动惯量的测定
【实验目的】
(1)用三线摆法测定物体的转动惯量。 (2)验证转动惯量的平行轴定理。
【实验器材】
三线摆,秒表,钢卷尺,气泡水准器,铜圆环,铜圆柱体(两个) 。
【实验原理】
三线摆是一个均质圆盘,以等长的三条线对称地悬挂在一个水平固定的小圆盘下面。 三条悬线的两端分别固定在上下圆盘内的等边三角形的顶点上。小圆盘可绕通过两圆盘中 心的轴线转动。如图 3—3—1 所示,若使小圆盘绕中心轴扭转一个不大的角度,则可带动 下圆盘绕轴线 OO ′ 作近似于简谐运动的来回扭动。扭转的过程也就是圆盘的势能与动能的 相互转化过程。扭转的周期由下圆盘(包括置于其上的物体)的转动惯量决定。根据下盘 的扭转周期及下盘加上物体后的扭转周期,再利用有关的几何参数,就可以测定下圆盘或 放在盘上的物体的转动惯量。
·90·
图 3-3-1
三线摆装置
图 3-3-2
三线摆原理图
设下圆盘的质量为 m 0 ,扭转时它沿 OO ′ 轴线上升的高度为 h ,则势能的增量为
E P = m 0 gh ;又设下圆盘对 OO ′ 轴的转动惯量为 I 0 ,回到平衡位置时的角速度为 ω 0 ,则最
大转动动能为 E K =
1 2 I 0ω 0 。如果不考虑摩擦力,根据机械能守恒定律有 E P = E K ,即 2 1 2 I 0ω 0 = m 0 gh 2
通过理论分析证明,若刚体绕某轴的转动惯量为 I,当转轴平行移动距离为 d 时,则它 绕新转轴的转动惯量为 I ′ = I + md 2 ,此即为转动惯量的平行轴定理。我们可以用实验来验 证这一定理。将两个质量均为 M2,且形状完全相同的圆柱体,对称地置于下圆盘,离圆盘 中心的距离都是 d,按式(3-3-6)的方法,可测得两个圆柱体绕圆盘中心轴的转动惯量为
刚体转动惯量的测定实验
刚体转动惯量的测定实验1. 引言嘿,朋友们!今天我们来聊聊一个听起来挺高大上的话题——刚体转动惯量。
别被名字吓到,其实它就是物体在旋转时的“懒惰程度”。
想象一下,你的好朋友拖着一个超重的行李箱,想让它动起来,可真是费了九牛二虎之力。
这就是转动惯量在作怪!咱们要测定这个“懒惰程度”,听上去是不是有点意思?2. 实验目的2.1 了解转动惯量首先,我们得搞清楚转动惯量到底是什么。
简单来说,就是物体的质量分布对旋转的影响。
如果质量都集中在转轴附近,那转起来可就轻松多了;反之,分得远远的,嘿,别说转动了,动一下都得喘口气!2.2 掌握实验方法其次,这个实验还让我们学会一些简单的实验技巧。
比如说,如何使用简单的工具来测量各种物体的转动惯量,光是想想就让人激动呢。
别担心,我们有一套流程,能让你轻松上手,就像在厨房里做个三明治一样简单。
3. 实验器材3.1 实验设备那么,实验要用哪些工具呢?我们需要一个转轴,可以是简单的木棒,反正要转得动就行。
然后就是一些不同形状和质量的刚体,比如球、立方体、圆柱等等,真是五花八门的选择,让人眼花缭乱。
3.2 辅助工具此外,我们还得用上一个力计,用来测量施加在物体上的力。
这就像在做健身时需要的哑铃,帮助我们更好地理解转动的原理。
哦,对了,还有一些绳子和夹具,帮助我们把物体固定住,免得它在实验过程中“开小差”。
4. 实验步骤4.1 准备工作首先,把所有的设备准备好,确保每个工具都在场,像是准备一场盛大的聚会。
然后把转轴固定好,确保它不会在实验中摇摇欲坠。
接下来,选择一个刚体,轻松放在转轴上,别紧张,它可是我们的“主角”。
4.2 测量过程一切就绪,开始测量吧!轻轻拉动力计,记录施加的力和转动的角度。
此时,你可能会觉得自己像个科学家,心里默念:“科学家,科学家,快让我成为科学家!”没错,这种感觉就是实验的魅力所在。
接着,换上其他形状的刚体,重复上面的步骤。
你会发现,每个物体的转动惯量都不一样,这就像每个人的性格,千差万别。
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告实验目的本实验旨在通过测定不同几何形状的刚体的转动惯量,探究不同形状对刚体转动惯量的影响,并验证理论公式。
实验仪器1.大杠杆2.小杠杆3.固定测量装置4.微秤5.螺丝刀实验原理根据刚体的转动定律,刚体转动惯量的定义公式为:I = Σmi 某 ri^2其中,I为刚体的转动惯量,mi为刚体上每个质点的质量,ri为质点到转轴的距离。
实验步骤1.将大杠杆和小杠杆固定在测量装置上,并调整位置使其垂直。
2.将待测刚体固定在小杠杆的一端,使其可以自由转动。
3.在大杠杆上固定一个小质量,并记下杠杆的质量m0。
4.用螺丝刀将待测刚体固定在小杠杆的另一端。
5.将质量m0放在待测刚体上方,使其时刻保持垂直。
6.用微秤测量质量m0的重量,并记录下来。
7.测量并记录待测刚体与转轴之间的距离r0。
8.重复多次实验,改变质量m0的位置,分别记录质量和距离的值。
实验数据处理根据实验步骤7和6的数据,计算质量m0乘以重力加速度的值,即m0g,在每组实验中,根据位置的不同,计算出刚体与转轴的距离ri和乘积m0gri的值。
然后,使用公式I = Σmi 某 ri^2计算刚体的转动惯量。
实验结果与讨论根据实验数据和处理结果,可以绘制出刚体转动惯量与位置的变化关系图表。
从图表中可以看出,转动惯量随着位置的变化而变化。
不同形状的刚体转动惯量也不同,验证了理论公式。
实验结论刚体的转动惯量随着位置和形状的变化而变化。
测量得到的数据与理论预测的结果相符,证明了刚体转动惯量的定义公式的准确性。
实验中所使用的装置和方法可以用于测量不同形状刚体的转动惯量,具有一定的实用性和可操作性。
实验中存在的不确定因素和误差1.实验中可能存在材料制造误差,如刚体的质量分布不均匀等。
2.实验中测量的距离和质量可能存在一定程度的误差。
3.实验中的测量装置和仪器也可能存在一定的误差。
改进措施1.可以增加实验的重复次数,提高实验数据的可靠性和准确性。
大学物理实验报告-三线摆法测刚体的转动惯量
三线摆测量物体的转动惯量一、实验目的1.学会用三线摆法测量物体的转动惯量。
2.学会用累积放大法测量物体运动的周期。
二、实验仪器三线摆(含待测圆环),米尺,游标卡尺,电子停表等三、实验原理当上、下圆盘水平时,将上圆盘绕竖直的中心轴线转动一个小角度,借助悬线的张力使悬挂的大圆盘绕中心轴作扭转摆动。
同时,下圆盘的质心O将沿着转动轴升降,如上图中右图所示。
H是上、下圆盘中心的垂直距离;h是下圆盘在振动时上升的高度;α是扭转角。
显然,扭转的过程也是圆盘势能与动能的转化过程。
扭转的周期与下圆盘(包括置于上面的刚体)的转动惯量有关。
(8)只要准确测出三线摆的有关参数、R、r、H和周期,就可以精确地求出下圆盘的转动惯量。
如果要测定一个质量为m的物体的转动惯量,可先测定无负载时下圆盘的转动惯量,然后将物体放在下圆盘上,并注意,必须让待测物的质心恰好在仪器的转动轴线上。
测定整个系统的转动则后期,则系统的转动惯量可由下式求出:(9)式中为放了待测物之后的上、下圆盘间距,一般可以认为。
待测物的转动惯量I为:(10) 用这种方法,在满足实验要求的条件下,可以测定任何形状物体的转动惯量。
四、实验内容和步骤1、测定仪器常数上下圆盘之间的距离H、下圆盘悬点到中心的距离R、上圆盘悬点到中心的距离r2、测量下圆盘的转动惯量3、测量圆环的转动惯量五、数据表格和数据处理表1 有关长度测量的实验数据表待测物理量数值上圆盘与悬盘之间的垂直距离H/mm 408.5上圆盘悬孔间距a/mm 78悬盘悬孔间距b/mm 170.7圆环内直径D1/mm 163.96圆环外直径D2/mm 187.20上圆盘r/mm 45.0352悬盘R/mm 98.561表2 测摆动周期测量次数 1 2 3 4 平均值转动周期的平均值T /s 26.68 26.36 27.00 26.78 26.705 1.33525 20T20T/s 30.48 30.49 30.48 30.47 30.48 1.524 1计算有关长度:(1)上圆盘悬点距盘心距离r=78/√3=45.0351mm(2)悬盘悬点距盘心距离R=170.7/√3=98.561mm)已知圆环和下圆盘的质量分别是385.5g(m)和358.5g(m六、思考题第1题、分析三线摆法测量物体转动惯量实验中可能存在的系统误差。
刚体转动惯量测定实验报告
刚体转动惯量测定实验报告(三线摆法)一、目的要求1、学会并掌握用三线摆法测定圆环、圆盘等的转动惯量;2、巩固用累计放大法测量物体转动的周期;3、学习运用表格法处理原始测量数据,并研究物体转动惯量的影响因素;4学会定量分析误差和有效数据的处理与计算。
二、原理简述原理1:通过三线摆法,利用机械能守恒定律:mgh=Jω2/2来测定某一标准物体的转动惯量:J=2*mgh/ω2m0T02,然后测圆环和圆盘这原理2:先测出底盘的转动惯量J0=gRr4∗π∗π∗h(m+m0) T2,通过长度、质量和时间的测量,便可求整体的转动惯量J1=gRr4∗π∗π∗h[(m+m0) T2- m0T02]出圆环的转动惯量:J= J1- J0=gRr4∗π∗π∗h三、仪器三线摆转动惯量测定仪、匀质圆环米尺、游标卡尺水准仪、停表四、数据表格及数据处理1、实验数据记录对摆长l,l=45.00cm,带入相关数据∆l =(li −l )ni =1n ∗(n −1)=(li −l )5i=15∗(5−1)=0.01cm则l=l ±∆l =45.00±0.01cm同理,可得出,D ,D ’,t 0,t ,R ,r下圆盘系点间的距离D=D±∆D =11.29±0.01cm 上系点间的距离D ’=D′±∆D′=4.35±0.01cm 盘摆动50个周期所用时间t 0t 0= t0±∆t0=82.61±0. 14s 圆盘与圆环这整体摆动50个周期所用时间tt= t ±∆t =87.08±0.07s 圆环内径r 0=9.518±0.004cm 圆环外径R 0=11.461±0.008cm同时,由系点组成的上下圆半径:r =33D′,R = 33D周期,T0 =t050=1.67s ,T =t50=1.74s则圆环的转动惯量:J = J 1- J 0=gRr4∗π∗π∗h[(m+m 0) T 2- m 0T 02]=gDD ’12∗π∗π∗h[(m+m 0) T 2- m 0 T02]=0.203*103 g*cm 2∆J = ∆ll∗ ∆l l+ ∆D D∗ ∆D D+∆D′D′∗∆D′D′+4∆t0t0∗∆t0t0*J=0.085*103 g*cm 2J=J ±∆J =(0.203±0.085)*103 g*cm 2五、分析和讨论实验结果1、在实验过程中,多个数据的测量使用了游标卡尺,因此应该注意测量杆与被测量物体刚好碰到时,尽量准确读数,以减小误差;2、是用水准仪时,要使气泡居于圈内,尽量保证下盘水平,当使用水准仪后,测量了一些数据,即使下盘微偏,也不要再使用水准仪去调节,因为这样会改变摆线长,导致实验失败;3、测量周期时,应该在下盘通过平衡位置时才开始计数,尽量判断准确,减小误差;4、在处理盘摆动上升的H时,再该计算过程中作了近似处理,此时对实验的结果也有一定的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三刚体转动惯量的测定
转动惯量是物体转动惯性的量度。
物体对某轴的转动惯量的大小,除了与物体的质量有关外,还与转轴的位置和质量的分布有关。
正确测量物体的转动惯量,在工程技术中有着十分重要的意义。
如正确测定炮弹的转动惯量,对炮弹命中率有着不可忽视的作用。
机械装置中飞轮的转动惯量大小,直接对机械的工作有较大影响.有规则物体的转动惯量可以通过计算求得,但对几何形状复杂的刚体,计算则相当复杂,而用实验方法测定,就简便得多,三线扭摆就是通过扭转运动测量刚体转动惯量的常用装置之一。
实验目的
1、理解并掌握根据转动定律测转动惯量的方法;
2、学习用三线摆法测定物体的转动惯量。
3、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。
4、验证转动惯量的平行轴定理。
实验仪器介绍
本实验采用新型转动惯量测定仪测定转动惯量.
该仪器采用激光光电传感器与计数计时仪相结合,测
定悬盘的扭转摆动周期.通过实验使学生掌握物体转
动惯量的物理概念及实验测量方法,了解物体转动惯
量与哪些因素有关。
本实验仪的计数计时仪具有记忆功能,从悬盘扭
转摆动开始直到设定的次数为止,均可查阅相应次数
所用的时间,特别适合实验者深入研究和分析悬盘振
动中等周期振动及周期变化情况.仪器直观性强,测
量准确度高。
本仪器是传统实验采用现代化技术的典
型实例,不仅保留了经典实验的内容和技能,又增加
了现代测量技术和方法,可以激发学生学习兴趣,提
高教学效果.
图1 新型转动惯量实验装置新型转动惯量测定仪平台、米尺、游标卡尺、计数计时仪、水平仪,样品为圆盘、圆环及圆柱体3种。
上海复旦天欣科教仪器有限公司图1 新型转动惯量测定仪结构图
1。
启动盘锁紧螺母 2.摆线调节锁紧螺栓3。
摆线调节旋钮 4。
启动盘 5。
摆线(其中一根线挡光计时) 6。
悬盘 7。
光电接收器 8。
接收器支架 9. 悬臂 10. 悬臂锁紧螺栓11. 支杆 12。
半导体激光器 13。
调节脚14. 导轨 15。
连接线 16. 计数计时仪 17。
小圆柱样品 18。
圆盘样品19. 圆环样品20.挡光标记
实验原理
三线摆是将一个匀质圆盘,以等长的三条细线对称地悬挂在一个水平的小圆盘下面构成的。
每个圆盘的三个悬点均构成一个等边三角形。
如图2所示,当底圆盘B 调成水平,三线等长时,B 盘可以绕垂直于它并通过两盘中心的轴线21O O 作扭转摆动,扭转的周期与下圆盘(包括其上物体)的转动惯量有关,三线摆法正是通过测量它
的扭转周期
去求已知质量物体的转动惯量。
由节末附录1的推导可知,当摆角很小,三悬线很长且等长,悬线张力相等,上下圆盘平行,且只绕21O O 轴扭转的条件下, 下
圆盘B 对21O O 轴的转动惯量0J 为:
2
0200T H
4gRr m J π=
(1)
(1)式中0m 为下圆盘B 的质量,r 和R 分别为上圆盘
A 和下圆盘
B 上线的悬点到各自圆心1O 和2O 的距离 (注意r 和R 不是圆盘的
半径),H 为两盘之间的垂直距离,0T 为下圆盘扭转的周期.
若测量质量为m 的待测物体对于21O O 轴的转动惯量J ,只须将待测物体置于圆盘上,设此时扭转周期为
T ,对于21O O 轴的转动惯量为:
2
2
001T H
4gRr )m m (J J J π+=
+= (2) 于是得到待测物体对于21O O 轴的转动惯量为:
0220J T H
4gRr
)m m (J -+=
π (3)
上式表明,各物体对同一转轴的转动惯量具有相叠加的关系,这是三线摆方法的优点。
为了将测量值和理论值比较,安置待测物体时,要使其质心恰好和下圆盘B 的轴心重合。
本实验还可验证平行轴定理。
如把一个已知质量的小圆柱体放在下圆盘中心,质心在21O O 轴,测得其直径小柱D ,由公式228
1小柱mD J =
算得其转动惯量2J ;然后把其质心移动距离d ,为了不使下圆盘倾翻,用两个完全相同的圆柱体对称地放在圆盘上,如图3所示。
设两圆柱体质心
离开21O O 轴距离均为d (即两圆柱体的质心间距为2d ) 时,它们对于
21O O 轴的转动
惯量为'
2J ,设一个圆柱体质量为2M ,则由平行轴定理可得:
()
2
22'
22d M J J +=
(4)
2'
2
2
22
J J d M -= (5)
由此算出的d 值和用长度器实测的值比较,在实验误差允许范围内两者相符的话,就验证了转动惯量的平行轴定理.
实验注意事项:
(一)技术指标
1、摆线长度 >500mm ;
2、启动盘质量 >悬盘质量;
3、实验样品:圆环一个 圆盘一个 圆柱两个;
4、总重量:13.6Kg;
5、计数计时仪量程精度:0.001S ;
6、预置次数 ≤66次 (二)注意事项
1、切勿直视激光光源或将激光束直射人眼。
2、做完实验后,要把样品放好,不要划伤表面,以免影响以后的实验。
3、移动接收器时,请不要直接搬上面的支杆,要拿住下面的小盒子移动。
4、启动盘及悬盘上各有平均分布的三只小孔,实验时用于测量两悬点间距离。
实验步骤
(一)调节仪器 1、调节三线摆
(1)调节上盘(启动盘)水平
将圆形水平仪放到旋臂上,调节底板调节脚,使其水平。
(2) 调节下悬盘水平
将圆形水平仪放至悬盘中心,调节摆线锁紧螺栓和摆线调节旋钮,使悬盘水平。
2、调节激光器和计时仪
(1)先将光电接收器放到一个适当位置,后调节激光器位置,使其和光电接收器在一个水平线上。
此时可打开电源,将激光束调整到最佳位置,即激光打到光电接收器的小孔上,计数计时仪右上角的低电平指示灯状态为暗。
注意此时切勿直视激光光源.
(2)再调整启动盘,使一根摆线靠近激光束。
(此时也可轻轻旋转启动盘,使其在5度角内转动起来) (3) 设置计时仪的预置次数。
(20或者40,即半周期数) (二)测量
1、测量下悬盘的转动惯量0J (1) 按图4所示方法a r 3
3
算出上下圆盘悬点到盘心的距离r 和R ,用游标卡尺测量悬盘的直径1D 。
(2) 用米尺测量上下圆盘之间的距离H 。
(3) 测量悬盘的质量0M .
(4) 测量下悬盘摆动周期0T ,为了尽可能消除下圆盘的扭转振动之外的运动,三线摆仪
上圆盘A 可方便地绕21O O 轴作水平转动.测量时,先使下圆盘静止,然后转动上圆盘,通过三条等长悬线的张力使下圆盘随着作单纯的扭转振动.轻轻旋转启动盘,使下悬盘作扭
转摆动(摆角< 5),记录10或20个周期的时间。
(5)算出下悬盘的转动惯量0J 2、测量悬盘加圆环的转动惯量1J
(1) 在下悬盘上放上圆环并使它的中心对准悬盘中心。
(2) 测量悬盘加圆环的扭转摆动周期1T 。
(3) 测量并记录圆环质量1M ,圆环的内、外直径内D 和外D .
(4)算出悬盘加圆环的转动惯量1J ,圆环的转动惯量1M J 3、测量悬盘加圆盘的转动惯量3J
(1) 在下悬盘上放上圆盘并使它的中心对准悬盘中心。
(2) 测量悬盘加圆盘的扭转摆动周期3T 。
(3) 测量并记录圆盘质量3M ,直径圆盘D .
(4)算出悬盘加圆环的转动惯量3J ,圆盘的转动惯量3M J
4、圆环和圆盘的质量接近,比较它们的转动惯量,得出质量分布与转动惯量的关系。
将测得的悬盘、圆环、圆盘的转动惯量值分别与各自的理论值比较,算出百分误差.
5、验证平行轴定理
1) 将两个相同的圆柱体按照下悬盘上的刻线,对称的放在悬盘上,相
距一定的距离
小柱槽-D D d =2 。
2) 测量扭转摆动周期2T 。
22M 。
3) 测量圆柱体的直径小柱D ,悬盘上刻线直径槽D 及圆柱体的总质量4)算出两圆柱体质心离开21O O 轴距离均为d (即两圆柱体的质心间距
为2d ) 时,它们
对于21O O 轴的转动惯量'
2J
5)由公式28
1
mD J =
算出单个小圆柱体处于轴线上并绕其转动的转动惯量2J . 6)由公式(4) 2'2
2
2
J J md -=算出的d 值和用长度器实测的'd 值比较,算百分误差. 实验数据记录及处理
表1 各周期的测定
表2 上、下圆盘几何参数及其间距
表3
圆环、圆柱体几何参数
数据处理:
1、算出悬盘、圆环、圆盘的转动惯量,比较相同质量的圆盘和圆环绕同一转轴扭转的转动惯量,说明转动惯量与质量分布的关系 (1)实验计算得转动惯量值: 悬盘的转动惯量 2
002
04T M H
gRr J π=
= 悬盘和圆环的总转动惯量:
21102
1)(4T M M H
gRr
J +=
π= 悬盘加圆盘的转动惯量3J :
2
3302
3)(4T M M H
gRr J +=
π=。