高三物理动量、能量计算题专题训练

合集下载

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。

现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。

已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。

2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。

(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。

求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。

4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。

安徽庐江二中高三物理二轮复习----动量和能量(2)

安徽庐江二中高三物理二轮复习----动量和能量(2)

专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。

质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。

不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。

当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。

高中物理-动量和能量专题训练与解析(一)

高中物理-动量和能量专题训练与解析(一)

动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

高考物理压轴计算题3动量与能量(学生版)

高考物理压轴计算题3动量与能量(学生版)

1如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为第一次与第二次碰撞系统动能损失之比.思考:动量什么时候守恒?举几个动量守恒的例子思考:碰撞类型有哪些?此题是哪种碰撞?方法点睛2如图所示,水平地面上发生完全非弹性碰撞,求、碰撞过程中损失的机械能.方法点睛3如图所示,在光滑水平面上有均可视为质点的达最大速度时,和的速度.以最大速度与小球相碰后,弹簧所具有的最大弹性势能.通过计算分析说明,小球能否跟小球发生第二次碰撞.记忆:三类碰撞公式推一波思考:弹簧水平相连的两球,一球主动,另一球随之而动。

分析此过程中,被动的球何时何时速度最大?两球共速的瞬间有何特点?若是竖直相连还一样吗?方法点睛4如图所示,在光滑水平面上放置方法点睛5如图所示,光滑水平面上静止放置着一辆平板车思考:此题第一问可否使用动量定理求时间?方法点睛6如图所示,长度为中点之间的距离.方法点睛7如图所示,在光滑的水平面上有一长为思考:不计所有摩擦,球冲上斜坡,动量是否守恒?机械能是否守恒?方法点睛8如图所示,质量时对轻杆的作用力大小和方向.若解除对滑块的锁定,求小球通过最高点时的速度大小.的条件下,求小球击中滑块右侧轨道位置点与小球起始位置点间的距离.方法点睛9如图所示,倾角的过程中轻绳对环做的功.思考:轻绳连接,轻杆连接,轻弹簧连接,两物体运动有何特点?方法点睛10如图所示,质量为方法点睛11如图甲所示,用固定的电动机水平拉着质量平板与地面间的动摩擦因数为多大.末受到的摩擦力各为多大.为多少.思考:木板停下以后,物块速度怎么变?加速度怎么变?拉力怎么变?最终什么状态?方法点睛12某兴趣小组同学对质量为方法点睛13光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子思考:光子为什么会产生光压?如何计算?推导公式.思考:光子一半被吸收,一半被反射,单位面积面积受到的光子压力多大?方法点睛14一艘帆船在湖面上顺风行驶,在风力的推动下做速度为方法点睛。

动量和能量的综合问题-解析版

动量和能量的综合问题-解析版

专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。

高中物理复习能量和动量经典习题例题含答案

高中物理复习能量和动量经典习题例题含答案

专题研究二能量和动量清大师德教育研究院物理教研中心李相关知识链接恒力做功 W=FsCOS B咼考考点解功能量(重力做功、电场力做功)变力做功(弹力、机车牵引力、摩擦力、分子力做功等)考题重力做功W G=—△ E p 弹力做功 W FI=— A E pi 分子力做功WF2=—A E P2 电场力做功W F3=— A E p3动量台匕冃匕动能20KK上海4 ” 势能(重力势能动弹上海£ 性势能、子势能)20KK上海21动能定理工 W= A E K功能原理W其他=A E机械能守题__型A E P=选择题能量守,恒计算题A E选择题计算题功和能、动能定理勺冲量20K牟t大津理综・24 变力的冲量20KK力江苏「10 向心力、摩擦20KK仑上海1 力的冲量等)----- 20KK厂东1计算题冲量9A动量定理选择题动量动冲量、动动量的变化2(方向黑、吉力量定理线上的0KK向广东不在一条直线上的)上海工 I = A p、广西・23动量守恒计算题A P = — A F计算题p i+p2=p i /计算题能量和动量的综合应用机械能守恒定律动量守恒定律动量和能量的综合应•420KK江苏1520KK上海920KK北京理综2320KK广东620KK河南河北2420KK天津理综21计算题选择题计算题选择题计算题选择题计算题选择题20KK江苏19 计算题20KK江苏20 计算题20KK江苏18 计算题20KK广东17 计算题20KK全国理综-25 计算题20KK北京理综-24 计算题20KK江苏18 计算题咼考命题思路——和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。

例如20KK年江苏物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。

2 .动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。

物理高考总复习动量与能量的综合压轴题

物理高考总复习动量与能量的综合压轴题

高考第2轮总复习首选资料动量的综合运用1.(20XX 年重庆卷理科综合能力测试试题卷,T25 ,19分)某兴趣小组用如题25所示的装置进行实验研究。

他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放置一直径为23d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。

板中心、物块均在杯的轴线上,物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g ,不考虑板翻转。

(1)对板施加指向圆心的水平外力F ,设物块与板间最大静摩擦力为max f ,若物块能在板上滑动,求F 应满足的条件。

(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I ,①I 应满足什么条件才能使物块从板上掉下? ②物块从开始运动到掉下时的位移s 为多少?③根据s 与I 的关系式说明要使s 更小,冲量应如何改变。

答案:(1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加速度为a由牛顿运动定律,有对物块 f =2ma 对圆板 F -f =ma 两物相对静止,有 f ≤f max得 F≤32f max 相对滑动的条件 m a x32F f >(2)设冲击刚结束的圆板获得的速度大小为0v ,物块掉下时,圆板和物块速度大小分别为1v 和2v由动量定理,有0I mv = 由动能定理,有对圆板22103112()422mg s d mv mv μ-+=- 对物块2212(2)02mgs m v μ-=-由动量守恒定律,有0122mv mv mv =+要使物块落下,必须12v v > 由以上各式得32I >s=212g μ ⎪ ⎪⎝⎭ 分子有理化得s=2312md g μ⎛⎫ ⎪ 根据上式结果知:I 越大,s 越小.2.(20XX 年湛江市一模理综)如图所示,光滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗 糙轨道,A 的右侧光滑,水平轨道左侧是一光滑斜面轨道,斜面轨道与水平轨道在O 点平 滑连接。

高三物理动量能量综合练习(含答案)

高三物理动量能量综合练习(含答案)

1第七章 动量、能量守恒1.如图,一个质量为m 的物体以某一速度从A 点冲上倾角为的加速度为3g/4,这物体在斜面上上升的最大高度为h ,则这过程中A 、重力势能增加了mgh 43;B 、机械能损失了mgh 21;C 、动能损失了mgh ;D 、重力势能增加了mgh2.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m 的跳水运动员进入水中后受到水的阻力而竖直向下做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降深度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)A .他的动能减少了FhB .他的重力势能减少了mghC .他的机械能减少了(F -mg )hD .他的机械能减少了Fh3.光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是A 、子弹对木块做的功等于()222121v v m -; B 、子弹对木块做的功等于子弹克服阻力做的功;C 、子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热的内能之和;D 、子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和。

4.质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦系数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止。

则关于斜面对m 的支持力和摩擦力的下列说法中错误的是 A .支持力一定做正功 B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功5.从地面上方同一点向东和向西分别沿水平方向抛出两个质量相等的小物体,抛出的初速度大小分别为v 和2v ,不计空气阻力,则两个小物体A.从抛出到落地动量的增量相同B.从抛出到落地重力做的功相同C.落地时的速度相同D.落地时重力做功的瞬时功率相同6.在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为108 km/h (即30 m/s ),从开始刹车到车完全停止需要的时间为5 s ,安全带对乘客的作用力大小约为A .400 NB .600 NC .800 ND .1 000 N解析 根据牛顿运动定律得 F=ma=m t v ∆=70×530 N =420 N 7.一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中A .地面对他的冲量为mv+mg Δt ,地面对他做的功为21mv 2B .地面对他的冲量为mv+mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为21mv 2D .地面对他的冲量为mv-mg Δt ,地面对他做的功为零解析(F-mg )Δt =mv ,故F Δt =mv+mg Δt ;,地面对运动员做功为零,这是因为地面对人的作用力沿力 B C2的方向没有位移. 8.静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则A.0—4s 内物体的位移为零B.0—4s 内拉力对物体做功为零C. 4s 末物体的速度为零D.0—4s 内拉力对物体冲量为零9.如图甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为m 1和m 2.图乙为它们碰撞前后的s-t 图象.已知m 1=0.1 kg ,由此可以判断A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.由动量守恒可以算出m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能10.质量为M 的物块以速度V 运动,与质量为m 的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M/m 可能为A.2B.3C.4D. 5解析:设碰撞后两者的动量都为P,则总动量为2 P,根据K mE P 22=, M P m p M P 2224222+≥3≤m M ,D 11.如图,在足够大的光滑水平面上放有质量相等的物块A 和B ,其中A 物块连接一个轻弹簧并处于静止状态,物块B 以速度v 0向着物块A 运动.当物块与弹簧作用时,两物块在同一条直线上运动.则在物块A 、B 与弹簧相互作用的过程中,两物块A 和B 的v -t 图象正确的是12.如图,质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,则A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1 m/s 时,物块乙的速率可能为2 m/s ,也可能为0D.物块甲的速率可能达到5 m/s13.下列说法正确的是A .质点做自由落体运动,每秒内重力所做的功都相同B .质点做平抛运动,每秒内动量的增量都相同C .质点做匀速圆周运动,每秒内合外力的冲量都相同D .质点做简谐运动,每四分之一周期内回复力做的功都相同14.如图所示,质量m =60kg 的高山滑雪运动员,从A 点由静止开始沿滑雪道滑下,从B 点水平飞出后又落在与水平面成倾-1013角θ=37︒的斜坡上C 点.已知AB 两点间的高度差为h =25m ,B 、C 两点间的距离为s =75m ,已知sin370=0.6,取g =10m/s 2,求:(1)运动员从B 点水平飞出时的速度大小;(2)运动员从A 点到B 点的过程中克服摩擦力做的功.解:(1)由B 到C 平抛运动的时间为t竖直方向:h Bc =s sin37o =12gt 2 (1) 水平方向:s cos370=v B t (2)代得数据,解(1)(2)得v B =20m /s (3)(2)A 到B 过程,由动能定理有mgh AB +w f =12mv B 2 (4) 代人数据,解(3)(4)得 w f =-3000J 所以运动员克服摩擦力所做的功为3000J15.如图,一质量为M =1.2kg 的物块静止在桌面边缘,桌面离水平地面的高度为h =1.8m 。

高三物理专项训练 力学中的动量和能量问题(附答案解析)

高三物理专项训练 力学中的动量和能量问题(附答案解析)

力学中的动量和能量问题专题强化练1.(2019·河南洛阳孟津二中调研)一质量为m的滑块A以初速度v0沿光滑水平面向右运动,与静止在水平面上的质量为23m的滑块B发生碰撞,它们碰撞后一起继续运动,则在碰撞过程中滑块A动量的变化量为()A.25mv0,方向向左 B.35mv0,方向向左C.25mv0,方向向右 D.35mv0,方向向右【答案】A设两滑块碰后的共同速度为v,以水平向右为正方向,根据动量守恒定律有mv0=m+23mv,解得v=35v0,可知在碰撞过程中滑块A动量的变化量为Δp=m·35v0-mv0=-25mv0,方向向左,故选A.2.(2019·山东日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v(如图甲),弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2C.L1=L2D.不能确定【答案】C3.(2019·福建晋江季延中学月考)质量为m1=1 kg和m2(未知)的两个物体在光滑的水平面上发生正碰,碰撞时间极短,其x-t图像如图所示,则() A.此碰撞一定为弹性碰撞B.m2=2 kgC.碰后两物体速度相同D.此过程有机械能损失【答案】A由图像可知,碰撞前质量为m 2的物体是静止的,质量为m 1的物体速度为v 1=4 m/s ,碰后质量为m 1的物体速度为v 1′=-2 m/s ,质量为m 2的物体速度为v 2′=2 m/s ,两物体碰撞过程动量守恒,由动量守恒定律得m 1v 1=m 1v 1′+m 2v 2′,解得m 2=3 kg ;碰撞前总动能E k =E k1+E k2=12m 1v 21+12m 2v 22=8 J ,碰撞后总动能E k ′=E k1′+E k2′=12m 1v 1′2+12m 2v 2′2=8 J ,碰撞前后系统动能不变,故碰撞是弹性碰撞,综上分析可知A 正确,B 、C 、D 错误.4.(2019·福建省泉州市模拟三)如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0【答案】D小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m x t =0,解得,小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg (h 0-34h 0)-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于34h 0-14h 0=12h 0,且小于34h 0,故D 正确.5.(2019·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,船的质量为( )A.()m L d d +B.()m L d d - C.mL dD.()m L d L + 【答案】B设人走动的时候船的速度为v ,人的速度为v ′ ,人从船尾走到船头用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -d t.以船的速度方向为正方向,根据动量守恒定律有:Mv -mv ′=0,可得:M d t =m L -d t ,解得小船的质量为M =m L -d d ,故B 项正确.6.(多选)水平地面上有两个物体在同一直线上运动,两物体碰撞前后的速度-时间图像如图所示(其中一个物体碰后速度为0),下列说法正确的是( )A .t =0时,两物体的距离为1 mB .t =2.5 s 时,两物体的距离为4.5 mC .两物体间的碰撞为弹性碰撞D .碰撞前,地面对两个物体的摩擦力大小不相等【答案】BC两物体相向运动,均做匀减速运动,1 s 相碰,可知t =0时,两物体的距离为Δs =12×(4+6)×1 m +12(2+6)×1 m =9 m ,选项A 错。

动量单元练习题-计算题题专练

动量单元练习题-计算题题专练
(1)甲、乙两车碰后瞬间,乙车速度的大小及方向;
(2)物体在乙车表面上滑行多长时间相对乙车静止?
10.如图所示,光滑水平面上有A、B、C三个物块,其质量分别为mA=2.0kg,mB=1.0kg,mC=1.0kg.现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做108J(弹簧仍处于弹性限度内),然后同时释放A、B,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰以4m/s的速度迎面与B发生碰撞并粘连在一起.求:
(1)小车在前进过程中,弹簧弹性势能的最大值.
(2)为使物体A不从小车上滑下,车面的粗糙部分至少多长?(g=10 m/s2)
12.如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点衔接,导轨半径为R,一个质量为m的静止物块在A处压缩弹簧,在弹力的作用下获一向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,求:
μmgL= + - (2分)
解得:L= m(1分)
答案:(1)AC;(2)(i)4m/s;(ii) m
8、答案(1)3 m/s(2)1.24 m/s
9.(1)乙车与甲车碰撞过程中,小物体仍保持静止,甲、乙组成的系统动量守恒,有 (4分)
乙车速度为 (2分),方向仍向左(2分)
(2)小物体m在乙上滑至两者有共同速度过程中动量守恒:
(2)由于Ft=mv2一mv1
故小球平均冲力大小为36N,方向与初速υ1方向相反.
4..【答案】(1) (2)
【解析】(1)B在d点,根据牛顿第二定律有:
解得:
(2)B从b到d过程,只有重力做功,机械能守恒有:
…………………………………………①
AB分离过程动量守恒有: ………………………………②

高三物理测试题(天体运动、能量、动量问题)

高三物理测试题(天体运动、能量、动量问题)

高三物理测试题(天体运动、能量、动量问题)一、单选题:(每题3分,计24分)1. 1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A .v 1>v 2,v 1= GM rB .v 1>v 2,v 1> GM rC .v 1<v 2,v 1= GMr D .v 1<v 2,v 1> GMr2.如图甲所示,滑轮质量、摩擦均不计,质量为2 kg 的物体在拉力F 作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知( )A .物体加速度大小为2 m/s 2B .F 的大小为21 NC .4 s 末F 的功率为42 WD .4 s 内F 的平均功率为42 W3.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其做匀速圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝ ⎛⎭⎪⎫1R 2-1R 1 B .GMm ⎝ ⎛⎭⎪⎫1R 1-1R 2 C .GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1 D .GMm 2⎝ ⎛⎭⎪⎫1R 1-1R 24.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是()A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v5.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为()A.1.6×102 kg B.1.6×103 kgC.1.6×105 kg D.1.6×106 kg6、乱扔垃圾、车窗抛物、高空抛物是影响很恶劣的陋习,有关部门要加强监管,每个公民也要做好个人防护.方大爷买了一套一楼带小院的房子,为了自己在小院种花种菜安全,他不仅安装了监控摄像头,还在小院里搭建了与一楼楼房高度相同的木质框架,上面镶嵌抗冲击强度为f=50 N/mm2的钢化玻璃.已知该楼房总高度为八层,层高均为3.33 m,如果从该楼房最高层住户的落地阳台(阳台与同楼层地板等高)上落下一个质量m=0.5 kg的易拉罐,不计空气阻力,易拉罐落在钢化玻璃上的接触面积S=20 cm2,约经时间t=5 ms速度减为零,取g=10 m/s2,则下列说法正确的是()A.易拉罐落在钢化玻璃上瞬间的速度大小约为23 m/sB.易拉罐对钢化玻璃的冲击力约为2 000 NC.易拉罐对钢化玻璃的冲击力约为2 300 ND.钢化玻璃会被砸坏7、某汽车研发机构在汽车的车轮上安装了小型发电机,将减速时的部分动能转化并储存在蓄电池中,以达到节能的目的.某次测试中,汽车以额定功率行驶一段距离后关闭发动机,测出了汽车动能E k与位移x的关系图象如图所示,其中①是关闭储能装置时的关系图线,②是开启储能装置时的关系图线.已知汽车的质量为1 000 kg,设汽车运动过程中所受地面阻力恒定,空气阻力不计.根据图象所给的信息可求出()A.汽车行驶过程中所受地面的阻力为1 000 NB.汽车的额定功率为60 kWC.汽车加速运动的时间为22.5 sD.汽车开启储能装置后向蓄电池提供的电能为5×105 J8、如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量为m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.下列说法正确的是()A.建筑工人比建筑材料早到右端1 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J二、多项选择题:(每题4分,部分2分,计16分)9. (多选)宇航员在某星球表面以初速度2.0 m/s 水平抛出一物体,并记录下物体的运动轨迹,如图所示,O为抛出点,若该星球半径为4 000 km,引力常量G=6.67×10-11 N·m2·kg-2,则下列说法正确的是()A.该星球表面的重力加速度为4.0 m/s2B.该星球的质量为2.4×1023 kgC.该星球的第一宇宙速度为4.0 km/sD.若发射一颗该星球的同步卫星,则同步卫星的绕行速度一定大于4.0 km/s10.如图所示,一固定光滑斜面与水平面间的夹角为θ,轻质弹簧的一端固定在斜面底端的挡板上,另一端与斜面上质量为m的物块连接.开始时用手拉住物块使弹簧伸长x1,放手后物块由静止开始下滑,到达最低点时弹簧压缩了x2,重力加速度为g.则在物块下滑到最低点的过程中()A.物块的加速度先减小后增大B.物块重力做功的功率先减小后增大C.弹簧的弹性势能变化了mg(x1+x2)sin θD.物块重力势能与弹簧弹性势能之和保持不变11.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d,m2的左边有一固定挡板.m1由图示位置静止释放,当m1与m2相距最近时m1的速度为v1,则在以后的运动过程中()A.m1的最小速度是0B.m1的最小速度是m1-m2 m1+m2v1C.m2的最大速度是v1D.m2的最大速度是2m1m1+m2v112.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D,水流速度为v,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是()A.高压水枪单位时间喷出的水的质量为ρvπD2B.高压水枪的功率为18ρπD2v3C.水柱对煤层的平均冲力为14ρπD2v2D.手对高压水枪的作用力水平向右三、实验题:(6分+8分=14分)13.(6分)小明同学利用如图所示的装置来验证机械能守恒定律.A为装有挡光片的钩码,总质量为M,挡光片的挡光宽度为b,轻绳一端与A相连,另一端跨过光滑轻质定滑轮与质量为m(m<M)的重物B相连.他的做法是:先用力拉住B,保持A、B静止,测出A的挡光片上端到光电门的距离h,然后由静止释放B,A下落过程中经过光电门,光电门可测出挡光片的挡光时间t,算出挡光片经过光电门的平均速度,将其视为A下落h(h≫b)时的瞬时速度,重力加速度为g.(1)在A从静止开始下落h的过程中,验证以A、B、地球所组成的系统机械能守恒定律的表达式为________(用题目所给物理量的符号表示).(2)由于光电门所测的平均速度与物体A下落h时的瞬时速度间存在一个差值Δv,因而系统减少的重力势能________(填“大于”或“小于”)系统增加的动能.(3)为减小上述Δv对结果的影响,小明同学想到了以下一些做法,其中可行的是________.A.保持A下落的初始位置不变,测出多组t,算出多个平均速度然后取平均值B.减小挡光片上端到光电门的距离hC.增大挡光片的挡光宽度bD.适当减小挡光片的挡光宽度b(4)若采用本装置测量当地的重力加速度g,则测量值________(填“大于”“等于”或“小于”)真实值.14.(8分)如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)实验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题.A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)(多选)图中O点是小球抛出点在地面上的垂直投影,实验时先让入射球m1多次从倾斜轨道上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是________.(填选项前的符号)A.用天平测量两个小球的质量m1、m2B.测量小球m1开始释放高度hC.测量抛出点距地面的高度HD.分别找到m1、m2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)若两球相碰前后的动量守恒,其表达式可表示为_______________[用(2)中测量的量表示];若碰撞是弹性碰撞,那么还应满足的表达式为_______________[用(2)中测量的量表示].四、计算题:(4个题,计46分)15.(10分)打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F拉动绳端B,使物体从A点(与钉子接触处)由静止开始运动,上升一段高度后撤去F,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m=1 kg,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k与上升高度h的关系图象如图乙所示.(g取10 m/s2,不计空气阻力)(1)求物体上升到0.4 m高度处F的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f与深度x的关系图象如图丙所示,求钉子能够插入的最大深度.16.(12分)如图所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A 时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.(1)求物块M碰撞后的速度大小;(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小.17、(12分)如图所示,CDE为光滑的轨道,其中ED是水平的,CD是竖直平面内的半圆,与ED相切于D点,且半径R=0.5 m,质量m=0.1 kg的滑块A静止在水平轨道上,另一质量M=0.5 kg的滑块B前端装有一轻质弹簧(A、B均可视为质点)以速度v0向左运动并与滑块A发生弹性正碰,若相碰后滑块A能过半圆最高点C,取重力加速度g=10 m/s2,则:(1)B滑块至少要以多大速度向前运动;(2)如果滑块A恰好能过C点,滑块B与滑块A相碰后轻质弹簧的最大弹性势能为多少?18、(12分)如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.取g=10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;(2)小车的长度L.高三物理测试题(天体运动、能量、动量问题)参考答案1、解析:选B .卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2.若卫星以近地点时的半径做圆周运动,则有GmM r 2=m v 2近r ,得运行速度v 近= GM r ,由于卫星在近地点做离心运动,则v 1>v 近,即v 1> GM r ,选项B 正确.2、解析:选C .由题图乙可知,v ­t 图象的斜率表示物体加速度的大小,即a =0.5 m/s 2,由2F -mg =ma 可得:F =10.5 N ,A 、B 均错误;4 s 末F 的作用点的速度大小为v F =2v 物=4 m/s ,故4 s 末F 的功率为P =F v F =42 W ,C 正确;4 s 内物体上升的高度h =4 m ,力F 的作用点的位移l =2h =8 m ,拉力F 所做的功W =Fl =84 J ,故平均功率P -=W t =21 W ,D 错误.3、解析:选C .卫星绕地球做匀速圆周运动满足G Mm r 2=m v 2r ,动能E k =12m v 2=GMm 2r ,机械能E =E k +E p ,则E =GMm 2r -GMm r =-GMm 2r .卫星由半径为R 1的轨道降到半径为R 2的轨道过程中损失的机械能ΔE =E 1-E 2=GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1,即为下降过程中因摩擦而产生的热量,所以选项C 正确.4、解析:选C .在最高点水平方向动量守恒,由动量守恒定律可知,3m v 0=2m v +m v ′,可得另一块的速度为v ′=3v 0-2v ,对比各选项可知,答案选C .5、解析:选B .设1 s 内喷出气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理Ft =m v 知,m =Ft v =4.8×106×13×103 kg =1.6×103 kg ,选项B 正确.6.B 最高层是八楼,八楼的阳台是七层楼高,到钢化玻璃的高度为h =6×3.33 m ≈20 m ,根据v 2=2gh ,解得v =20 m/s ,A 项错误;设易拉罐对钢化玻璃的冲击力为F N ,根据动量定理得(F N -mg )t =0-(-m v ),代入数据解得F N =2 005 N ,B 项正确,C 项错误;易拉罐落在钢化玻璃上的接触面积为20 cm 2,抗冲击力为F =fS =1×105 N ,远大于易拉罐对钢化玻璃的冲击力,D 项错误.7、解析:D .由图线①求所受阻力,由ΔE km =F f Δx, 得F f =8×105400N =2 000 N ,A 错误; 由E km =12m v 2m可得,v m =40 m/s ,所以P =F f v m =80 kW ,B 正确;加速阶段,Pt -F f x =ΔE k ,得t =16.25 s ,C 错误;根据能量守恒定律,并由图线②可得,ΔE =E km -F f x ′=8×105 J -2×103×150 J =5×105 J ,D 正确.8、解析:选D .建筑工人匀速运动到右端,所需时间t 1=L v 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 20=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.9、解析:选AC .根据平抛运动的规律:h =12gt 2,x =v 0t ,解得g =4.0 m/s 2,A正确;在星球表面,重力近似等于万有引力,得M =gR 2G ≈9.6×1023 kg ,B 错误;由m v 2R =mg 得第一宇宙速度为v =gR =4.0 km/s ,C 正确;第一宇宙速度为最大的环绕速度,D 错误.10.AC 物块在下滑过程中,开始时由重力沿斜面的分力与弹簧拉力提供合外力,随着物块向下运动,弹簧弹力逐渐减小,加速度逐渐减小,当弹簧的弹力变为方向沿斜面向上且与重力沿斜面的分力大小相同时,速度最大,加速度为零,然后弹力增大,加速度也增大,所以物块的加速度先减小后增大,速度先增大后减小,由功率公式可得重力做功的功率P =mg v sin θ,物块重力做功的功率先增大后减小,选项A 正确,B 错误;物块由静止下滑,物块与弹簧组成的系统机械能守恒,初、末状态物块动能均为零,重力势能减小mg (x 1+x 2)sin θ,根据机械能守恒定律,弹簧的弹性势能变化了mg (x 1+x 2)sin θ,选项C 正确;在物块下滑到最低点的过程中,物块的重力势能和动能、弹簧弹性势能之和保持不变,由于物块的动能先增大后减小,所以物块重力势能与弹簧弹性势能之和先减小后增大,选项D 错误.11、解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确. 12、解析:选BC .设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =S v Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δm v 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=m v ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.13、解析:(1)对A 、B 、地球所组成的系统,根据机械能守恒定律得(M -m )gh =12(M +m )⎝ ⎛⎭⎪⎫b t 2. (2)物体A 经过光电门时实际做匀加速直线运动,光电门所测的平均速度为t 时间的中间时刻的瞬时速度,故物体A 下落h 时的瞬时速度大于光电门所测的平均速度,因而系统减少的重力势能大于系统增加的动能.(3)由v =b t 知,挡光片的挡光宽度越小,光电门所测的平均速度越接近物体A 下落h 时的瞬时速度,故适当减小挡光片的挡光宽度b 可减小Δv 对结果的影响,选项D 正确,A 、B 、C 错误.(4)由v 2=2gh 知,采用本装置测量当地的重力加速度的测量值小于真实值.答案:(1)(M -m )gh =12(M +m )⎝ ⎛⎭⎪⎫b t 2 (2)大于 (3)D (4)小于14、解析:(1)小球碰前和碰后的速度都可用平抛运动来测定,即v =x t .即m 1OP t=m 1OM t +m 2ON t ;而由H =12gt 2知,每次下落竖直高度相等,平抛时间相等.则可得m 1·OP =m 1·OM +m 2·ON .故只需测射程,因而选C .(2)由表达式知:在OP 已知时,需测量m 1、m 2、OM 和ON ,故必要步骤A 、D 、E.(3)若为弹性碰撞,则同时满足动能守恒.12m 1⎝ ⎛⎭⎪⎫OP t 2=12m 1⎝⎛⎭⎪⎫OM t 2+12m 2⎝ ⎛⎭⎪⎫ON t 2 m 1·OP 2=m 1·OM 2+m 2·ON 2.答案:(1)C (2)ADE (3)m 1·OP =m 1·OM +m 2·ONm 1·OP 2=m 1·OM 2+m 2·ON 215、解析:(1)撤去F 前,根据动能定理,有(F -mg )h =E k -0由题图乙得,斜率为k =F -mg =20 N ,得F =30 N又由题图乙得,h =0.4 m 时,E k =8 J则v =4 m/s ,P =F v =120 W.(2)碰撞后,对钉子,有-F -f x ′=0-E k ′已知E k ′=20 J ,F -f =k ′x ′2又由题图丙得k ′=105 N/m ,解得:x ′=0.02 m.答案:(1)120 W (2)0.02 m16、解析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为v3,平抛运动时间为th=12gt2①x=v3t②得:v3=x g2h=3.0 m/s③(2)物块M与小球在B点处碰撞,设碰撞前物块M的速度为v1,碰撞后小球的速度为v2,由动量守恒定律:M v1=m v2+M v3④碰后小球从B 点处运动到最高点A 过程中机械能守恒,设小球在A 点的速度为v A ,则12m v 22=12m v 2A+2mgL ⑤ 小球在最高点时有:2mg =m v 2A L ⑥由⑤⑥解得:v 2=6.0 m/s ⑦由③④⑦得:v 1=m v 2+M v 3M=6.0 m/s ⑧ 物块M 从P 点运动到B 点过程中,由动能定理:-μMgx 1=12M v 21-12M v 20⑨ 解得:v 0=v 21+2μgx 1=7.0 m/s ⑩答案:(1)3.0 m/s (2)7.0 m/s17、解析:(1)设滑块A 过C 点时速度为v C ,B 与A 碰撞后,B 与A 的速度分别为v 1、v 2,B 碰撞前的速度为v 0,过圆轨道最高点的临界条件是重力提供向心力,由牛顿第二定律得:mg =m v 2C R从D 到C 由动能定理得:-mg 2R =12m v 2C -12m v 22 B 与A 发生弹性碰撞,碰撞过程动量守恒、机械能守恒,以向左为正方向,由动量守恒定律得:M v0=M v1+m v2,由机械能守恒定律得:12M v 20=12M v21+12m v22,由以上代入数据解得:v0=3 m/s.(2)由于B与A碰撞后,当两者速度相同时有最大弹性势能E p,设共同速度为v,A、B碰撞过程系统动量守恒、机械能守恒,以向左为正方向,由动量守恒定律得:M v0=(M+m)v,由机械能守恒定律得:12M v 20=E p+12(m+M)v2以上联立并代入数据解得:E p=0.375 J.答案:(1)3 m/s(2)0.375 J18、解析:(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得m0v0=(m0+m1)v1解得v 1=10 m/s.(2)三物体组成的系统动量守恒,由动量守恒定律得 (m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3解得v 2=8 m/s由能量守恒可得12(m 0+m 1)v 21=μm 2gL +12(m 0+m 1)v 22+12m 2v 23 解得L =2 m.答案:(1)10 m/s (2)2 m。

动量能量计算题附答案

动量能量计算题附答案

动量能量专题练习1、(12分)如图所示光滑水平直轨道上有三个滑块A、B、C质量分别为mA=mC=2m和mB=m,A、B用细绳相连,中间有一压缩的弹簧(弹簧与滑块不栓接),开始时A、B以共同速度V0向右运动,C静止,某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三者的速度恰好相同。

求:(1)B与C碰撞前B的速度(2)弹簧释放的弹性势能多大2、如图所示,粗糙斜面与光滑水平面平滑连接,滑块A质量为m1=1kg,滑块B质量为m2=3kg,二者都可视为质点,B的左端连接一轻质弹簧。

若A在斜面上受到F=2N,方向沿斜面向上的恒力作用时,恰能沿斜面匀速下滑,现撤去F,让A在距斜面底端L=1m处从静止开始滑下。

弹簧始终在弹性限度内。

g=10m/s2。

求:(1)A到达斜面底端时速度v是多大?(2)从滑块A接触弹簧到弹簧第一次获得最大弹性势能的过程中,弹簧对A的冲量I大小和方向? 弹簧的最大弹性势能E Pm是多大?3、如图所示,质量M=5.0kg的平板车A原来静止于光滑水平面上,A与竖直固定挡板的距离d=0.050m。

质量m=3.0kg的滑块B以大小v0=1.64m/s的初速水平向右滑上平板车。

一段时间后,A车与挡板发生碰撞。

设车碰挡板前后的速度大小不变但方向相反,且碰撞的时间极短。

已知A、B之间的动摩擦因数μ=0.15,A的车板足够长,重力加速度g=10m/s2。

求:(1)A车第一次碰到挡板前的瞬间,车A和滑块B的速度vA和vB各是多大?(2)当A车与挡板所有可能的碰撞都发生后,车A和滑块B稳定后的速度是多少?4、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。

车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹簧,一质量m=1.0kg的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数。

高三物理动量和能量 训练专题 (含详细解析过程)

高三物理动量和能量 训练专题 (含详细解析过程)

1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mgh B .重力势能增加了mgh C .动能损失了mgh D .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mgmgh ∆===︒机械综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBtC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为甲 乙A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v =2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos60)()2m m gR m m v '+-︒=+,联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2-v甲BD .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零.26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B 之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin 30cos30t g t g mg μμ==︒-︒29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m/s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3 解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022() 解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s ,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.【答案】(1(2)208(12)25v mg Mμ-解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv mMv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ②当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=-③联立①②③解得v =(2)由①②两式解得208(12)25v ml g Mμ=-33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12mv 2③在最高点Q ,由牛顿第二定律得Rm v m g 2=④联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求: (1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x ,由功能关系可得221(2)2(2)2mg x m v μ= 解得20168v lx g μ=-35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能. 【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+ ①解得v =1.2m/s由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求: (1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =mM m+v 0② 木块A 的速度:V =2m/s③(2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得 E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱?已知:返回过程中需克服火星引力做功(1)RW mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r-解析:物体m 在火星表面附近2mM Gmg R=,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m M v Gm rr =联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r ==返回舱返回过程克服引力做功(1)RW mgR r=-返回舱返回时至少需要能量k E E W =+解得(1)2R E mgR r=-38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求: (1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小; (2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v --解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v Mm Gm RR =同理,在轨道Ⅲ上有232()()v M m m Gm m rr -∆=-∆由上两式可得31v v =探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r=解得212Ra v r=(2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv解得122v v m m u v -∆=-78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2) 【答案】(1)0.017m ;(2)0.1s 解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++.再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B 系统动量守恒:0=m v A +3m v B 系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =? 【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍). 【答案】(1)H H 2m v v m m =+,N N 2mv v m m =+;(2)1.0165m m ='解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21HH v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+(2)由(1)可得N H NHm m vv m m +=+代入数据得1.0165mm=' 81.如图所示,在光滑水平面上有一质量为M 的盒子,盒子中央有一质量为m 的物体(可视为质点),它与盒底的动摩擦因数为μ,盒子内壁长l ,现给物体以水平初速度v 0向右运动,设物体与盒子两壁碰撞是完全弹性碰撞,求物体m 相对盒子静止前与盒壁碰撞的次数.。

(word完整版)高中物理动量、能量训练题

(word完整版)高中物理动量、能量训练题

一、动量定理的应用 1.简解多过程问题。

1、一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s,然后推力减小为F 2=5N,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。

试求物体在水平面上所受的摩擦力。

2.求解平均力问题2 、质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s ,安全带伸直后长5m ,求安全带所受的平均冲量.( g= 10m /s 2)3、求解曲线运动问题3、 如图 2所示,以V o =10m /s 2的初速度、与水平方向成300角抛出一个质量m =2kg 的小球.忽略空气阻力的作用,g 取10m /s 2.求抛出后第2s 末小球速度的大小. 4、求解流体问题4 、某种气体分子束由质量m=5.4X10-26kg 速度V =460m/s 的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,若分子束中每立方米的体积内有n 0=1.5X1020个分子,求被分子束撞击的平面所受到的压强.5. 有一宇宙飞船以在太空中飞行,突然进入一密度为的微陨石尘区,假设微陨石与飞船碰撞后即附着在飞船上。

欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少。

(已知飞船的正横截面积)。

(拓展)5、对系统应用动量定理。

系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。

若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x 轴和y 轴分解,则系统的动量定理的数学表达式如下:ΛΛ+∆+∆=++y y y y V m V m I I 221121ΛΛ+∆+∆=++x x x x V m V m I I 221121,对于不需求解系统内部各物体间相互作用力的问题,采用系统的动量定理求解将会使求解简单、过程明确。

安徽庐江二中高三物理二轮复习——动量和能量(1)

安徽庐江二中高三物理二轮复习——动量和能量(1)

专题训练——动量和能量(1)一、单项选择题1.如图所示,物体A、B与地面间的动摩擦因数相同,质量也相同,在斜向下的推力作用下,由静止开始一起沿水平面运动,则下列说法正确的是()A.摩擦力对A、B两物体所做的功相等B.推力F对A、B两物体做功相等C.推力F对A所做的功与A对B所做的功相等D.合外力对A、B两物体做功相等2. 如图所示,光滑水平面OB与足够长粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现将质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上。

不计滑块在B点的机械能损失;换用相同材料质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是( ).A.两滑块到达B点的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点过程克服重力做的功不相同D.两滑块上升到最高点过程机械能损失相同3.运动员从悬停在空中的直升机上跳伞,伞打开前可看作是自由落体运动,开伞后减速下降,最后匀速下落。

如果用h表示下落高度、t表示下落的时间、F表示人受到的合外力、E表示人的机械能、Ep表示人的重力势能、v表示人下落的速度。

在整个过程中,下列图象可能符合事实的是( )4.甲、乙两人站在静止的小车左右两端,小车在光滑的水平面上,如图所示,当他俩同时相向而行时,发现小车向右运动,下列说法不正确的是()A.乙的速度一定大于甲的速度B.乙对小车的冲量一定大于甲对小车的冲量C.乙的动量必定大于甲的动量D.甲、乙的动量总和必定不为零5.用长度为l的细绳悬挂一个质量为m的小球,将小球移至和悬点等高的位置使绳自然伸直,放手后小球在竖直平面内做圆周运动,取小球在最低点的重力势能为零,则小球运动过程中动能和重力势能第一次相等时,重力的功率为()A.mg glB.12mg gl C.132mg gl D.133mg gl6.如图所示,分别用恒力F1、F2先后将质量为m的物体由静止开始沿同一粗糙的固定斜面由底端拉至顶端,两次所用时间相同,第一次力F1沿斜面向上,第二次力F2沿水平方向。

高三物理 动量和能量练习(一)

高三物理 动量和能量练习(一)

质对市爱慕阳光实验学校高三物理 动量和能量练习(一)一、选择题〔每题6分,共48分。

在每题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。

全选对得6分,选不全得3分,错选或不选得0分。

〕1m 1 、m 2的两个物体,m 2>m 1。

假设m 2以加速度a〔 〕A .m 1、m 2的总机械能不守恒B .m 2的机械能守恒C .m 1、m 2的总机械能守恒、动量也守恒D .m 1、m 2的总机械能守恒、动量不守恒2.物体在一对平衡力作用下,处于静止状态,今保持其中一个力不变而将另一个力先逐渐减小为零,再逐渐恢复到原来的大小,那么在这段时间内 〔 〕A .物体的动量先增大后减小B .当变化的力减为零时,物体的动量变化最大C .物体的动量一直增大D .当两个力再次平衡时,物体的动量变化得最大3.有两个物体ab ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同,假设a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为S a 和S b ,那么以下关正确的选项是 〔 〕A .F a >F b 且S a <S bB .F a >F b 且S a >S bC .F a <F b 且S a <S bD .F a <F b 且S a >S b4.如下图,一轻质弹簧,两端连着物体A 和B 放在光滑水平面上,如果物体A 被水平速度为v 0的子弹并嵌在物体A 3/4,子弹的质量是物体B 质量的1/4。

弹簧被压缩到最短时物体B 的速度〔 〕 A .012v B .08vC .4v D .23v 5.静止在水面上的船长为L ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,那么船移动的距离为〔不计水的阻力〕 〔 〕 A .mL M B .mL M m + C .mL M m - D .()M m LM m-+ 6.如下图为A 、B 两物体相互作用前后的v-t 〔 〕A .A 、B 作用前后的总动量守恒 B .A 、B 的质量之比为3:2C .A 、B 作用前后总动能不相D .A 、B 作用前后,总动能不变7.某消防队员从一平台上跳下,下落2m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m 。

高三物理专题练习题 动量和能量

高三物理专题练习题 动量和能量

专题五、动量和能量二、典题例题例题1.某商场安装了一台倾角为30°的自动扶梯;该扶梯在电压为380V的电动机带动下以0.4m/s的恒定速率向斜上方移动;电动机的最大输出功率为4.9kkw。

不载人时测得电动机中的电流为5A;若载人时传颂梯的移动速和不载人时相同;设人的平均质量为60kg;则这台自动扶梯可同时乘载的最多人数为多少?(g=10m/s2)。

例题2.如图所示:摆球的质量为m;从偏离水平方向30°的位置由静释放;设绳子为理想轻绳;求小球运动到最低点A时绳子受到的拉力是多少?例3.如图所示;大小相同质量不一定相等的A、B、C三个小球沿一直线排列在光滑水平面上;未碰前A、B、C三个球的动量分别为8kg·m/s、-13kg·m/s、-5kg·m/s;在三个球沿一直线相互碰撞的过程中;A、B两球受到的冲量分别为-9N·s、1N·s;则C球受到的冲量及C球碰后的动量分别为()A.1N·s;3kg·m/s B.8N·s;3kg·m/sC.-8N·s;5kg·m/s D.10N·s;5kg·m/s 训练题A、B两船的质量均为M;它们都静止在平静的湖面上;当A船上质量为的人以水平速υ从A船跳到B船;再从B船跳回A船.经多次跳跃后;人最终跳到B船上;设水对船的阻力不计;则()A.A、B两船最终的速大小之比为3∶2B.A、B(包括人)最终的动量大小之比为1∶1C.A、B(包括人)最终的动量之和为零D.因跳跃次数未知;故以上答案均无法确定例4.如图所示;三个质量为m的弹性小球用两根长为L的轻绳连成一条直线而静止在光滑水平面上;现给中间的小球B一个水平初速υ0;方向与绳垂直小球相互碰撞时无机械能损失;轻绳不可伸长;求:(1)当小球A、C第一次相碰时;小球B的速.(2)当三个小球再次处在同一直线上时;小球B的速.(3)运动过程中小球A的最大动能E KA和此时两根绳的夹角θ.Array(4)当三个小球处在同一直线上时;绳中的拉力F的大小.训练题(15分)如图所示;质量均为m的A、B两个弹性小球;用长为2l的不可伸长的轻绳连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M =4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g =10m /2,求:(1)小物块滑上平板车的初速度v0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v0要增大到多大?2.(19分)质量m A=3.0kg.长度L=0.70m.电量q=+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N /C的匀强电场,此时A的右端到竖直绝缘挡板的距离为S =2m,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小? (2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

v 0O /O Mm3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

求:(1)第一次碰撞后物块的速度?(2)求小物块从开始运动至第二次碰撞时小物块电势能的变化?4.(19分)如图所示,水平地面上方被竖直线MN 分隔成两部分,M 点左侧地面粗糙,与B 球间的动摩擦因数为μ=0.5,右侧光滑.MN 右侧空间有一范围足够大的匀强电场。

在O 点用长为R =5m 的轻质绝缘细绳,拴一个质量mA =0.04kg ,带电量为q=+2⨯10-4C的小球A ,在竖直平面内以v =10m/s的速度做顺时针匀速圆周运动,小球A 运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B 球的质量mB =0.02k g,此时B 球刚好位于M 点。

现用水平向左的推力将B 球缓慢推至P 点(弹簧仍在弹性限度内),MP 之间的距离为L =10cm,推力所做的功是W =0.27J ,当撤去推力后,B 球沿地面向右滑动恰好能和A 球在最低点处发生正碰,并瞬间成为一个整体C (A 、B 、C 均可视为质点),碰撞前后电荷量保持不变,碰后瞬间立即把匀强电场的场强大小变为E =6⨯103N /C,电场方向不变。

求:(取g=10m/s 2)(1)在A 、B两球在碰撞前匀强电场的大小和方向; (2)A 、B两球在碰撞后瞬间整体C的速度; (3)整体C 运动到最高点时绳的拉力大小。

5.(19分)如图14所示,两根正对的平行金属直轨道MN、M ′N ′位于同一水平面上,两轨道之间的距离l =0.50m。

轨道的MN ′端之间接一阻值R=0.40Ω的定值电阻,N N′端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ′P ′平滑连接,两半圆轨道的半径均为R0=0.5m 。

直轨道的右端处于竖直向下、磁感应强度B=0.64T 的匀强磁场中,磁场区域的宽度d=0.80m,且其右边界与N N′重合。

现有一质量m=0.20kg 、电阻r=0.10Ω的导体杆a b静止在距磁场的左边界s=2.0m 处。

在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP′。

已知导体杆ab在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g=10m/s 2,求:(1)导体杆刚进入磁场时,通过导体杆上的电流大小和方向;O M N B PAm 1 A CO Bm 22R65R R 风(2)导体杆穿过磁场的过程中通过电阻R 上的电荷量; (3)导体杆穿过磁场的过程中整个电路产生的焦耳热。

6.风洞实验室可产生水平方向的、大小可调节的风力。

在风洞中有一固定的支撑架ABC ,该支撑架的上表面光滑,是一半径为R的1/4圆柱面,如图所示,圆弧面的圆心在O点,O 离地面高为2R,地面上的D处有一竖直的小洞,离O点的水平距离为65R 。

现将质量分别为m 1和m2的两小球用一不可伸长的轻绳连接按图中所示的方式置于圆弧面上,球m 1放在与O 在同一水平面上的A点,球m 2竖直下垂。

(1)在无风情况下,若将两球由静止释放(不计一切摩擦),小球m 1沿圆弧面向上滑行,到最高点C 恰与圆弧面脱离,则两球的质量比m 1:m2是多少?(2)让风洞实验室内产生的风迎面吹来,释放两小球使它们运动,当小球m1滑至圆弧面的最高点C 时轻绳突然断裂,通过调节水平风力F 的大小,使小球m1恰能与洞壁无接触地落入小洞D 的底部,此时小球m 1经过C 点时的速度是多少?水平风力F 的大小是多少(小球m1的质量已知)?7.(19分)如图所示,一轻质弹簧竖直固定在地面上,自然长度l 0=0.50m,上面连接一个质量m 1=1.0kg 的物体A ,平衡时物体距地面h 1=0.40m,此时弹簧的弹性势能EP =0.50J 。

在距物体A 正上方高为h=0.45m 处有一个质量m 2=1.0kg 的物体B自由下落后,与弹簧上面的物体A 碰撞并立即以相同的速度运动,已知两物体不粘连,且可视为质点。

g =10m/s 2。

求: (1)碰撞结束瞬间两物体的速度大小; (2)两物体一起运动第一次具有竖直向上最大速度时弹簧的长度; (3)两物体第一次分离时物体B的速度大小。

图 h 1 h A B参考答案及评分标准1.解:(1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧最高点A 时,二者的共同速度1v ,由动量守恒得:10)(v m M mv += ① 由能量守恒得:mgL mgR v m M mv μ+=+-2120)(2121 ② 联立①②并代入数据解得:s m v /50= ③(2)设小物块最终与车相对静止时,二者的共同速度2v ,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得: 20)(v m M mv += ④设小物块与车最终相对静止时,它距O′点的距离为x 。

由能量守恒得:)()(21212220x L mg v m M mv +=+-μ ⑤ 联立③④⑤并代入数据解得:m x 5.0= ⑥(3)设小滑块最终能到达小车的最右端,v 0要增大到01v ,小滑块最终能到达小车的最右端时的速度为3v ,与(2)同理得:301)(v m M mv += ⑦ mgL v m M mv μ2)(212123201=+- ⑧联立⑦⑧并代入数据解得s m v /26501=⑨评分细则:③3分,其余每式2分,共19分。

2.解:(1)设B受到的最大静摩擦力为m f 1,则.5.211N g m f B m ==μ ① (1分) 设A 受到地面的滑动摩擦力的2f ,则.0.4)(22N g m m f B A =+=μ ② (1分) 施加电场后,设A.B以相同的加速度向右做匀减速运动,加速度大小为a ,由牛顿第二定律a m m f qE B A )(2+=+ ③ (2分)解得:2/0.2s m a = (2分)设B 受到的摩擦力为1f ,由牛顿第二定律得 a m f B =1,④解得:.0.21N f =因为m f f 11<,所以电场作用后,A.B 仍保持相对静止以相同加速度a 向右做匀减速运动,所以刚加上匀强电场时,B 的加速度大小2/0.2s m a = (2分) (2)A 与挡板碰前瞬间,设A.B向右的共同速度为1v ,as v v 22021-= (2分)解得s m v /11= (1分)A 与挡板碰撞无机械能损失,故A 刚离开挡板时速度大小为s m v /11= (1分) (3)A与挡板碰后,以A.B 系统为研究对象,2f qE = ⑥故A 、B 系统动量守恒,设A、B 向左共同速度为ν,规定向左为正方向,得:v m m v m v m B A B A )(11+=- ⑦ (3分)设该过程中,B 相对于A 向右的位移为1s ,由系统功能关系得:22111)(21)(21v m m v m m gs m B A B A B +-+=μ ⑧ (4分) 解得 m s 60.01= (2分)因L s <1,所以B不能离开A ,B 与A 的左端的最大距离为m s 60.01= (1分)3.解:第一次碰前对滑块分析由动能定理20102qEL mv =-…………(1)2分 第一次相碰由动量守恒 012mv mv Mv =+………(2)2分 代入数据解得:1034v v =-=………(3)2分 从第一次碰后到第二次碰前的过程中对小车分析做匀速运动2A S v t =……(4)2分 对滑块分析由运动学公式推论:132B v v S t +=………(5)2分 由动能定理有:22311122B qES mv mv =-………………(6)3分 滑块与小车第二次碰撞条件:A B S S =(7)2分代入数据解得:A B S S L ==(8)2分 由功能关系电势能减少量 qE()2E W L L qEL ∆==+=电……(9)3分4.解:(1)要使小球在竖直平面内做匀速圆周运动,必须满足 F 电=E q=m A g (2分)所以 qg m E A ==2×103N/C (1分)方向竖直向上(1分) (2)由功能关系得,弹簧具有的最大弹性势能 J gl m W E B P 26.0=-=μ 设小球B 运动到M 点时速度为B v ,由功能关系得221B B B P v m gL m E =-μ s m v B /5= (4分)碰后结合为C ,设C 的速度为1v ,由动量守恒得 1v m v m v m C B B A =- s m v /51=(2分)(3)电场变化后,因N g m q E C 6.0=-' N R v m c 3.021= ()g m q E Rv m c c -'<21 所以C 不能做圆周运动,而是做类平抛运动,设经过时间t 绳子在Q 处绷紧,由运动学规律得t v x 1= 221at y =CC m g m q E a -'= ()222R y R x =-+ 可得 s t 1= s m at v y /10==x = (2分)即:绳子绷紧时恰好位于水平位置,水平方向速度变为0,以竖直速度2v =y v 开始做圆周运动(1分)设到最高点时速度为3v 由动能定理得:gR m qR E v m v m C C C -'=-22232121 得 s m v /2103=(2分)在最高点由牛顿运动定律得:Rv m q E g m T c C 23='-+ (2分) 求得 N T 3=(1分)5.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为1v ,根据动能定理则有 2121)(mv s mg F =-μ…………(2分) 导体杆刚进入磁场时产生的感应电动势 1Blv E =…………………(1分) 此时通过导体杆的电流大小 8.3)/(=+=r R E I A (或3.84A)……(2分)根据右手定则可知,电流方向为由b 向a ……………………(2分)(2)设导体杆在磁场中运动的时间为t ,产生的感应电动势的平均值为E 平均,则由法拉第电磁感应定律有 t Bld t E //=∆=ϕ平均…………………(2分)通过电阻R的感应电流的平均值为 )/(r R E I +=平均平均………(1分) 通过电阻R 的电荷量 51.0==t I q 平均C (或0.512C )(3)设导体杆离开磁场时的速度大小为2v ,运动到圆轨道最高点的速度为3v ,因导体杆恰好能以最小速度通过半圆形轨道的最高点,根据牛顿第二定律对导体杆的轨道最高点时有023/R mv mg =…………………(1分)对于导体杆从P P N N ''运动至的过程,根据机械能守恒定律有ﻩ 0232222121R mg mv mv +=……(1分)解得 2v =5.0m/s …………(1分)导体杆穿过磁场的过程中损失的机械能 J mv mv E 1.121212221=-=∆……(3分)ﻩ此过程中电路中产生的焦耳热为 J mgd E Q 94.0=-∆=μ…………(2分) 6.解:(1)以两小球及轻绳为整体,释放后小球m1上滑,必有:12m m <…①由于小球m 1在最高点C 与圆弧面分离,则此时两球的速度可以为零,则由机械能守恒有:212m g R m gR π⨯= 求得:122m m π=………② 小球过圆弧面的最高点C 时的速度也可以不为零,设它们的速度均为v ,则211v m g m R=………③因不计一切摩擦,由机械能守恒有:22211211222m g R m gR m v m v π⨯-=+………④由③④可得:1213m m π-=………⑤ 综合①②⑤可知:12113m m π-≤<………⑥ (2)设小球过C点时的速度为v C ,设小球离开C 点后在空中的运动时间为t,在竖直方向作自由落体运动,则有 21(2)2R R gt +=………⑦ 因存在水平风力,小球离开C 点后在水平方向作匀减速运动,设加速度为a x ,落入小洞D 时水平分速度减为零。

相关文档
最新文档